Experimental and analytical investigations of longitudinal combustion instability in a continuously variable resonance combustor (CVRC)

Yen Ching Yu, Purdue University

Abstract

An analytical model based on linearized Euler equations (LEE) is developed and used in conjunction with a validating experiment to study combustion instability. The LEE model features mean flow effects, entropy waves, adaptability for more physically-realistic boundary conditions, and is generalized for multiple-domain conditions. The model calculates spatial modes, resonant frequencies and linear growth rates of the overall system. The predicted resonant frequencies and spatially-resolved mode shapes agree with the experimental data from a longitudinally-unstable model rocket combustor to within 7%. Different gaseous fuels (methane, ethylene, and hydrogen) were tested under fixed geometry. Tests with hydrogen were stable, whereas ethylene, methane, and JP-8 were increasingly unstable. A novel method for obtaining large amounts of stability data under variable resonance conditions in a single test was demonstrated. The continuously variable resonance combustor (CVRC) incorporates a traversing choked axial oxidizer inlet to vary the overall combustion system resonance. The CVRC experiment successfully demonstrates different level of instability, transitions between stability levels, and identifies the most stable and unstable geometric combination. Pressure oscillation amplitudes ranged from less than 10% of mean pressure to greater than 60%. At low amplitudes, measured resonant frequency changed with inlet location but at high amplitude the measured resonance frequency matched the frequency of the combustion chamber. As the system transitions from linear to non-linear instability, the higher harmonics of the fundamental resonant mode appear nearly simultaneously. Transient, high-amplitude, broadband noise, at lower frequencies (on the order of 200 Hz) are also observed. Conversely, as the system transitions back to a more linear stability regime, the higher harmonics disappear sequentially, led by the highest order. Good agreements between analytical and experimental results are attained by treating the experiment as quasi-stationary. The stability characteristics from the high frequency measurements are further analyzed using filtered pressure traces, spectrograms, power spectral density plots, and oscillation decrements. Future works recommended include: direct measurements, such as chemiluminescence or high-speed imaging to examine the unsteady combustion processes; three-way comparisons between the acoustic-based, linear Euler-based, and non-linear Euler/RANS model; use the high fidelity computation to investigate the forcing terms modeled in the acoustic-based model.

Degree

Ph.D.

Advisors

Anderson, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS