Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics

Zhaoxu Dong, Purdue University

Abstract

Plain woven Kevlar fabrics are widely used as body protection materials. The present study investigated the impact performance of five styles of Kevlar fabrics K310, K706, K720, K745 and K779 from Hexcel. The fabrics are different in many aspects, i.e., weight per square meter, yarn counts, yarn size, Kevlar fiber type, friction and breaking strength. Silica nanoparticles were impregnated into the fabric to enhance the ballistic impact performance. The fabric impregnated with nanoparticles exhibit significant enhancement in impact performance over their neat counterparts. Fabrics experience large deformation under impact. More or less yarn pull-out was observed on all the fabrics. The in-plane yarn pull-out force has good correlation to the impact performance: fabrics with higher pull-out force performed better in impact tests. A two-dimensional finite element model was proposed to simulate the single yarn pull-out procedure and predict the maximum pull-out force. The most important fabric features are included in this model: yarn count, yarn size, fabric thickness, yarn waviness, fiber modulus, fiber diameter and coefficients of friction et al. The numerical results show good agreement with the experimentally measured pull-out forces. To understand the impact process, a constitutive model was developed to characterize the nonlinear anisotropic properties of the fabric in large deformation. The nanoparticles largely increase the shear stiffness, while only slightly affect the tension behavior along warp and weft yarn directions. This constitutive model was incorporated in the commercial FEA software ABAQUS through the user-defined material subroutine and used to simulate deformations with various loads. Finally the out-of-plane yarn pull-out force was predicted from the in-plane yarn pull-out results using finite element method and the proposed constitutive model.

Degree

Ph.D.

Advisors

Sun, Purdue University.

Subject Area

Aerospace engineering|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS