Development of remote sensing based site specific weed management for Midwest mint production

Mary Saumur Paulson Gumz, Purdue University

Abstract

Peppermint and spearmint are high value essential oil crops in Indiana, Michigan, and Wisconsin. Although the mints are profitable alternatives to corn and soybeans, mint production efficiency must improve in order to allow industry survival against foreign produced oils and synthetic flavorings. Weed control is the major input cost in mint production and tools to increase efficiency are necessary. Remote sensing-based site-specific weed management offers potential for decreasing weed control costs through simplified weed detection and control from accurate site specific weed and herbicide application maps. This research showed the practicability of remote sensing for weed detection in the mints. Research was designed to compare spectral response curves of field grown mint and weeds, and to use these data to develop spectral vegetation indices for automated weed detection. Viability of remote sensing in mint production was established using unsupervised classification, supervised classification, handheld spectroradiometer readings and spectral vegetation indices (SVIs). Unsupervised classification of multispectral images of peppermint production fields generated crop health maps with 92 and 67% accuracy in meadow and row peppermint, respectively. Supervised classification of multispectral images identified weed infestations with 97% and 85% accuracy for meadow and row peppermint, respectively. Supervised classification showed that peppermint was spectrally distinct from weeds, but the accuracy of these measures was dependent on extensive ground referencing which is impractical and too costly for on-farm use. Handheld spectroradiometer measurements of peppermint, spearmint, and several weeds and crop and weed mixtures were taken over three years from greenhouse grown plants, replicated field plots, and production peppermint and spearmint fields. Results showed that mints have greater near infrared (NIR) and lower green reflectance and a steeper red edge slope than all weed species. These distinguishing characteristics were combined to develop narrow band and broadband spectral vegetation indices (SVIs, ratios of NIR/green reflectance), that were effective in differentiating mint from key weed species. Hyperspectral images of production peppermint and spearmint fields were then classified using SVI-based classification. Narrowband and broadband SVIs classified early season peppermint and spearmint with 64 to 100% accuracy compared to 79 to 100% accuracy for supervised classification of multispectral images of the same fields. Broadband SVIs have potential for use as an automated spectral indicator for weeds in the mints since they require minimal ground referencing and can be calculated from multispectral imagery which is cheaper and more readily available than hyperspectral imagery. This research will allow growers to implement remote sensing based site specific weed management in mint resulting in reduced grower input costs and reduced herbicide entry into the environment and will have applications in other specialty and meadow crops.

Degree

Ph.D.

Advisors

Weller, Purdue University.

Subject Area

Agronomy|Horticulture|Remote sensing

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS