Crossflow transition at Mach 6 on a cone at low angles of attack

Ryan O Henderson, Purdue University

Abstract

Experiments on a sharp 7-degree cone at low angles of attack were conducted at Mach 6 to understand the stationary and traveling modes of crossflow disturbances, the interaction between them, and the development of other instabilities that can lead to transition. Using the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT), pressure and temperature measurements were collected to better describe crossflow characteristics. Noisy and quiet flow conditions were compared to understand crossflow development. Temperature Sensitive Paint (TSP) was used to measure the global surface temperatures on the model. Schmidt-Boelter (SB) gauges were used to convert the surface temperatures to heat transfer. The global heat transfer then allowed the stationary crossflow to be visualized and quantified in terms of heat flux. Integrating heat fluxes azimuthally, the amplitudes of the stationary crossflow vortices were compared against the amplitudes of the traveling waves. PCB 132A31 and Kulite XCQ-062-15A transducers were used to measure pressure fluctuations over a broad range of frequencies. The traveling crossflow instability, the second-mode instability, and possibly the secondary-instability of the stationary crossflow mode were found at certain tunnel conditions. A grouping of Kulites was used to determine traveling wave speed and direction. Roughness elements were added to the model to excite discrete stationary vortices. The roughness elements provided a method to alter the strength of the stationary vortices. This technique allowed traveling-mode amplitudes to be compared to varying stationary-mode amplitudes.

Degree

M.S.A.A.

Advisors

Schneider, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS