A high resolution 3D and color image acquisition system for long and shallow impressions in crime scenes

Ruwan Janapriya Egoda Gamage, Purdue University


In crime scene investigations it is necessary to capture images of impression evidence such as tire track or shoe impressions. Currently, such evidence is captured by taking two-dimensional (2D) color photographs or making a physical cast of the impression in order to capture the three-dimensional (3D) structure of the information. This project aims to build a digitizing device that scans the impression evidence and generates (i) a high resolution three-dimensional (3D) surface image, and (ii) a co-registered two-dimensional (2D) color image. The method is based on active structured lighting methods in order to extract 3D shape information of a surface. A prototype device was built that uses an assembly of two line laser lights and a high-definition video camera that is moved at a precisely controlled and constant speed along a mechanical actuator rail in order to scan the evidence. A prototype software was also developed which implements the image processing, calibration, and surface depth calculations. The methods developed in this project for extracting the digitized 3D surface shape and 2D color images include (i) a self-contained calibration method that eliminates the need for pre-calibration of the device; (ii) the use of two colored line laser lights projected from two different angles to eliminate problems due to occlusions; and (iii) the extraction of high resolution color image of the impression evidence with minimal distortion. The system results in sub-millimeter accuracy in the depth image and a high resolution color image that is registered with the depth image. The system is particularly suitable for high quality images of long tire track impressions without the need for stitching multiple images.^




Mihran Tuceryan, Purdue University.

Subject Area

Engineering, Computer|Sociology, Criminology and Penology|Computer Science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server