Expression of histone deacetylase enzymes in murine and chick optic nerve

Sarika Tiwari, Purdue University

Abstract

Epigenetic alterations have been shown to control cell type specification and differentiation leading to the changes in chromatin structure and organization of many genes. HDACs have been well documented to play an important role in both neurogenesis and gliogenesis in ganglionic eminence and cortex-derived cultures. However, the role of HDACs in glial cell type specification and differentiation in the optic nerve has not been well described. As a first step towards understanding their role in glial cell type specification, we have examined histone acetylation and methylation levels as well as the expression levels and patterns of the classical HDACs in both murine and chick optic nerve. Analysis of mRNA and protein levels in the developing optic nerve indicated that all 11 members of the classical HDAC family were expressed, with a majority declining in expression as development proceeded. Based on the localization pattern in both chick and murine optic nerve glial cells, we were able to group the classical HDACs: predominantly nuclear, nuclear and cytoplasmic, predominantly cytoplasmic. Nuclear expression of HDACs during different stages of development studied in this project in bothmurine and chick optic nerve glial cells suggests that HDACs play a role in stage-dependent changes in gene expression that accompany differentiation of astrocytes and oligodendrocytes. Examination of localization pattern of the HDACs is the first step towards identifying the specific HDACs involved directly in specification and differentiation of glia in optic nerve.

Degree

M.S.

Advisors

Belecky Adams, Purdue University.

Subject Area

Biology|Developmental biology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS