Validation of numerical simulations for nano-aluminum composite solid propellants

Allen H Yan, Purdue University

Abstract

Nano-aluminum is of interest as an energetic additive in composite solid propellant formulations for its demonstrated ability to increase combustion efficiency and burning rate. However, due to the current cost of nano-aluminum and the associated safety risks associated with propellant testing, it may not always be practical to spend the time and effort to mix, cast, and thoroughly evaluate the burning rate of a new formulation. To provide an alternative method of determining this parameter, numerical methods have been developed to predict the performance of nano-aluminum composite propellants, but these codes still require thorough validation before application. For this purpose, six propellant compositions were formulated, fully characterized, and burn rates were measured at several pressures between 34.0 and 129.3 atmospheres at room temperature, 20°C, and at an elevated temperature of 71.1°C in order to test the code's ability to predict pressure dependent burn rate and temperature sensitivity. To ensure the most accurate model possible, special emphasis was placed on characterizing the size distribution of the constituent nano-aluminum and ammonium perchlorate powders through optical diffraction or optical imaging techniques. Experimental burn rate is compared to the propellant combustion model and shows excellent agreement within 5% for a range of formulations and pressures, however under other conditions the model deviates by as much as 21%. An analysis of the results suggests that the current framework of the numerical model is unable to accurately simulate all the combustion physics of high aluminum content propellants, and suggestions for improvements are identified.

Degree

M.S.

Advisors

Son, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS