Efficient liquefaction cycles for natural gas

Easa Ismail AL-Musleh, Purdue University

Abstract

Natural Gas is liquefied for storage and transportation purposes. Large quantity of Natural Gas is liquefied on a daily basis. Therefore, there is a need for efficient refrigeration cycles to liquefy natural gas. Refrigeration cycles are energy intensive processes. In such systems, the compressors are the main power consumers. A given refrigeration task can be achieved by many configurations and use of refrigerant mediums. In principle, all possible configurations utilize vapor compression and/or expander cycles. However, identifying an energy efficient configuration along with the proper choice of refrigerants is not a straightforward technique. In the refrigeration literature, many methods have been proposed to identify efficient refrigeration configurations for a given task. However, these methods rely on detailed simulations and mathematical programming and do not provide much physical insights to design a good refrigeration process. As a result, our motivation is to develop physical insights through systematic evaluation of refrigerants and cycle configurations. We have identified key features of different refrigeration systems for Liquefied Natural Gas (LNG) applications. This was achieved through detailed simulations and thermodynamic analysis. Such features are essential to understand the limits of different configurations. Moreover, they can lead to process developments and improvements.

Degree

M.S.Ch.E.

Advisors

Agrawal, Purdue University.

Subject Area

Chemical engineering|Petroleum engineering|Energy

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS