Development of Bioresorbable Fe-Mn Alloys for Orthopaedic Implantation

Michael Heiden, Purdue University

Abstract

Degradable, transient orthopaedic implants have been proposed for years, with the aim to replace permanent biomaterials that are left in the body indefinitely or that have to be removed via surgical procedures. Current resorbable implant designs either degrade too quickly, injuring surrounding tissue while losing necessary mechanical strength before full tissue reconstruction, or degrade too slowly, thereby acting like a permanent implant. Permanent fracture fixation devices in particular have the potential to lead to failures in the long-term, systemic tissue toxicity, and overall discomfort for the patients. The next generation of biomaterials that resorb away after supporting full tissue reconstruction are desired in order to mitigate these problems. In order to address past complications in design of clinically viable degradable orthopaedic implants, an extensive range of material selection and processing techniques are investigated. The degradation kinetics of Fe-Mn alloys are assessed using a combination of electrochemical polarization and in vitro mass loss experiments. Additionally, the mechanisms behind the surface morphological evolution while subject to prolonged immersion in simulated body fluid are investigated in detail. An unstable iron-rich oxide layer was observed to form immediately upon immersion, which diminishes further degradation. Microstructural and effective strain effects are explored using a severe plastic deformation technique called large-strain machining (LSM), along with cold-rolling, and annealing treatments. It was discovered that LSM of Fe-33Mn with a rake angle of 0° generated 16 µm thin, dendritic band-like structures, which contributed to a 140% increase in the degradation rate compared to cast structures of the same alloy. There was no major correlation between effective strain imparted into the material and the degradation rate, but decreasing grain size did increase corrosion susceptibility up to a point. Thus, it appears that microstructural refinement alone cannot achieve the necessary degradation rates required for these applications. The generation of porosity in these materials is shown to be controllable on several different size scales. Nanoporous structures generated through dealloying of Zn-diffused Fe-Mn alloys are shown to be tailorable based on the adjustments of parameters in processing, such as altering: initial microstructure, Zn diffusion rate, dealloying rate, temperature and time of heat treatment after dealloying, and the type of medium used. Certain dealloyed structures are shown to increase cell attachment by up to 123% compared to polished smooth surfaces, but corrosion resistance is slightly increased. Finally, the properties of NaCl-leached Fe-30Mn alloys and Fe-30Mn-10HA biocomposites are presented. The combination of introducing 300 µm diameter pores and the generation of a separate Ca2Mn7O 14 phase after sintering at 1200ºC for three hours is found to contribute to enhanced bone stem cell attachment and differentiation, along with increased bone mineralization and increased degradation rates up to 0.82 ± 0.04 mm/year, compared to 0.02 ± 0.00 mm/year for nonporous Fe30Mn. Compared to nonporous Fe-30Mn alloys which would theoretically degrade for periods longer than 38 years, these porous biocomposites should degrade within a more clinically acceptable 1.5 years. However, based on studies presented here, the mechanical properties of these unique materials need to be further optimized to be suitable for more load-bearing applications.

Degree

Ph.D.

Advisors

Stanciu, Purdue University.

Subject Area

Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS