Experimentally validated 3D MD model for AFM-based tip-based nanomanufacturing

Rapeepan Promyoo, Purdue University

Abstract

In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed on indentation force above 10 nm of indentation depth). The model also supported a more comprehensive parametric study (than other published work) in terms of number of parameters and ranges of values investigated, as well as a more cost effective design of experiments. The model was also used to predict material properties at the nanoscale (e.g. hardness of gold predicted within 6% error). On the other hand, a comprehensive experimental parametric study was conducted to produce a database that is used to select proper machining conditions for guiding the fabrication of nanochannels (e.g. scratch rate = 0.996 Hz, trigger threshold = 1 V, for achieving a nanochannel depth = 50 nm for the case of gold device). Similar trends for the variation of indentation force with depth of cut, pattern of the material pile-up around the indentation mark or scratched groove were found. The parametric studies conducted using both MD model simulations and AFM experiments showed the following: Normal forces for both nanoindentation and nanoscratching increase as the depth of cut increases. The indentation depth increases with tip speed, but the depth of scratch decrease with increasing tip speed. The width and depth of scratched groove also depend on the scratch angle. The recommended scratch angle is at 90°. The surface roughness increases with step over, especially when the step over is larger than the tip radius. The depth of cut also increases as the step over decreases. Additional study is conducted using the MD model to understand the effect of crystal structure and defects in material when subjected to a stress. Several types of defects, including vacancies and Shockley partial dislocation loops, can be observed during the MD simulation for the case of gold, copper and aluminum. Finally, AFM-based TBN is used with photolithography to fabricate a nano-fluidic device for medical application. In fact, the photolithography process is used to create microchannels on top of a silicon wafer, and AFM-based TBN is applied to fabricate nanochannels between the microchannels that connect to the reservoirs. Fluid flow test was conducted on the devices to ensure that the nanochannel was open and the bonding sealed.

Degree

Ph.D.

Advisors

Shin, Purdue University.

Subject Area

Mechanical engineering|Nanotechnology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS