Scaling effects of a graphene field effect transistor for radiation detection

Zachary Frank Shollar, Purdue University

Abstract

Radiation detectors based on graphene is a burgeoning research topic within the immense field of graphene research. Although papers continue to parse out their mysteries, the devices remain simplistic and small. New fabrication techniques have allowed for millimeter scale and larger monolayer graphene sheets to be grown with increasingly better quality. It is the goal of this thesis to investigate the scaling effects of millimeter scale graphene for radiation detection purposes. To this end, chemical vapor deposition grown monolayer graphene was purchased and transferred to Si/SiO2 substrates. The devices were patterned into simple rectangular strips varying in size from 3000 x 500 μm, 600 x 100 μm, 300 x 50 μm, and 60 x 11 μm. Four metal contacts were patterned onto each strip for electrical characterization. Two probe resistance measurements were performed on all four sizes, at three different lengths along the graphene. Using the field effect, the graphene resistance response was measured at 0 V back-gate voltage to obtain graphene resistivity on SiO2, which showed an increase in resistivity as the graphene strip size increased. Further, the response was measured for varying back-gate sweep ranges and speeds. This lead to the conclusion that strong p-doping was inherent in the graphene strips, as evidenced by charge neutral points located above +50 V. Strong hysteresis observed in those tests alluded to trapped charge having a major effect on voltage sweeps. Mobility values for the graphene strips were extracted from the back-gate voltage sweeps and fixed gate voltage stabilization curves. Mobility values overall were less than 400 cm2 V-1 s-1, and showed a modest increase in mobility as graphene length increased. Lastly, the largest graphene strip had a light response and radiation response measured. Light response showed a dependence on gate voltage magnitude that favored positive gate voltages, on an n-type Silicon substrate. A saturation effect above +15 V seemed apparent with a resistance increase of only 0.61% ± 0.062% for +15 V to 0.69% ± 0.097% for the +50 V back-gate. Response of the largest graphene strip size to forward facing alpha irradiation showed a modest 0.32% ± 0.082% increase in response, for a -15 V back- gate. Overall, millimeter scale graphene field effect devices showed a light and radiation response, proving their viability. However, results showed fabricated samples had numerous defects and were far from pristine. Fabrication of pristine graphene strips at millimeter scales is of concern. Further work into large scale GFET patterning, testing at more length and width dimensions, and further investigating metal contact and carrier transport in millimeter scales is needed.

Degree

M.S.

Advisors

Bean, Purdue University.

Subject Area

Nuclear engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS