Abstract

Electrowetting (EW) involves the actuation of liquid droplets using electric fields and has been demon- strated as a powerful tool for initiating and controlling droplet-based microfluidic operations such as droplet transport, generation, splitting, merging and mixing. The heat transfer resulting from EW- induced droplet actuation has, however, remained largely unexplored owing to several challenges under- lying even simple thermal analyses and experiments. In the present work, the heat dissipation capacity of actuated droplets is quantified through detailed modeling and experimental efforts. The modeling involves three-dimensional transient numerical simulations of a droplet moving under the action of grav- ity or EW on a single heated plate and between two parallel plates. Temperature profiles and heat trans- fer coefficients associated with the droplet motion are determined. The influence of droplet velocity and geometry on the heat transfer coefficients is parametrically analyzed. Convection patterns in the fluid are found to strongly influence thermal transport and the heat dissipation capacity of droplet-based systems. The numerical model is validated against experimental measurements of the heat dissipation capacity of a droplet sliding on an inclined hot surface. Infrared thermography is employed to measure the transient temperature distribution on the surface during droplet motion. The results provide the first in-depth analysis of the heat dissipation capacity of electrowetting-based cooling systems and form the basis for the design of novel microelectronics cooling and other heat transfer applications.

Keywords

Heat transfer Droplet motion Electrowetting

Date of this Version

2011

DOI

10.1016/j.ijheatmasstransfer.2011.04.015

Published in:

International Journal of Heat and Mass Transfer

COinS