
1

Appendix B. Data Reduction Procedures for Traffic Signal Systems Performance Measures

Attached document:

J. M. Ernst, C.M. Day, and D.M. Bullock. “Data Reduction Procedures for Traffic Signal

Systems Performance Measures.” Working paper, SPR-3409, Joint Transportation Research

Program, August 2011.

2

Data Reduction Procedures for

Traffic Signal Systems Performance Measures

by

Joseph M. Ernst

Purdue University

Christopher M. Day

Purdue University

Darcy M. Bullock

Purdue University

Working Paper

August 31, 2011

3

INTRODUCTION

The data reduction procedures developed for this project develop a framework to link the

INDOT database to a Google Maps enabled webpage that display NCHRP 3-79a performance

measure graphics
1
. This webpage uses queries that exist as text files in a folder structure. The

website code is structured so that new queries added to a folder will automatically be added to

the website with no alterations to the rest of the website code. This allows website development,

database development, and performance measure query development to be executed

independently. A screenshot of the website built on this framework is shown in Figure 1.

Figure 1 Screenshot of performance measures website.

1
 This paper focuses on implementation of the performance measures in dashboard. Technical details regarding the

development of the performance measures is extensively documented in prior publications by the research team

(1,2,3,4,5,6,7,8,9).

4

This following sections discuss the INDOT performance measure database infrastructure,

describes each of the queries that have been developed, and then shares some conclusions

including the lessons learned when developing the queries.

DATABASE STRUCTURE

The Indiana Department of Transportation (INDOT) maintains a database that stores information

about deployed devices and data. This database includes the data used to generate the

performance measures described in this section, but also includes many other tables. This

section begins by describing the database tables that involved in the performance measures and

then documents the performance measures that have been developed.

Figure 2 INDOT_Signal_Systems partial database diagram

Controller_Event_Log

COMMISSION_NBR
Event_Timestamp
Event_Code_ID

Event_Param
log_id

SYSTEMS

SYSTEM_ID
DISTRICT_ID
SYSTEM_NBR
SYSTEM_NAME
MASTER_COMMISSION_NBR
SYSTEM_MODEM_NBR
MODEM_TYPE
SYSTEM_PRIORITY

SIGNALS

COMMISSION_NBR
SYSTEM_ID
LATITUDE

LONGITUDE
SYSTEM_NBR
IP

DETECTOR_PROFILES

DETECTOR_PROFILE_ID
COMMISSION_NBR
EFFECTIVE_DATE

REMOVED_DATE
lcp

DETECTORS

DETECTOR_ID
DETECTOR_PROFILE_ID
DETECTOR_NBR
LANE
PHASE
DIRECTION
Seconds_To_Stopbar

Event_Code_LK

Event_Code_ID
Event_Name

Only for
detector events.

5

The database diagram for the tables involved in the performance measure queries is shown in

Figure 2. The “Controller_Event_Log” table is the central table for performance measures

because it stores all of the collected data. The other tables linked to this table provide text based

descriptions of the enuerated data items (Table 1). This structure allows the

“Controller_Event_Log” to stay relatively small for the amount of data that it stores. It is

important that each data point in the “Controller_Event_Log” table be as small as possible

because it currently holds over 1.7 billion rows of data and is growing every day.

The “Controller_Event_Log” has four columns:

 COMMISSION_NBR

 Event_Timestamp

 Event_Code_ID

 Event_Param

The “COMMISSION_NBR” links to the “SIGNALS” table. This indicates from which

intersection the data has been collected. As one would expect, the “Event_Timestamp” records

the time for each data point. The “Event_Code_ID” column holds an integer that represents a

type of event relating to an intersection phase or detector. These events are translated by linking

to the “Event_Code_LK” table shown in Table 1. The “Event_Code_IDs” that are not used in

the performance measures in this section have a gray background . The “Event_Param” column

can mean one of two different things. For events that are associated with an intersection phase,

the “Event_Param” is the phase number. For events that are associated with a detector, the

“Event_Param” is an integer that links to the “DETECTOR_NBR” column of the

“DETECTORS” table.

6

Table 1 Database Table: Event_Code_LK

Event_Code_ID Event_Name

0 Phase Off

1 Phase Green

2 Phase Yellow

3 Phase Red Clear

4 Ped Off

5 Ped Walk

6 Ped Clear

8 Detector On

9 Detector Off

10 Detector Failed

11 Detector Restored

12 Overlap Off

13 Overlap Green

14 Overlap Green

Extension

15 Overlap Yellow

16 Overlap Red Clear

20 Preempt Active

21 Preempt Off

24 Phase Hold Active

25 Phase Hold Released

26 Ped Call on Phase

27 Ped Call Cleared

32 Phase Min Complete

33 Phase Term Gap Out

34 Phase Term Max Out

35 Phase Term Force Off

40 Coord Pattern Change

41 Cycle Length Change

Event_Code_ID Event_Name

42 Offset Length Change

43 Split 1 Change

44 Split 2 Change

45 Split 3 Change

46 Split 4 Change

47 Split 5 Change

48 Split 6 Change

49 Split 7 Change

50 Split 8 Change

51 Split 9 Change

52 Split 10 Change

53 Split 11 Change

54 Split 12 Change

55 Split 13 Change

56 Split 14 Change

57 Split 15 Change

58 Split 16 Change

62 Coord cycle state

change

63 Coord phase yield point

Grayed out cells are not used in performance 0

measures described in this section.1

7

The “DETECTOR_PROFILES” table is used to link a detector to an intersection for a given time

range. Since detection configurations change, every detector configuration must be saved so that

data collected from that configuration can still be interpreted. The time range in the

“DETECTOR_PROFILES” table helps to know which set of detectors was active for the data

being analyzed. The last table is the systems table. This groups intersections into systems that

could be coordinated. When making changes to intersections based upon the performance

measures, it is necessary to look at how those changes will affect the rest of the system.

DEFINITIONS OF PHASE INSTANCE AND CYCLE

Many of the performance measures described in this section are calculated on a cycle by cycle

basis. This requires the definition of a cycle boundary
2
. This section begins with an illustrative

example to help describe why the definition of cycle length can be challenging. A discussion of

the different definitions and the choice of cycle boundary definition follows.

The illustrative example is for a standard 8 phase intersection intersection with the phases

defined in the ring diagram in Figure 3. The illustrative example focuses on the top ring (Phases:

1,2,3, and 4).

Figure 3 Standard Eight Phase Ring Diagram

2
 For an extended discussion of cycle definitions, refer to Day et al. (1)

1 2 3 4

5 6 7 8

8

Figure 4 shows the signal head states for the phases in the top ring for two different

configurations of the intersection. The diagram is red when the signal head for the

corresponding phase is red, green when it is green, and gray for the yellow/all red interval. The

yellow and all red have been grouped to simplify the diagram. Figure 4a shows the phase

diagram for a coordinated system. The signal head states are completely determined by the split

timings. For this example a 15% split is used for the left turn movements (phases 1 and 3), a

20% split is used for the cross movement (phase 4) and a 50% split is used for the coordinated

movement (phase 2). In this case there is no problem measuring the cycle length because any

reasonable definition of cycle length will produce 100 seconds. The phase 2 beginning of red

cycle length (CLBOR2) and the phase 2 beginning of green cycle length (CLBOG2) are shown as

two examples.

Figure 4b shows the same diagram except that the intersection is actuated/coordinated, which

means that it is coordinated with split timings, but will also respond to the information from the

vehicle detectors. In this example, there are only two changes from the coordinated diagram:

both phase 1 and phase 2 gap out early in cycle 1. In this case the cycle length cannot be

determined by measuring the time between successive changes in signal head states. Two

examples are shown where the CLBOR2 is 110 seconds and the CLBOG2 is 105 seconds.

9

a) Coordinated

b) Actuated/Coordinated

Figure 4: Illustrative example of the complication of cycle length definitions.

1

2

CL=100 sec

3

4

15%50%15% 20%

CLBOR2=100 sec

CLBOG2=100 sec

CL=100 sec

15%50%15% 20%

Cycle 1 Cycle 2

1

2

CL=100 sec

3

4

15%50%15% 20%

CLBOR2=110 sec

CLBOG2=105 sec

CL=100 sec

15%50%15% 20%

Cycle 1 Cycle 2

10

With the illustrative example in mind, the options for defining cycle boundaries are now

discussed. It is desirable to define performance measures using changes that are visible at the

intersection. This is however in contradiction with the desire for the measured cycle length to be

the same as the cycle length that is programmed in the controller.

Examples of cycle length calculations that use the changes that are visible at the intersection are

limited to using the beginning or end of the red or green state of a given phase. The two

examples shown in Figure 4 use the beginning of the green and red states of phase 2 (the

coordinated phase in this example). There are also several choices for determining the phase

from information reported in the “Controller_Event_Log”. One example is the “Cycle Length

Change” event (Event Code ID 41). Every time that the controller changes the cycle length that

is being used, it reports this event. Another option is to use the “Coord phase yield point” event

(Event Code ID 63). This event is logged once per cycle for each coordinated phase and these

events are spaced at exactly the programmed cycle length. Some controllers are also configured

to report a “Cycle Length Change” event at midnight every night.

The decision of which cycle boundary to use is specific to each performance measure. For

performance measures that make since with either definition, the visible change of the signal

head state is usually chosen. This choice is preferred because it available externally from the

controller and because it is available for controllers that are not running coordinated patterns.

11

PERFORMANCE MEASURES

The performance measures developed in this project have been developed as a suite of database

queries that generate plots on a website. Each of these queries and the code used to produce the

images is presented in this section. A screenshot of the overall website is shown in Figure 1.

The queries shown in this section use $$NBR$$ to represent the intersection’s

“COMMISSION_NBR” and $$DATE$$ to represent the date of the data selected in the

following format: YYYY-MM-DD.

Communication and Detector Health

The first performance measures that must be evaluated is the health of the sensor network. If

there is missing data from the system it will be difficult to determine the validity of any of the

other performance measures. A first order test of system health is if the database server can

communicate with the controllers. This can be accomplished through a simple “ping” test. The

script that runs this test queries the database for a list of ip addresses and then attempts to ping

each controller. Successful results of ping tests are stored in the database. The script that

executes the ping test is shown here:

#!/bin/bash

psql=/usr/bin/psql

db=INDOT_Signal_Systems

nmap=/usr/bin/nmap

ping=/bin/ping

folder=/home/jernst/datamaps/scripts

query='select "IP" from "SIGNALS" where "IP" is not null';

tstamp=`date +"%Y-%m-%d %H:%M:%S"`

echo $query | $psql -At $db | while read ip; do

 echo $ip

 pnum=`ping -c 10 $ip |sed -n 's/.*transmitted, *\([0-9]*\)

received./\1/p'`

 nbr=`echo "select \"COMMISSION_NBR\" from \"SIGNALS\" where

\"IP\"='$ip'" | $psql -At $db`;

 if ["x$pnum" != "x0"]; then

 echo "insert into health_ping_test (signal_nbr,ip,ping_time)

values ('$nbr','$ip','$tstamp')" | $psql $db

 fi

done

12

A query to see when the most recent ping test was completed is shown here, where $$maxtime$$

is the most recent attempt at a ping test and $$COMMISSION_NBR$$ is the identifier for the

controller being queried:

select

 max(h1.ping_time) as ping_time,

 date_part('epoch','"$$maxtime$$'-max(h1.ping_time)) as diff

from

 health_ping_test as h1

where

 h1.signal_nbr='$$COMMISSION_NBR$$' group by

h1.ping_time,h1.signal_nbr order by diff"

A second health test finds the most recent data that has been inserted from each controller. This

makes sure that the controller is not only communicating, but that it is producing data that is

getting inserted correctly into the database. In this case a query is executed to find the most

recent data from each controller. This is compared to the most recent system wide data. The

following query finds the most recent data inserted from a given controller.

select

 max("Event_Timestamp") as tstamp

from

 "Controller_Event_Log"

where

 "COMMISSION_NBR" ='."'".$siginfo['nbr']."'"

13

Cycle Length

The previous section discussed the complication of calculating the cycle length. In order to

make sure that all of the cycle length data is being reported and is consistent, the cycle length is

calculated in several different ways. One way is to take the difference in time between

consecutive “Coord Phase Yeild Point” events. These are spaced at the programmed cycle

length and are reported for each coordinated phase. An example query is shown here:

select

 mod(date_part('epoch',log1."Event_Timestamp")::integer-

5*3600,3600*24)::float/3600,

 date_part('epoch',min(log2."Event_Timestamp")-log1."Event_Timestamp")

as cycle_length

from

 "Controller_Event_Log" as log1,

 "Controller_Event_Log" as log2

where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =63 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log2."COMMISSION_NBR" ='$$NBR$$' and

 log2."Event_Code_ID" =63 and

 log2."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Param"=log2."Event_Param" and

 log2."Event_Timestamp">log1."Event_Timestamp"

group by

 log1."Event_Timestamp"

order by

 log1."Event_Timestamp"

Another way to find the cycle length is to query for the “Cycle Length Change” event in the

“Controller_Event_Log”. This query is shown here:

select

 mod(date_part('epoch',log1."Event_Timestamp")::integer-

5*3600,3600*24)::float/3600,

 log1."Event_Param"

from

 "Controller_Event_Log" as log1

where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =41 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

order by

 log1."Event_Timestamp"

14

Another way to interpret the cycle length is to take the difference between consecutive ending

times for the green state of a given phase. This will not always give the programmed cycle

length, but can be useful in gaining information about the variability of the effective cycle

length. An example query is shown here for phase 2:

select

 mod(date_part('epoch',log1."Event_Timestamp")::integer-

5*3600,3600*24)::float/3600,

 date_part('epoch',min(log2."Event_Timestamp")-log1."Event_Timestamp")

as cycle_length

from

 "Controller_Event_Log" as log1,

 "Controller_Event_Log" as log2

where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =2 and

 log1."Event_Param"=2 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log2."COMMISSION_NBR" ='$$NBR$$' and

 log2."Event_Code_ID" =2 and

 log2."Event_Param"=2 and

 log1."Event_Param"=log2."Event_Param" and

 log2."Event_Timestamp">log1."Event_Timestamp" and

 log2."Event_Timestamp"<log1."Event_Timestamp"+'1

second'::interval*300

group by

 log1."Event_Timestamp"

order by

 log1."Event_Timestamp"

A more complicated query can be used to calculate the amount of time between ring barriers.

This query first creates a temporary table and then uses this temporary table to calculate the final

result. This query is shown here:

create temp view p1256 as

(

select

 max(log1."Event_Timestamp") as t

from

 "Controller_Event_Log" as log4,

 "Controller_Event_Log" as log1

where

 log4."COMMISSION_NBR" ='$$NBR$$' and

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log4."Event_Code_ID" =2 and

 log1."Event_Code_ID" =2 and

 log4."Event_Param" =4 and

 log1."Event_Param" in (1,2,5,6) and

15

 log4."Event_Timestamp" > '$$DATE$$' and

 log4."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log1."Event_Timestamp"<log4."Event_Timestamp" and

 log1."Event_Timestamp">log4."Event_Timestamp"-'1

second'::interval*500

group by

 log4."Event_Timestamp"

order by

 max(log1."Event_Timestamp")

);

select

 mod(date_part('epoch',peog.t)::integer-5*3600,3600*24)::float/3600,

 date_part('epoch',min(eog.t)-peog.t) as cycle_length

from

 p1256 as peog,

 p1256 as eog

where

 eog.t>peog.t and

 eog.t<peog.t + '1 second'::interval*300

group by

 peog.t

order by

 peog.t

Volumes

One useful value is the cycle-by-cycle volume of a given phase at an intersection. This volume

is helpful for understanding the demand on an intersection. These numbers can also be used in a

V/C calculation. This query is somewhat complicated because all of the detectors for a given

phase must be indentified and included in the query. The query for the cycle-by-cycle volumes

is shown here:

select

 (t1-4*3600-floor((t1-4*3600)/3600/24)*3600*24)/3600,

 count(*)

from

(

select

 date_part('epoch',max(t1."Event_Timestamp")) as t1,

 date_part('epoch',t2."Event_Timestamp") + det."Seconds_To_StopBar" as

t2

from

 "Controller_Event_Log" as t1,

 "Controller_Event_Log" as t2,

 (

 select

 case

 when"Seconds_To_StopBar" is NULL then '5'

 else "Seconds_To_StopBar"

16

 end as "Seconds_To_StopBar",

 "DETECTOR_ID",

 "DETECTOR_PROFILE_ID",

 "PHASE",

 "DIRECTION",

 "DETECTOR_NBR"

 from

 "DETECTORS"

) as det,

 (

 select

 "DETECTOR_PROFILE_ID" as id,

 "COMMISSION_NBR" as commission_nbr,

 "EFFECTIVE_DATE" as ed,

 case

 when "REMOVED_DATE" IS NULL then 'now'::text::timestamp without

time zone

 else "REMOVED_DATE"

 end as rd

 from

 "DETECTOR_PROFILES" as dp1

 where

 "COMMISSION_NBR"='$$NBR$$'

) as dp

where

 '$$DATE$$'::timestamp+'1 hour'::interval*12 between dp.ed and dp.rd

and

 t1."COMMISSION_NBR"='$$NBR$$' and

 t1."Event_Timestamp" > '$$DATE$$' and

 t1."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 t2."COMMISSION_NBR"='$$NBR$$' and

 t2."Event_Timestamp" > '$$DATE$$' and

 t2."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 dp.id=det."DETECTOR_PROFILE_ID" and -- use correct detectors

 det."PHASE"='1' and -- filter by intersection phase

 t2."Event_Code_ID"='9' and -- detector_on

 t2."Event_Param"=det."DETECTOR_NBR" and -- filter log by

detector_nbr

 t1."Event_Code_ID"='2' and -- end of green

 t1."Event_Param" ='1' and

 t2."Event_Timestamp"> t1."Event_Timestamp" and -- t2>t1

 t2."Event_Timestamp"< t1."Event_Timestamp"+'1 second'::interval*300

group by

 date_part('epoch',t2."Event_Timestamp") + det."Seconds_To_StopBar"

) as t

group by

t.t1

order by

t.t1

17

Green Time and Capacity

To determine the amount of green time in each cycle, each time that the light turns green is

subtracted from the next time that the light turns red. An example of the green time query is

shown here for phase 2.

select

 mod(date_part('epoch',log1."Event_Timestamp")::integer-

5*3600,3600*24)::float/3600,

 date_part('epoch',min(log2."Event_Timestamp")-log1."Event_Timestamp")

as cycle_length

from

 "Controller_Event_Log" as log1,

 "Controller_Event_Log" as log2

where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =1 and

 log1."Event_Param"=2 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log2."COMMISSION_NBR" ='$$NBR$$' and

 log2."Event_Code_ID" =2 and

 log2."Event_Param"=2 and

 log1."Event_Param"=log2."Event_Param" and

 log2."Event_Timestamp">log1."Event_Timestamp" and

 log2."Event_Timestamp"<log1."Event_Timestamp"+'1

second'::interval*300

group by

 log1."Event_Timestamp"

order by

 log1."Event_Timestamp"

The capacity query is similar to the greentime query except that the green time must be

multiplied by the number of lanes and the saturation flow rate. The following query uses 1900

vehicles per hour for the saturation flow rate and queries the “DETECTOR_LIST_VW” view for

the number of thru lanes. These lanes are scaled by the estimate of the percentage of “thru”

vehicle in each lane. The following query finds the cycle by cycle capacity for phase 2.

select

 mod(date_part('epoch',log1."Event_Timestamp")::integer-

5*3600,3600*24)::float/3600,

 date_part('epoch',min(log2."Event_Timestamp")-

log1."Event_Timestamp")*1900/3600*num.num as cycle_length

from

 "Controller_Event_Log" as log1,

 "Controller_Event_Log" as log2,

(

select

18

 sum("LANES"*"THRU_PCT"/100) as num

from

 "DETECTOR_LIST_VW"

where

 "COMMISSION_NBR"='$$NBR$$' and

 '$$DATE$$'::date>="EFFECTIVE_DATE" and

 '$$DATE$$'::date<="LAST_DATE" and

 "PHASE"='2'

) as num

where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =1 and

 log1."Event_Param"=2 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log2."COMMISSION_NBR" ='$$NBR$$' and

 log2."Event_Code_ID" =2 and

 log2."Event_Param"=2 and

 log1."Event_Param"=log2."Event_Param" and

 log2."Event_Timestamp">log1."Event_Timestamp" and

 log2."Event_Timestamp"<log1."Event_Timestamp"+'1

second'::interval*300

group by

 log1."Event_Timestamp",

 num.num

order by

 log1."Event_Timestamp"

Volume-to-Capacity Ratio

The volume to capacitiy ratio query follows from the cycle-by-cycle volume and cycle-by-cycle

capacity queries discussed above. An example of this query for phase 2 is shown here:

select

 t,

 volume/(green_time*1900/3600*num) as vc

from

(

select

 mod(date_part('epoch',t1)::integer-5*3600,3600*24)::float/3600 as t,

 date_part('epoch',t2-t1) as green_time,

 max(num.num) as num,

 count(*) as volume

from

(

 select

 sum("LANES") as num

 from

 "Detector_List_VW"

 where

 "COMMISSION_NBR"='$$NBR$$' and

19

 "PHASE"='2' and

 "Seconds_To_StopBar"='-1'

) as num,

(

 select

 log1."Event_Timestamp" as t1,

 min(log2."Event_Timestamp") as t2

 from

 "Controller_Event_Log" as log1,

 "Controller_Event_Log" as log2

 where

 log1."COMMISSION_NBR" ='$$NBR$$' and

 log1."Event_Code_ID" =1 and

 log1."Event_Param"=2 and

 log1."Event_Timestamp" > '$$DATE$$' and

 log1."Event_Timestamp" < '$$DATE$$'::timestamp + '1 day'::interval

and

 log2."COMMISSION_NBR" ='$$NBR$$' and

 log2."Event_Code_ID" =2 and

 log2."Event_Param"=2 and

 log1."Event_Param"=log2."Event_Param" and

 log2."Event_Timestamp">log1."Event_Timestamp" and

 log2."Event_Timestamp"<log1."Event_Timestamp"+'1

second'::interval*300

 group by

 log1."Event_Timestamp"

 order by

 log1."Event_Timestamp"

) as temp,

 "Detector_List_VW" as det,

 "Controller_Event_Log" as log3

where

 det."PHASE"='2' and

 det."COMMISSION_NBR"='$$NBR$$' and

 det."Seconds_To_StopBar"=-1 and

 log3."COMMISSION_NBR"='$$NBR$$' and

 log3."Event_Code_ID"='9' and -- detector_on

 log3."Event_Param"=det."DETECTOR_NBR" and

 log3."Event_Timestamp">temp.t1 and

 log3."Event_Timestamp"<temp.t2

group by

 mod(date_part('epoch',t1)::integer-5*3600,3600*24)::float/3600,

 date_part('epoch',t2-t1)

order by

 mod(date_part('epoch',t1)::integer-5*3600,3600*24)::float/3600

) as temp

20

Purdue Coordination Diagram (PCD)

The Purdue Coordination Diagram (PCD) allows all vehicle arrivals to be viewed in one image

that represents all of the progression data throughout the day. This query also shows the

beginning of the green interval and the beginning of the red interval. This means that there are

two separate queries: detetion data points and signal head state. Because of the size of the

database, temporary tables are also created in the process of generating the data for each query.

The purpose of the temporary tables is to filter the enormous “Controller_Event_Log” and to

create a table with just the time range and data types of interest.

There are also several minor metadata queries that must be run to figure out whether the primary

movement for the intersection is North-South or East-West and to find which phase is associated

with each. These queries are shown here.

North/East Direction:

select

 case

 when "DIRECTION"='N'

 then 'North'

 when "DIRECTION"='E'

 then 'East'

 end

from

(

select distinct

 det."DIRECTION"

from

 "Detector_List_VW" as det

where

 '$$DATE$$'::timestamp between det."EFFECTIVE_DATE" and

det."LAST_DATE" and

 det."LANE" not in ('L','R') and

 det."DIRECTION" in('N','E') and

 det."PHASE" in ('2','6') and

 det."COMMISSION_NBR"='$$NBR$$'

) as temp

North/East Phase:

select distinct

 det."PHASE"

from

 "Detector_List_VW" as det

where

21

 '$$DATE$$'::timestamp between det."EFFECTIVE_DATE" and

det."LAST_DATE" and

 det."LANE" not in ('L','R') and

 det."DIRECTION" in('N','E') and

 det."PHASE" in ('2','6') and

 det."COMMISSION_NBR"='$$NBR$$'

South/West Direction:

select

 case

 when "DIRECTION"='S'

 then 'South'

 when "DIRECTION"='W'

 then 'West'

 end

from

(

select distinct

 det."DIRECTION"

from

 "Detector_List_VW" as det

where

 '$$DATE$$'::timestamp between det."EFFECTIVE_DATE" and

det."LAST_DATE" and

 det."LANE" not in ('L','R') and

 det."DIRECTION" in('S','W') and

 det."PHASE" in ('2','6') and

 det."COMMISSION_NBR"='$$NBR$$'

) as temp

South/West Phase:

select distinct

 det."PHASE"

from

 "Detector_List_VW" as det

where

 '$$DATE$$'::timestamp between det."EFFECTIVE_DATE" and

det."LAST_DATE" and

 det."LANE" not in ('L','R') and

 det."DIRECTION" in('S','W') and

 det."PHASE" in ('2','6') and

 det."COMMISSION_NBR"='$$NBR$$'

The query for the South/West signal state information is shown here. The North/East signal state

information is similar.

select

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp1

from

22

 "Controller_Event_Log" as log

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID"='2' and

 log."Event_Param"='$$SWphase$$'

order by t

;

create index temp1_ind on temp1(t);

select

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp2

from

 "Controller_Event_Log" as log

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID"='1' and

 log."Event_Param"='$$SWphase$$'

order by t

;

create index temp2_ind on temp2(t);

select

 (t1-4*3600-floor((t1-4*3600)/3600/24)*3600*24)/3600,

 t2-t1,

 t3-t1

from

(

select

 t1.t as t1,

 min(t2.t) as t2,

 min(t3.t) as t3

from

 temp1 as t1,

 temp2 as t2,

 temp1 as t3

where

 t2.t> t1.t and

 t3.t> t1.t and

 t2.t< t1.t+300 and

 t3.t< t1.t+300

group by

 t1.t

) as t

order by

 t.t1

23

The query for the South/West detector data is shown here.

set constraint_exclusion=on;

set enable_bitmapscan=off;

select

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp1

from

 "Controller_Event_Log" as log

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID"='2' and

 log."Event_Param"='$$SWphase$$'

order by t

;

create index temp1_ind on temp1(t);

select

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp2

from

 "Controller_Event_Log" as log,

 "Detector_List_VW" as det

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID"='9' and

 det."COMMISSION_NBR"=log."COMMISSION_NBR" and

 det."PHASE"='$$SWphase$$' and

 det."Seconds_To_StopBar" > 0 and

 log."Event_Param"=det."DETECTOR_NBR"

order by t;

create index temp2_ind on temp2(t);

select

 (t2-4*3600-floor((t2-4*3600)/3600/24)*3600*24)/3600,

 t2-t1

from

(

select

 max(temp1.t) as t1,

 temp2.t as t2

from

 temp1,

 temp2

where

 temp2.t>temp1.t and

24

 temp2.t<temp1.t+300

group by

 temp2.t

) as t

order by

 (t2-4*3600-floor((t2-4*3600)/3600/24)*3600*24)/3600;

Degree of Intersection Saturation

The degree of intersection saturation is different from most of the rest of the queries in that it is

not calculated per phase. As indicated by the name, it reflects the saturation of the intersection

as a whole. This query uses many of the concepts developed other queries. The cycle boundry

for this query must be found in terms of a ring diagram. Therefore the boundary is at the end of

phase 2 and phase 6.

The query is very complex and achieves reasonable speed by creating a series of temporary

tables. This set of queries is shown here and the purpose of each temporary table is described.

The “temp_eog” temporary table selects the data for the correct day and intersection

corresponding to the end of a green phase. This small chunk of the “Controller_Event_Log” is

stored in a temporary table and indexed so that it can be searched quickly. The database option

“constrain_exclusion” is turned on to take advantage of the “Controller_Event_Log” table

partitioning and the “enable_bitmapscan” is disabled to encourage the queries to use the existing

indexes on the “Controller_Event_Log” table partitions.

set constraint_exclusion=on;

set enable_bitmapscan=off;

select

 "Event_Param" as phase,

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp_eog

from

 "Controller_Event_Log" as log

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID" ='2';

create index temp_eog_ind on temp_eog(phase,t);

25

The “temp_bog” table is identical to the “temp_eog” table except that it stores the information

for the beginning of green events instead of the end of green events. The query to create this

table is shown here:

select

 "Event_Param" as phase,

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp_bog

from

 "Controller_Event_Log" as log

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID" ='1'

;

create index temp_bog_ind on temp_bog(phase,t);

The next temporary table is the “temp_detections” table. This table includes the phase and time

of all vehicle detections for the specified date and intersection. The query to create this

temporary table is shown here:

select

 det."PHASE" as phase,

 date_part('epoch',log."Event_Timestamp") as t

into

 temp table temp_detections

from

 "Controller_Event_Log" as log,

 "Detector_List_VW" as det

where

 log."COMMISSION_NBR"='$$NBR$$' and

 log."Event_Timestamp" > '$$DATE$$' and

 log."Event_Timestamp" < '$$DATE$$'::timestamp+'1 day'::interval and

 log."Event_Code_ID"='9' and

 det."COMMISSION_NBR"=log."COMMISSION_NBR" and

 log."Event_Param"=det."DETECTOR_NBR"

order by t

;

create index temp_detections_ind on temp_detections(phase,t);

The next temporary table splits time by the beginning of the green interval for phase 2. This is

not the cycle boundary that we are interested in; however, there will be one such cycle boundary

26

between each pair of t_start and t_stop times in the temporary table created by this query. This

temporary table is called temp_ss2. The two is meant to indicate that it uses the phase two data.

select

 log1.t as t_start,

 min(log2.t) as t_stop

into

 temp table temp_ss2

from

 temp_bog as log1,

 temp_bog as log2

where

 log2.t > log1.t and

 log2.t < log1.t +500 and

 log2.phase=2 and

 log2.phase=2

group by

 log1.t

order by

 log1.t;

Using this table the ring barrer can be found. This is accomplished by finding the maximum end

of green time for phase two and phase six between each of the phase beginning of green times

found in the previous query. The query to find the ring barrier is shown here:

select

 case

 when log2.t > log6.t then log2.t

 else log6.t

 end as t

into

 temp table boundary

from

 temp_ss2 as ss,

 temp_eog as log2,

 temp_eog as log6

where

 log2.phase=2 and

 log6.phase=6 and

 log2.t > ss.t_start and log2.t < ss.t_stop and

 log6.t > ss.t_start and log6.t < ss.t_stop

order by

 ss.t_start

;

27

The list of ring barrier times is then reformatted into a beginning and end of cycle format. This

query is shown below and creates the “boundary_ss” temporary table.

select

 log1.t as t_start,

 min(log2.t) as t_stop

into

 temp table boundary_ss

from

 boundary as log1,

 boundary as log2

where

 log2.t > log1.t and

 log2.t < log1.t +500

group by

 log1.t

order by

 log1.t;

To calculate the capacity for the v/c calculation, the number of lanes associated with the

detectors in each phase must be calculated. This association between the phase and the number

of effective lanes is shown below. Note that if two sensors are in the same lane, this effectively

doubles the apparent capacity of the lane if both sensors are being used in the volume

calculation. The temporary table that associates the phase with an apparent number of lanes is

called the “temp_lanes” temporary table.

select

 "PHASE" as phase,

 sum("LANES") as lanes

into temp table temp_lanes

from

 "Detector_List_VW" as det

where

 "EFFECTIVE_DATE"< '$$DATE$$' and

 "LAST_DATE">'$$DATE$$' and

 "COMMISSION_NBR"='$$NBR$$'

group by

 "PHASE";

28

The “temp_cycle” temporary table defined below associates the beginning of each ring barrier

cycle boundary with the start and end green time for a given phase. This query is shown here:

select

 ss.t_start,

 bog.phase as phase,

 bog.t as tbog,

 eog.t as teog

into temp table temp_cycle

from

 boundary_ss as ss,

 temp_bog as bog,

 temp_eog as eog

where

 bog.phase=eog.phase and

 bog.t > ss.t_start and bog.t <= ss.t_stop and

 eog.t > ss.t_start and eog.t <= ss.t_stop and

 eog.t > bog.t

order by

 ss.t_start

;

This next query uses the previously created temporary tables to calculate the intersection

saturation. It is a set of nested queries. The innermost query calculates the v/c for each phase in

each cycle. The v/c values are then summed into v/c values for each ring barrier pair (e.g., the

phase 1 v/c is added to the phase 2 v/c). The max v/c for each side of the ring barrier is then

found. The the sum of the vc before and after the ring barrier is calculated. The time reported is

the time of day in hours. This nested query is shown here:

select

 (t_start-4*3600-floor((t_start-4*3600)/3600/24)*3600*24)/3600,

 sum(maxrb_vc) as xc

from

(

 select

 t_start,

 mod(rb::integer,2),

 max(rb_vc) as maxrb_vc

 from

 (

 select

 t_start,

 floor((phase+1)/2) as rb,

 sum(vc) as rb_vc

 from

 (

 select

 cycle.t_start,

 cycyle.phase,

 count(*)/(1900*lanes.lanes*(teog-tbog)/3600) as vc

29

 from

 temp_cycle as cycle,

 temp_lanes as lanes,

 temp_detections as det

 where

 cycle.phase::text=lanes.phase::text and

 cycle.phase::text=det.phase::text and

 det.t > cycle.tbog and det.t < cycle.teog

 group by

 cycle.t_start,

 cycle.phase,

 lanes.lanes,

 teog,

 tbog

 order by

 cycle.t_start,cycle.phase

) as t

 group by t_start, floor((phase+1)/2)

 order by t_start, floor((phase+1)/2)

) as t2

 group by t_start, mod(rb::integer,2)

 order by t_start

) as t3

group by t_start

order by t_start;

30

CONCLUSIONS

The framework developed to display performance measures on a website allow for rapid

progression from the development of a query to making the resulting plots available. Many

queries have been written for use with the INDOT database in order to create plots for the

website. These queries have been detailed in this section.

During the development of this toolset, the size of the database size has increased and the rate of

growth has also increased. Due to the size and projected size of this database, special

considerations are required to make sure that the queries can be run quickly. One important step

in this process is partitioning the “Controller_Event_Log” into one partition per month. This

allows queries to quickly eliminate all other partitions from its query. In order to make sure that

the database uses these partitions to increase the speed of the queries, the following line should

be placed at the beginning of each query:

set constraint_exclusion=on;

Each of the partitions are also indexed. While developing the queries it has been noticed that

the query planner is less likely to use an index search in combination with the constraint

exclusion. Encouraging the query builder to use the index increases the speed of most queries to

about five times the original speed. In order to do this, the following line of code should be

placed at the beginning of each query:

set enable_bitmapscan=off;

Also queries that must reference the “Controller_Event_Log” more than once (which includes

most of the queries documented in this section) should create a temporary table with only the

relivant data from the relivant intersections and time range.

The queries developed in this section allow for quick analysis of the transportation network. The

framework developed for this project will allow new queries to be quickly linked into the

existing infrastructure. New queries should also run quickly, even as the database increases in

size by following the query building guidelines in this section.

31

ACKNOWLEDGMENTS

This work was supported by the Joint Transportation Research Program administered by the

Indiana Department of Transportation and Purdue University. The contents of this paper reflect

the views of the authors, who are responsible for the facts and the accuracy of the data presented

herein, and do not necessarily reflect the official views or policies of the sponsoring

organizations. These contents do not constitute a standard, specification, or regulation.

REFERENCES

1. C.M. Day and D.M. Bullock. Arterial Performance Measures, Volume 1: Performance Based

Management of Arterial Traffic Signal Systems. Final Report, NCHRP 3-79A, Transportation

Research Board, Washington, DC. In production, expected 2011.

2. C.M. Day, E.J. Smaglik, D.M. Bullock, and J.R. Sturdevant. Real-Time Arterial Traffic Signal

Performance Measures. Final Report, FHWA/IN/JTRP-2008/9. Joint Transportation Research

Program, Purdue University, School of Civil Engineering, December 2007.

3. R. Haseman, C. Day, and D. Bullock. Using Performance Measures to Improve Signal System

Performance. Report No. TR-1-2010, Indiana Local Technical Assistance Program, November

2010.

4. T.M. Brennan, C.M. Day, J.R. Sturdevant, and D.M. Bullock. “Visual Education Tools to

Illustrate Coordinated System Operation.” Transportation Research Record, Paper No. 11-0590,

accepted for publication, in press.

5. C.M. Day, R. Haseman, H. Premachandra, T.M. Brennan, J. Wasson, J.R. Sturdevant, and

D.M. Bullock. “Evaluation of Arterial Signal Coordination: Methodologies for Visualizing High-

Resolution Event Data and Measuring Travel Time.” Transportation Research Record No. 2192,

Transportation Research Board of the National Academies, Washington, DC, pp. 37-49, 2010.

6. C.M. Day, J.R. Sturdevant, and D.M. Bullock. “Outcome Oriented Performance Measures for

Management of Signalized Arterial Capacity.” Transportation Research Record No. 2192,

Transportation Research Board of the National Academies, Washington, DC, pp. 24-36, 2010.

7. C.M. Day, D.M. Bullock, and J.R. Sturdevant, “Cycle Length Performance Measures:

Revisiting and Extending Fundamentals,” Transportation Research Record No. 2128,

Transportation Research Board of the National Academies, Washington, DC, pp. 48-57, 2009.

8. C.M. Day, E.J. Smaglik, D.M. Bullock, and J.R. Sturdevant. “Quantitative Evaluation of Fully

Actuated Versus Non-Actuated Coordinated Phases.” Transportation Research Record No. 2080,

Transportation Research Board of the National Academies, Washington, DC, pp. 8-21, 2008.

9. Smaglik, E.J., Sharma, A., Bullock, D.M., Sturdevant, J.R., and Duncan, G. “Event-Based

Data Collection for Generating Actuated Controller Performance Measures.” Transportation

Research Record No. 2035, Transportation Research Board of the National Academies,

Washington, DC, pp. 97–106, 2007.

