Multiobjective Optimization of Lane and Shoulder Widths at Rural Two-lane Highways

Samuel Labi, Sikai Chen, Yu Qiao, Paul V. Preckel, Qiang Bai and Wubeshet Woldemariam

MOTIVATION
- Wider lanes and shoulders generally help to reduce crashes.
- For 2-lane roads:
 - Total Roadway Width (TRW) = 2(Shoulder width + lane width)
- For fixed TRW, what fractions to lane width & shoulder width?
- Which is safer:
 - Wider lanes with narrow shoulders? OR
 - Narrow lanes with wide shoulders?
- For a given TRW, need to quantify the tradeoffs between shoulder and lane widths, in terms of total life-cycle agency and user costs.

DATA DESCRIPTION
- Crash prediction models: 2006 INDOT study (Labi, 2006).
- Construction & maintenance cost data
 - Shoulder: Iowa State University 2001study
 - Lane: Wisconsin and Washington DOT studies.

METODOLOGY
- Examples of crash prediction models
 - Property damage only
 \[\text{Total damage} = \exp[-4.06689 + 0.8706 \times LN(LENGTH) + 0.6259 \times LN(AADT) - 0.0617 \times LW - 0.0119 \times SW - 0.0190 \times FR + 0.0163 \times ARAD + 0.1100 \times AGRAD] \]
 - Fatal-injury
 \[\text{Total damage} = \exp[-6.6231 + 0.9237 \times LN(LENGTH) + 0.8526 \times LN(AADT) - 0.0928 \times LW - 0.0321 \times SW - 0.0156 \times FR + 0.0262 \times ARAD + 0.0541 \times AGRAD] \]

 - Nonlinear Optimization framework
 \[T(LW, SW) = 2(W_{\text{agency}}(CC) \times LW + CC_2 \times SW)L + \frac{\mu c_{\text{user}}}{\mu c_{\text{user}}} \left[\left(1 + \alpha \right)^{N_{\text{up}}} - 1 \right] \left(1 + \beta \right)^{N_{\text{up}}} \sum_k c_{\text{user}}(LW, SW) \]
 S.L.:
 \[2LW + 2SW = TRW; \quad LW \geq MLW \]

RESULTS
- Optimal lane & shoulder widths across road functional classes for different TRWs (24 and 46 ft.)
- Total life cycle benefits across road functional classes for different TRWs

CONCLUSIONS
- Study developed a framework for determining the optimal allocation of shoulder and lane widths on two-lane rural highways.
- For minor arterials and major collectors:
 - Optimal solutions (funnel diagrams) are similar.
 - For high user cost weights, the optimal solutions have zero shoulder width (lanes take up all TRW)
 - For low weights of the user cost, the optimum has a lane width of 10 ft., and the shoulder takes up the remaining TRW.
- For principal arterials
 - Optimal solution: lane width of 10 ft.; the rest of the TRW taken up by shoulder.
- Highway agencies can use the developed framework or decision support charts to determine the optimal lane and shoulder widths for a given highway functional class, total available roadway width, and other factors.

ACKNOWLEDGEMENTS & DISCLAIMER
- Steven Lavrenz is acknowledged for initial work on this paper.
- The support of the JTRP program is greatly acknowledged, which made this study possible.
- This poster is based on a paper that has been accepted for publication in Transportmetrica Journal.