Innovations Affecting Us -- XHTML Facilitates the Transition from HTML to XML

Norman Desmarais
Providence College, normd@postoffice.providence.edu

Follow this and additional works at: http://docs.lib.purdue.edu/atg

Recommended Citation
Desmarais, Norman (2003) "Innovations Affecting Us -- XHTML Facilitates the Transition from HTML to XML," Against the Grain: Vol. 15: Iss. 3, Article 42.
DOI: http://dx.doi.org/10.7771/2380-176X.4141

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
The amount of support for the older initiative is formidable. Will ALPSP get the same level of take-up?

The British Library is Developing a New Image

Actually the British Library (BL) is changing and has changed, but it is becoming good at projecting this. At the April annual conference of the United Kingdom Serials Group (UKSG), both Lynne Brindley, the CEO, and Natalie Ceanev, who is not called the COO but might be, gave major presentations. For the Powerpoints see http://www.uksg.org.uk/events/previous.asp.

UKSG is the British equivalent of and indeed the progenitor of NASIG and this was the BL in scholarly communication mode. The remit of the BL, as the national library, is much wider (see http://www.bl.uk/about/annual/latest.html) and in the past the BL has distanced itself from the rest of the U.K. library sector including the academic libraries. This distancing has been reinforced, both by the fact that the BL is funded, not out of national education provision but by the Department of Culture Media and Sport (DCMS), but also because the hierarchy at the BL was almost (to a man) resolutely non-academics. Lynne Brindley has a distinguished academic library career, and she is also something of a poutier turned gamerkepsm. In the 1990s, she ran the JISC eLib project, the documentation for which seems to have vanished from http://www.jisc.ac.uk, during which the government poured large sums of money into experiments some of which involved alternatives to the BL, for example in the central area of document delivery, where the BL is the biggest international player. In parenthesis, the BL, as Ms Ceanev explained, spends more collection building than any other library in the world.

Ms Brindley has, since her appointment, conducted a root and branch evaluation of all areas of BL activity, which is now bearing fruit in some serious new policies. In particular there is a very strong digital strategy based on cooperation. This cooperation includes cooperation with the publishing community, where relations between the BL and the U.K. Publishers Association have been very good over, in particular, the extension of the legal deposit system into the digital world. Currently the big news is the role, apparently chosen for the BL, of a new leadership in projected “U.K. widespread framework and coordinated delivery mechanisms for research information provision.” This is set out in the report of the so-called Research Support Libraries Group, to my mind a somewhat flawed document, which is available at http://www.rslg.ac.uk.

Lynne Brindley’s presentation, in a series of keynotes which also included presentations by Jay Jordan (OCLC) and David Seaman (Digital Library Foundation), was magisterial but it was also concrete and covered digital acquisition, including Web harvesting plans, digital article provision, digital preservation and archiving and digital infrastructure development. The BL works closely with Elsevier (and others) over document delivery and is trying out protected PDF among other options. It was, however, of course hybrid. As the holder of one of the great collections of books and manuscripts from the past, the BL could not be anything else. There were some provocative suggestions (see the “slide” on straexmen) that for the future publisher pricing will be based on fixed price rather than usage, that commercial publishers will absorb more of scholarly publishing, and that large publishing consortia will dominate the scene. Finally, she spoke about standards, particularly metadata to achieve interoperability—all good buzz words. The most interesting thing is that a lot of what is proposed is actually likely to happen—given funding.

Innovations Affecting Us

XHTML Facilitates the Transition from HTML to XML

by Norman Desmarais (Acquisitions Librarian, Phillips Memorial Library, Providence College, Providence, RI 02918; Phone: 401-865-2241; Fax: 401-865-2823) <normd@postoffice.providence.edu>

We discussed the eXtensible Markup Language and its benefits in the April, 1999 issue (pp. 86-88, B). We focused on its applications for e-commerce and its relationship with UN/EDIFACT; but its possible applications are much broader because it is designed to be both human-readable and computer-readable.

XML is a subset of the Standard Generalized Markup Language (SGML) (ISO 8879:1986 as amended and corrected). Initially conceived for use on the World Wide Web, XML can be used for any type of electronic publication. While SGML is a text processing standard that describes how a document should be laid out and structured, XML is a dialect of SGML that describes the information content of a document.

SGML really didn’t catch on very well because it was too complicated and requires a steep learning curve that corresponds to high costs. People were also reluctant to incur the expenses of hiring a consultant to implement and manage SGML. Instead, they focused on using the HyperText Markup Language (HTML) which, in its pure form, is an application of SGML with a Document Type Definition (DTD). HTML, as originally conceived, was to be a language for the exchange of scientific and other technical documents, suitable for use by non-docu-
Innovations Affecting Ud
from page 100

ment specialists. It addressed the problem of SGML's complexity by specifying a small set of structural and semantic tags that simplified the creation of documents. It added support for hypertext and, later, multimedia.

HTML soon became very popular and rapidly outgrew its original purpose. As it is used in practice, HTML is mostly presentation-oriented. It defines how information is displayed, such as the color or font size of a word. It doesn't say anything about the actual meaning of the word. XML, on the other hand, has nothing to do with display. It only describes information.

There has also been rapid invention of new elements for use within HTML (as a standard) and for adapting HTML to vertical, highly specialized, markets. This plethora of new elements has led to compatibility problems for documents which must be accessible across a variety of different software and hardware platforms—platforms which continue to proliferate rapidly. The outlook for HTML's suitability for use on these platforms is somewhat limited.

HTML has a fixed set of tags; but XML lets users define their own tags, making it much more flexible and vendor independent. In other words, users can create XML documents in one application and use them in another without requiring a conversion. Because XML accommodates a virtually unlimited number of tags, it can describe the information content of a document more precisely. An XML tag can describe the meaning of any word or term, such as a person's name, a product name, date, or whatever.

In fact, XML introduces a concept called a namespace which is a method for qualifying the names used in XML documents by associating them with contexts identified by Universal Resource Identifiers (URI). For example, the word “bill” in one context could mean an invoice. In another, it could indicate a piece of proposed legislation. XML namespaces qualify the tag names used in XML documents by associating them with their source and provides a simple method for qualifying certain names used in XML documents by associating them with namespaces. Thus, an application can distinguish between two (or more) different meanings of the same word.

The current version of HTML (ver. 4.0) will be the last one. It is expected that XML will eventually replace HTML as the language of the Web because it is readable both by humans and by machines and it allows data processing without human intervention. To facilitate the conversion from HTML to XML, the World Wide Web Consortium (W3C) re-wrote HTML as an XML application and developed XHTML as a sort of bridge language. The W3C approved XHTML on January 26, 2000.

XHTML consists of a family of current and future document types and modules that reproduce and extend HTML 4. These XHTML document types are based on XML and are designed to work with XML-based user agents (browsers and user applications). XHTML is intended to serve as a language to tag content in such a way that user agents that can understand both XML and HTML 4 will be able to use them.

Benefits

XHTML 1.0 offers several benefits:

- XHTML documents conform to XML and can be viewed, edited, and validated with standard XML tools.
- XHTML documents can be written for new user agents that support XHTML 1.0 in such a way that they operate as well or better than they did before in HTML user agents. Yet, both agents will be able to understand the documents.
- XHTML documents can utilize applications (e.g., scripts and applets) that rely upon either the HTML Document Object Model (DOM) or the XML Document Object Model. As the XHTML family evolves, documents conforming to XHTML 1.0 will be more likely to interoperate within and among various XHTML environments, allowing greater confidence in the backward and future compatibility of electronic content.

Document developers and user agent designers are constantly discovering new ways to express their ideas through new markup. In XML, it is relatively easy to introduce new elements or additional element attributes. The XHTML family is designed to accommodate these extensions through XHTML modules and techniques for developing new modules that conform to XHTML. These modules will permit the combination of existing and new features for developing content and designing new user agents.

Alternate ways of accessing the Internet are constantly being introduced. Some estimates say that 75% of Internet document viewing will occur on these alternate platforms by the year 2002. XHTML aims to operate on a variety of user agents to ensure interoperability. Initially, XHTML will use a new user agent and document profiling mechanism that will allow servers, proxies, and user agents to transform the content. Eventually, authors will be able to develop XHTML content for use by any user agent that conforms to XHTML.

Differences with HTML 4

Because XHTML is an XML application, it requires that documents conform to XML syntax. This means that certain practices that were perfectly legal in SGML-based HTML 4 must be changed. First of all, HTML documents must use lower case for all HTML element and attribute names because XML is case-sensitive. Thus, and would be different tags.

Authors of XHTML documents should use XML declarations in all their documents. Such a declaration is required when the character encoding of the document is other than the default UTF-8 or UTF-16.

Documents must also be “well-formed.” Well-formedness is a new concept introduced by XML. Essentially it means that all elements must have closing tags and that all the elements must nest properly. SGML did not allow overlapping tags; but browsers tolerated it. While HTML and existing browsers would recognize the following example:

- <p> here is an emphasized paragraph </p>

XML and XHTML would not understand it because the end tags are not properly nested. The example would have to be corrected as follows:

- <p> here is an emphasized paragraph </p>

Any element that is not empty requires end tags. HTML permits omitting the end tag because subsequent elements imply closure. XHTML does not allow this. The only XML elements that do not require an end tag are those declared in the DTD as EMPTY. However, XML allows a shorthand method for terminating empty tags by ending the start tag with

, such as
 | <hr>.

All attribute values must be quoted, even those which appear to be numeric such as <table rows="3"> and not <table rows=3>. Attribute-value pairs must be written in full. Attribute names such as compact and checked cannot occur in elements without specifying their value. For example, <dl compact="compact"> would be correct, but <dl compact> would not.

User agents will strip leading and trailing white space (space character, horizontal tab character, and end-of-line codes) from attribute values and map sequences of one or more whitespaces characters (including line breaks) to a single space character (an ASCII space character for western scripts).

Authors may use the XHTML namespace with other XML namespaces even though these documents do not conform strictly to XHTML 1.0 documents. However, the W3C still has to address ways to specify how documents involving multiple namespaces will conform to the specification.

Compatibility Issues

Although there is no requirement for XHTML 1.0 documents to be compatible with existing user agents, this is easy to accomplish in practice. While the general recommended MIME labeling for XML-based applications has yet to be resolved, XHTML documents which follow the “HTML Compatibility Guidelines” may be labeled with the Internet Media Type “text/html,” as they are compatible with most HTML browsers.

Future Directions

XHTML 1.0 provides the basis for a family of document types that will extend and subdivide XHTML by defining modules and specifying a mechanism for combining these modules. This mechanism will enable the extension and sub-setting of XHTML 1.0 in a uniform way through the definition of new

continued on page 102

<http://www.against-the-grain.com> 101
modules and allow it to support a wide range of new devices and applications.

As the use of XHTML moves from the traditional desktop user agents to other platforms, not all platforms will require all of the XHTML elements. For example a hand held device or a cell-phone may only support a subset of XHTML elements. The modularization process breaks XHTML into a series of smaller element sets. These elements can then be recombined to meet the needs of different communities.

Modularization has several advantages:
- It provides a formal mechanism for subsetting XHTML.
- It provides a formal mechanism for extending XHTML.
- It simplifies the transformation between document types.
- It promotes the reuse of modules in new document types.

A document profile specifies the syntax and semantics of a set of documents. If a document conforms to a document profile, it provides a basis to guarantee interoperability. The document profile specifies the facilities required to process documents of that type, e.g. which image formats can be used, levels of scripting, style sheet support, and so on. This allows various groups of product designers to define their own standard profile. It also allows authors to avoid writing several different versions of documents for different clients.

XHTML expands the use of XML without making existing HTML elements obsolete. It is designed so authors can create Web pages that combine the data structure of XML and the presentation of HTML. It also allows authors to create Web pages without having to go through existing Web pages to strip out the tags and replace them to take advantage of the power of XML. The W3C also provides tools to convert HTML 4.0 documents into XHTML. XHTML also simplifies the Web development process by eliminating the need to develop multiple versions of a document based on the type of device upon which it will be used.

For SFX See Librarian

by Norman Desmarais (Acquisitions Librarian, Phillips Memorial Library, Providence College, Providence, RI 02918; Phone: 401-865-2241; Fax: 401-865-2823) <normd@provcollege.edu>

One-stop information searching has been the holy grail for researchers since the appearance of electronic databases. Database aggregators like Dialog, Ovid, SilverPlatter, etc. provided a partial solution with a common user interface that allowed searching several databases with the same familiar interface. Z39.50 expanded that concept to allow researchers to access databases from different vendors, still using a familiar interface. Then came library portals that let librarians vet and brand the resources they opted to provide on their Web pages or library catalogs. SFX is the latest innovation to appear on the scene, introduced by ExLibris in early 2000.

SFX was developed by ExLibris, the first company to capitalize on the work of Herbert Van de Sompel at the University of Ghent in Belgium. Herbert Van de Sompel developed the concept of the OpenURL, which makes SFX possible. Soon after ExLibris introduced SFX, Endeavor Information Systems released LinkFinder, EBSCO Publishing and Sirsi unveiled their offerings, LinkSource and Rooms, at the American Library Association’s Midwinter Meeting in January, 2003. The objective of these products is to provide seamless access to electronic resources in the fewest steps possible — a high expectation in view of the vast amount of information available on the Internet. Subsequent references to SFX should be understood to include these competitor products as well.

SFX is not a search engine; so it does not search databases or the Internet. Rather, it facilitates linking from a cited item to services or information relevant to that item. It parses the data from the citation to create an OpenURL which aims to deliver the appropriate copy to the researcher. SFX promises the ability of linking all of a library’s resources. The OpenURL makes it easy for information resources to be compliant. It also lets the library control its information resources.

OpenURL

An OpenURL differs from a static URL in that it is not location dependent. A static link is embedded in the data and requires human or machine matching to be useful. As the number of static links increases, they become more difficult to manage and maintain; so static linking is not practical for large scale applications. A dynamic link, on the other hand, discovers links on the fly. It uses the item’s metadata as the basis of the link and controls presentation based on the user and the institution.

An OpenURL consists of a base URL followed by a query which identifies the origin of a citation and describes the object sought. The base URL is the URL of the SFX server, a service component that can take an OpenURL as input. The base URL will depend on the user (or the institution) and would look something like: http://sfxserver.unity.edu/sfxmenu. A question mark separates the base URL from the query which describes the origin of the transported metadata-object (the system that inserts the OpenURL, such as Ovid:Medline or EBSCO:MAFA) as well as the metadata-object itself. So an OpenURL might look something like: http://sfxserver.unity.edu/sfxmenu?sid=EBSCO:MAFA&issn=12345678&date=1998&volume=12&issue=2&age=134 where the query identifies the source as EBSCOHost and the desired article comes from volume 12, issue 2, dated 1998, of the journal with the ISSN 12345678. The article begins on page 134.

The Link Resolver

The server on which the SFX or similar software is loaded is called a Link Resolver. Basically, the SFX software takes data elements from the referent (source that is referenced such as an indexing and abstract service) and creates an OpenURL that will then be used to locate the item. It calculates the links using a template or set of rules to construct a link.

The Link Resolver also contains a database of links, and information about title lists, coverage and embargo data for aggregators and packages, a list of the library’s collections, and rule-based links. This allows the librarian to determine the rules to follow when retrieving and displaying search results. For example, a library may have access to the same journals through more than one service or aggregator. The Link Resolver lets the librarian specify the order in which the available services appear and provide the copy or set of services most appropriate for the researcher. If a library has a subscription to a title and access through a pay-per-view service, the librarian can specify that the pay-per-view service not appear as an option. Likewise, a library may routinely display an interlibrary loan or document delivery form for cited articles, but the librarian could suppress the form if the library subscribes to the title.

The OpenURL contains elements that identify the user and/or the institution and tells the information provider where the service component is located; so the Link Resolver can check a customer’s databases and e-journal subscriptions to authenticate users to verify that they have the right to access the resources. When a researcher locates a citation from the MLA Bibliography, for example, the Link Resolver parses the citation and constructs an OpenURL which then serves to locate the item on a target resource such as JSTOR.

The Link Resolver presents the researcher with context-sensitive links that are dynamically configured on the basis of the institution’s e-collections. Such resources are not limited to the full text of e-journals. They could include full-text repositories of any type; abstracting, indexing, and citation databases; OPACs; citations appearing in research articles; interlibrary loan and document delivery services; e-print systems; Web search services; other link resolver; or A-Z lists from Serials Solutions. The Link Resolver can also link to Google to search for an author or to Inforref or Ingenia to purchase an article.

In summary, the Link Resolver takes the citation as input, enhances the incoming metadata, looks up the full text links in the database of links such as CrossRef or EBSCO Article Matcher, calculates rule-based links, applies filters to eliminate unwanted links, and prepares and presents the link menu to the researcher.

Managing the Link Resolver

The Link Resolver serves as the hub of the information wheel. It is more comprehensive continued on page 103

http://www.against-the-grain.com>
and easier to manage than setting up individual static links and easier to keep information up to date. The first thing a librarian should do is to contact the library’s information vendors to have them implement their databases. This is a serials management issue. Then, one sets the logic to determine what appears and what doesn’t. For example, a librarian may want to specify that if EBSCOhost appears as a source don’t show Gale. If the library subscribes to the full text, don’t show the ILL form.

When a journal is bought by a new publisher or there’s a change of aggregator, one need only make a change in the Link Resolver instead of changing the information for each title affected. The librarian can also customize URLs by determining the text and/or the icon displayed with the link, apply filters to control the display of local and global collections, apply additional rules to control the display such as to specify required fields, or hide resources if the full text is available in the library.

Licensing the software and purchasing and managing the Link Resolver can be an expensive proposition, typically running four figures minimum. Smaller institutions might want to consider an option like Openly Informatics’ Licate software (http://www.openly.com/locate/about.html) where the Link Resolver resides at Openly Informatics or EBSCO’s LinkSource, hosted by EBSCO. We can also expect to see many information providers offering their own brand of SFX technology such as WilsonLink’s SFX-powered technology.

Having a Link Resolver on site allows customizing which resources are available and setting priorities among multiple resources. It gives the librarian maximum control over those available resources and the appearance of the menus and search options. An off-site Link Resolver eliminates the costs of buying and maintaining expensive hardware. On-site support staff is not required, reducing the cost of operation and staff time to only a few hours per month. However, the vendor or information provider configures and maintains the server and decides what resources are available. Librarians may have little or no control over what gets offered to their patrons.

OpenURL linking will eventually find its way into every library. Large libraries may opt to license SFX or similar software to allow them the greatest flexibility and control over their information resources. Other libraries may rely on Link Resolvers hosted by vendors or information providers. Producers of integrated library systems are also building SFX capability into their products. Innovative Interfaces offers WebBridge which can now link to OCLC’s First Search and ILLiad Resource Sharing Management software in addition to all the OpenURL resources available to subscribing libraries. Endeavor Information Systems plans to integrate FAST Data Search into ENCompass by mid year and expects FAST to eventually replace the search engine for the Voyager integrated library system.

Desperately Seeking Copyright — Digital Rights Management: It’s Not Just About Security Anymore

by Edward Colleran (Director, Publisher Relations, Copyright Clearance Center, Inc.) <ccolleran@copyright.com>

To appropriate a few words from Mark Twain — now safely in the public domain — everybody’s talking about digital rights management (DRM), but is anyone doing anything about it?

The answer depends on one’s understanding of the neologism “digital rights management.” This overused phrase may mean different things in different contexts to different people. What we do know is that these ever-evolving licensing solutions are changing the way librarians and content users acquire the rights to reuse copyrighted materials. It’s licensing and content at the same time and place, securely. It’s automated reprints fulfillment. It’s real-time access to the historical data on your permissions orders. It’s convenient, quick and customer-friendly. And it’s popping up on more and more online publications.

Only a few years ago, DRM was often talked about as either a panacea to all of publishing’s ills or as the traffic cop on the information superhighway. It is neither, and it never was.

Early DRM offerings, especially in non-text media, focused on controlling access. After all, this was something software could theoretically do, and since sales of these products were initially made to publishers, naturally enough their needs and interests were served first. This model has since proven to be inadequate, because users, either as direct consumers of content, or gatekeepers such as librarians, immediately, and appropriately, raised issues with these solutions, such as losing legitimate access to licensed content, “kludge-y” interfaces, inflexible software models, etc. Providers and publishers needed to revise their expectations, and improve their solutions. After all, if users perceive access to a particular publisher’s materials to be burdensome, they will move on to other information sources, frustrated. This defeats the publisher’s purpose, which is generating greater royalties and lawful use of their content.

DRM has since evolved into technologies and applications that facilitate content distribution, access and, where appropriate, payment, primarily for a Web-enabled environment. DRM is not just about locking up content. That is a false impression. Purveyors of these solutions have advanced in recent years beyond offering mere lockdown of information through software encryption, and developed their systems into a smorgasbord of viewing and pricing options to fit differing requirements.

While DRM solution providers were adjusting their services to address market feedback, Congress was also paying attention to copyright issues involving digital content. An amendment to U.S. copyright law known as the Digital Millennium Copyright Act (DMCA), was enacted in 1998, and while it represented a valiant effort to keep up with the advance of digital technologies, it also left multiple questions about the downloading of music or copyrighted articles unaddressed. In the years since, courts have been kept busy on these issues.

Congress probably had rights management technologies like DRM in mind when it passed the DMCA in 1998. Certainly some of the language about “copyright management information,” “circuitry of technological measures” and “encryption technologies” leads in the direction of enshrining file security techniques and giving the old “lockout” idea the sanction of law. Many librarians and groups representing content users’ interests, such as the Electronic Freedom Foundation, believe that the DMCA went too far in restricting access to information, instead shifting the balance in favor of publishers while leaving unresolved questions about consumers’ rights to download and use digital information.

What might the congressional intent have been, as far a social policy purpose? Although the DMCA has become controversial in the years since its passage, considering that the constitutional purpose of copyright is “to promote the progress of science and useful arts” by securing “for limited times and purposes,” arguably Congress in this act was attempting to maintain the balance of interests envisioned at the heart of copyright law.

While debate over the DMCA continues, DRM technologies are moving forward to attempt to meet the wants and needs of both rightsholders and content users. A breakdown of both groups’ expectations follows:

Rightsholders. Either authors directly or through agents and representatives, such as publishers, continue to need and expect:

- Some degree of control over the distribution of their content.
- Often, but not always, a monetary return.
- A mechanism for updating the ownership of the rights; and
- A way of monitoring the integrity of their work when it appears in new venues.

Information Professionals. Need and have a right to expect:

continued on page 104

<http://www.against-the-grain.com> 103