Runway 9-27 Rehabilitation with FDR Treatment
Purdue Road School
Agenda

- Review Problem Statement and Sponsor’s Goal
- Consideration of Alternatives by Airport Authority
- History/Existing Conditions
- Field Studies: Traditional vs New Technologies
- Forensic Studies Accomplishments
- VPZ Selection Process
- Full-Depth Reclamation Treatment (General)
- Full-Depth Reclamation Treatment at VPZ
- Project Considerations/Lessons Learned
- Industry Initiatives
Problem Statement and Sponsor’s Goal

Problem:
Existing runway and taxiway pavements within the project area would historically deteriorate at a faster rate than design life expectancy would project.

Goal:
Design new reconstructed or rehabilitated pavements that meet or exceed expected design life with minimal maintenance.
Airport Authority: Consideration of Alternatives

How can we apply modern technology to improve and more efficiently manage pavements?
The Decision to be Made
(AIP Handbook)

- **Rehabilitation** is a more comprehensive restoration of an original functionality that results in a piece of pavement, piece of equipment, or building with a useful life of at least 10 years.

- **Reconstruction** is a complete restoration of an original functionality that results in a virtually new piece of pavement.
 - **FDR (Modification of Standards)**
History/Existing Conditions

- 6,000’ Runway 9-27 originally placed in 1966 (17 years)
- 1st Overlay 1983 (16 years)
 - Loss of centerline crown (16”)
 - Remanufactured materials (surface brittle)
- 2nd Overlay 1999 (15 years)
 - Slag Aggregate HMA
 - Severe cracking...again
History/Existing Conditions

1997 versus 1999 Pavements
VPZ Surface Comparisons

Similar Pavement: Runway 18-36

Failing Pavement: Runway 9-27
Minimum Service Level PCI Score:

- Runway = 60 & Taxiway = 55

Runway 9-27:
- Between 41 and 55 (Poor)

Taxiway A:
- Between 41 and 55 (Poor)

Cause for Distresses:
- 50-70% age related
- 30-45% materials & load related
VPZ Pavement Build-Out History

Historic Performance:

- Pavements installed with multiple, variable materials and pavement sections between 1962 and 1999
- Pavements not reaching the anticipated Life Cycle
- Partial underdrain installation
Field Studies: Traditional vs New Technologies
Why Mobile Mapping over Survey?

Technology Benefits:
- Increased airfield safety
- Reduce runway closure times
- Baseline for future assessments/analysis (crack, patch plan with locations and quantities)
- More detailed, high resolution dataset
- Geospatially referenced – a GIS supported
- Faster collection methods
- Future data extraction without additional field visits (lights, signs, markings, etc.)
Why VPZ and Mobile Mapping?

- Multiple imagery of existing conditions prior to construction (FAA Requirements) – baseline
 - This includes crack and patch plan
- More accurate cross section and transitional section data
- Would best supplement NDT
 - Image overlay with low-strength or distresses areas
- Can be merged with existing Mobile Data
- More feature information – GIS Layers – Bang for $$$
Supplemental Testing: Why Non-Destructive Testing (NDT) over Coring?
Non-Destructive Testing (NDT) using Falling Weight Deflectometer (FWD)

- Measures pavement surface deflections after applying a static or dynamic load to the pavement for material, strength information
- Provides GPS Relative Layer Strengths
Why NDT and VPZ?

- PCI’s may not be telling the whole story
 - Environmental and subsurface distresses
- Structural or Overload Concerns
 - “Thin” Asphalt Section, Limited As-Builts, Heavy Loading, Multiple Variable Pavement Sections
- Construction Cost Concerns
 - More design input will improve evaluation of alternatives, their justification and isolated areas
- Runway Closure Times
 - Traditional: 13-14 days
 - NDT: 6-7 days
Time/Safety Difference:
MMS/NDT vs Traditional

- **MMS/NDT**
 - Survey Targets/Scan: 2 Days Total 1 Each (15-min PPR)
 - Geotechnical: 30 cores performed at night (3 nights)
 - NDT: 3 Night Closures
 - Distress Map: 3-4 Office Days
 - **TOTAL Runway Closure Days**: 5 Days

- **Traditional**
 - Survey: 4 Days Total (15-min PPR)
 - Geotechnical: 90 cores performed at night (5 nights)
 - Distress Map: 2 Field Days and 5 Office Days
 - **TOTAL Runway Closure Days**: 11 Days
VPZ Cracking Conditions

- 202,725 LF of Mapped Cracks
- 82% on Runway, 18% on Taxiway
Forensic Study Accomplished

- Identification of the problem
- More accurate detail of cracking
- Allowed a forum of discussion between the stakeholders (Airport, FAA, INDOT)
- Justification as to the decision to rehabilitate or reconstruct
- Conventional Funding (FAA, INDOT)
- Leverage of additional funding (County, RDA)
VPZ Selection Process

Primary Objectives:
- Construct an actual 20-year pavement
- Minimize runway closure as much as possible
- Minimize future maintenance/rehabilitation costs
- Apply a proven methodology
- Minimize subgrade exposure
- Minimize/Mitigate pavement distresses

Secondary Objectives:
- Minimize changes to pavement elevations
- Minimize disruptions at taxiway transitions
- Consider initial construction cost

Outcome:
- Option 3 was chosen and then modified to include Full-Depth Reclamation (FDR) treatment

<table>
<thead>
<tr>
<th>Repair Options</th>
<th>Object. #1 (20 pts)</th>
<th>Object. #2 (20 pts)</th>
<th>Object. #3 (20 pts)</th>
<th>Object. #4 (15 pts)</th>
<th>Object. #5 (15 pts)</th>
<th>Object. #6 (10 pts)</th>
<th>Total Points from Object. 1 to 6</th>
<th>Option Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td>10</td>
<td>87</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>13</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td>10</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>8</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>76</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Option 1:** Remove all AC layers and install new 9 inch P-401/P-403 section on existing limestone granular base
- **Option 2:** Remove all AC layers and install new 12 inch P-501 section on existing limestone granular base
- **Option 3:** Remove all AC layers western most 1,000 feet, mill and remove 8 inches of top AC layers for remaining 6,000 feet and install new 9 inch P-401/403 section on remaining existing AC layers and limestone granular base
- **Option 4:** Remove all AC layers western most 1,000 feet, mill and remove 9 inches of top AC layers for remaining 6,000 feet and install new 12 inch P-501 section on remaining existing AC layers and limestone granular base
- **Option 5:** Mill and remove 4 inches of top AC layers and install new 4 inch P-401 section on remaining AC layers and granular base
Full-Depth Reclamation (FDR) Treatment

What is FDR?
- A pavement stabilizing solution that utilizes blended pulverized asphalt and base materials to provide a homogeneous structure.
- 3 Types:
 - Mechanical Stabilization
 - Chemical Stabilization
 - Bituminous Stabilization

Why do it?
- Stronger base
- More uniform base
- Eliminates subsurface distresses
- Reduces potential for infiltration
- Sustainable
- Cheaper than total reconstruction but provides similar-type structure
- Leftovers great for topping haul routes/access roads

Types of Stabilization
- Mechanical stabilization – 1st step in reclamation, also used to describe FDR without addition of a binder (Pulverization)
- Chemical stabilization – FDR with chemical additive (Calcium or Magnesium Chloride, Lime, Fly Ash, Kiln Dust, Portland Cement, etc.)
- Bituminous stabilization – FDR with asphalt emulsion, emulsified recycling agent, or foamed/expanded asphalt additive
- Combination stabilization – Any 2 or more of above

Emulsion Full Depth Reclamation Process
- Injection of water and/or fluid stabilizing agents
- Milling/stoning
- Stabilized material
- Gravel base
- Overlay SEAL
- 6-10 inch emulsion stabilized material

PORTER COUNTY REGIONAL AIRPORT
Northwest Indiana’s Premier Business and General Aviation Airport

WOOLPERT
ARCHITECTURE | ENGINEERING | GEOSPATIAL
What's the process?

- Sampling
- Pulverization & Reshaping
- Distributing
- Mixing
- Compacting & Fine Grading
- Curing
- Paving

FDR Construction Process

Pulverize, Shape, Add Cement, Mix In Place, Compact, and Surface

<table>
<thead>
<tr>
<th>Bituminous Surfacing</th>
<th>Pulverized</th>
<th>Pulverized</th>
<th>Stabilized</th>
<th>Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular Base</td>
<td>Subgrade</td>
<td>Subgrade</td>
<td>Subgrade</td>
<td>Subgrade</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Pulverization to desired depth</td>
<td>Removal of excess material (if necessary) and shaping</td>
<td>Addition of cement, mixing, reshaping, and compacting</td>
<td>Application of final surface course</td>
</tr>
</tbody>
</table>

1. EVALUATION OF EXISTING PAVEMENT

2. PULVERIZE DETERIORATED ASPHALT AND ROAD BASE

3. RESHAPE MATERIAL TO NEW ROAD PROFILE

4. DISTRIBUT CEMENT OVER RECYCLED MATERIAL

5. HYDRATE CEMENT AND BLEND WITH RECYCLED BASE

6. COMPACT MIXED MATERIALS

7. FINISH GRADE IN PREPARATION FOR NEW HMA

8. FINISH ROLL AND ALLOW RECYCLED MATERIAL TO CURE

9. OVERLAY WITH NEW HMA SURFACE
Why FDR at VPZ?

- Multiple “Typical Sections”
- Exponential number of pavement distresses and structural decline
 - Typical AC Modulus values were very low for a 14-year pavement. Typical values should be greater than 500,000 psi whereas actual values ranged from 101,000 to 271,000 psi
- Subbase/Moisture concerns
 - NDT identified multiple weak areas
- Cheaper alternative than Full Reconstruction
 - Estimate: $8 Million vs $14 Million
 - Actual: $6.9 Million
- Provides full-depth structure
- Reduced long-term maintenance & life-cycle costs
FDR Treatment at VPZ

FDR Design Parameters:

- **MODIFICATION OF STANDARDS**
- No Subgrade allowed in Mix
- Cement Content: 4-6%
- Elasticity Modulus: 250,000 psi
- 7-Day Compressive Strength: 300-500 psi

Runway Program Completion:

- Two (2) Phases of Construction
 - Phase 1: RW/RW Intersection out to RSAs
 - Phase 2: Remaining east & west portions
Project Considerations/Lessons Learned

- Mix Designs are required to establish cement content
- Cement slurry should be considered where dust control is vital
- Designer should consider field-mixed proctors to test unconfined compressive strength
- Soils with over approximately 1,000 PPM of soluble sulfate should not be treated with an FDR method.
- Thicker lifts can decrease the integrity of the FDR base. 10” should be considered the maximum.
- Discuss Grade control

- Discuss Elasticity Modulus ranges:
 - 1-2% Cement: 15,000 psi
 - 3-4% Cement: 50,000-150,000 psi
 - 5-6% Cement: 250,000-500,000 psi
- Discuss timing of contractor mix design
- 7-Day Unconfined Compressive Strength Criteria:
 - INDOT RSP 413-R-634:
 - > 3” Overlay: 300 psi
 - 1.5-3” Overlay: 400 psi
 - <1.5” Overlay: 500 psi
- BYU Professor, Spencer Guthrie: 400-500 psi
Industry Initiatives

- INDOT RSP 413-R-634 is considering some additional requirements for FDR Treatments. These are as follows:
 - Just In-Time Training (JITT) for field personnel
 - Compaction required until pad foot rollers leave cleat indentation less than 3/16”
 - Compaction required to continue until pneumatic tire rollers do not leave any wheel impressions
 - Weather limitations require FDR not performed below 50⁰ F and may restrict work when heat index greater than 100⁰ F
 - FDR required to be performed after May 1st and before October 1st
Time Lapse Videos

Camera 1:
https://www.youtube.com/playlist?list=PLmuYdRh49akIsWncbgh2mrvvwMQ2MJ6iE

Camera 2:
https://www.youtube.com/playlist?list=PLmuYdRh49akIsWncbgh2mrvvwMQ2MJ6iE
Questions?