Setting Asphalt Content For Hot Mix Asphalt

How Much Is Enough?
How Much Is Too Little?

Gerry Huber
Heritage Research Group
SKID RESISTANCE

IMPERMEABILITY

STABILITY

FATIGUE RESISTANCE

FLEXIBILITY

WORKABILITY

DURABILITY

1980s
Rut Resistance
Proportions of Material
Property of the Aggregates
Asphalt Content / Imposed Strain
Durability
Environmental Cracking
High Permeability
Leading Cause of Death??

- Rutting
 -❌
- Cracking
 -✔️
Current Durability Concerns

- Mostly Cracking
 - Random and Block Cracking
 - Top Down Cracking
- Some raveling
- Some moisture damage
- Longitudinal Joints continue to be Concern
1960s Age of Cracking

* Strong Emphasis on Cracking
 * Related to Structural Design
 * AASHO Road Test
 * Development of Beam Fatigue Test
1980s Age of Rutting

* National Catastrophe

* Blamed on Asphalt Quality
 * “Taken all the goodies out of asphalt.”

* Led to Strategic Highway Research Program
Implementation of Superpave

- Higher Stiffness Asphalt Binder
 - AC20 (PG64ish)
 - AC10 (PG58ish)
 - PG 70 and PG 76 become more common

- Improved Aggregate Requirements
1990s – 2000s cont’d

* Improved Density Specification
 * “End Result Specifications”
 * 10 to 12% voids moved to 7 to 9% voids

* Volumetric Acceptance
 * Instead of asphalt content and gradation
1990s – 2000s cont’d

* Rutting became Non-Issue (less of an issue)

* Cracking has become the ISSUE
What’s Changed?
Shift from Agency to Industry

* Design, Production and Control shifted to Industry
* Contractor Mix Design
* Plant Settings done by Contractor
Changes since 1990s cont’d

- Increased Use of RAP

- Introduction of Shingles
 - Very limited in 1990s
 - Today
 - Commonly used in many States
Asphalt Binder Additives

- Recycled Engine Oil Bottoms
 - Mostly used for Lower Temperature Grades
- Reported to cause cracking
 - Investigations continue
Changes since 1990s cont’d

- Asphalt Binder Additives
 - Polyphosphoric Acid
 - Common in early 2000s
 - Polymer Modified Become More Common
 - SBS was most common (only) polymer used
 - Modified Asphalt was relatively new
What are people saying?
“Causes of Cracking”

* Too much RAP
* Need to limit (ban) RAS
* REOB is cause
* Asphalt mixes are “Too Dry”
SOLUTIONS?
Reduce design gyrations

Wrong

* True only IF gradation is held constant AND gyrations are reduced
 * VMA will increase
 * 25 gyrations ≈ 1.0% VMA
* BUT gradation is not a design criteria
Common “Solutions” to Increase Asphalt Content

* Reduce design air voids
 * i.e. 3.0% air voids would increase asphalt content 0.4%

* BUT
 * Make sure controls are in place to hold VMA at the previous design levels.
 * Otherwise change gradation and reduce air voids without increasing asphalt content.
Common “Solutions” to Increase Asphalt Content

* Increase design VMA criteria
 * 1.0% VMA ≈ 0.4% asphalt content

* The only real way to increase asphalt content.
* Increasing VMA will increase
 * Total asphalt content
 * Effective asphalt content
Common “Solutions” to Increase Asphalt Content

* Require use of fine-graded mixes
 * “Contractors are designing their mixes on coarse side to reduce the amount of asphalt they need.”

* Asphalt content is set on basis of VMA minus air voids plus absorbed asphalt.
Common “Solutions” to Increase Asphalt Content

* Use deduct factor for RAP and RAS
 * i.e. for RAS set binder content at 70% of RAS binder
 * “Reduces the amount of RAS binder”

Wrong

* i.e. 12% asphalt binder replacement desired from RAS
* With 100% contribution
 * 3% RAS with 20% asphalt binder
 * RAS binder is 0.6%
 * Total Binder is 5.0%
Common “Solutions” RAS cont’d

* With 70% contribution
 * Percent RAS increased
 * 4.3% RAS added
 * 0.7 x 0.86% RAS binder = 0.6%
 * Virgin binder 4.4%
 * “Total” binder = 5.0%
 * Perceived ABR = 12%
 * Actual ABR = 0.86 / 5.26 = 16.3%
How Much Asphalt is Enough?

- Two Part Answer
- Asphalt on Outside of Aggregate
- Asphalt Absorbed into Aggregate
How Much Asphalt is Enough?

- Asphalt Outside of Rock
 - Based on Volume

<table>
<thead>
<tr>
<th></th>
<th>9.5-mm</th>
<th>12.5-mm</th>
<th>19.0-mm</th>
<th>25.0-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent by Volume</td>
<td>11.0%</td>
<td>10.0%</td>
<td>9.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Percent by Weight</td>
<td>4.4%</td>
<td>4.0%</td>
<td>3.6%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
How Much Asphalt is Enough?

- Asphalt Inside of Rock
 - Depends on Absorption

<table>
<thead>
<tr>
<th>Aggregate Water Absorption</th>
<th>1.0%</th>
<th>2.0%</th>
<th>3.0%</th>
<th>4.0%</th>
<th>5.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Percent by Weight</td>
<td>0.5%</td>
<td>1.2%</td>
<td>1.9%</td>
<td>3.0%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>
How Much Asphalt is Enough?

* Total Asphalt Content
 * Inside Rock
 * Outside Rock

<table>
<thead>
<tr>
<th>Water Absorption</th>
<th>9.5-mm</th>
<th>12.5-mm</th>
<th>19.0-mm</th>
<th>25.0-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>4.9%</td>
<td>4.5%</td>
<td>4.1%</td>
<td>3.7%</td>
</tr>
<tr>
<td>2%</td>
<td>5.6%</td>
<td>5.2%</td>
<td>4.8%</td>
<td>4.4%</td>
</tr>
<tr>
<td>3%</td>
<td>6.3%</td>
<td>5.9%</td>
<td>5.5%</td>
<td>5.1%</td>
</tr>
<tr>
<td>4%</td>
<td>7.4%</td>
<td>7.0%</td>
<td>6.6%</td>
<td>6.2%</td>
</tr>
<tr>
<td>5%</td>
<td>8.4%</td>
<td>8.0%</td>
<td>7.6%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

These values are approximate and will vary depending upon specific gravity of aggregates and actual absorption.
THANK YOU