Zero Velocity Salt Spreader

Tommy Nantung
Pavement and Materials Engineer
Research Division
INDOT
Evaluation of Zero Velocity Salt Spreader

Tommy Nantung
Section Manager, INDOT Research Division
and
INDOT Snow and Ice Control Committee

In Cooperation With

- Mr. Larry Vaughn (INDOT Crawfordsville District)
- Mr. Jerry Hall (INDOT Angola Sub-District)
- Mr. Bill Rinard (INDOT Operations Supports Division)
- Mr. Don Johnson (FHWA, Indiana Division)

Spread Pattern of Salt on Pavement

- Spreading over a wide path, covering parts of two lanes by means of a spinning disk or a roller extending the width of the truck tailgate
- Windrowing in a narrow path of 1 to 3 feet through a tube or off a dead spinner
Optimal Salt Application Rate

- Level of service required
- Weather conditions and their change with time
- State and characteristic of salt used
- Time of application
- Traffic density at time
- Topography and type of road surface

Issues Concerning Salt Usage

- Proper application rate of salt is a matter of judgment
- Public awareness on the effect to soils, vegetation, water supplies, and structural materials
- Safe pavement surface and minimum cost to the public and to the environment

Approaches to Minimize Salt Use

- Prewetting salt with liquid chemicals
- Direct application of liquid chemicals
- Spreader attributes
- Better management control
- Training
- Adequate weather forecast
- Use of abrasives and snowplowing
Typical Characteristics of Conventional Salt Spreaders

- Loss of material. Blown off the road by traffic especially high speed vehicles
- Particles bouncing off the pavement
- Cast up to 40% of deicing material into an area outside the traffic lanes
- Speed differential between truck-traffic
- Real performance during the winter is hardly tested

Typical Characteristics of Zero Velocity Salt Spreaders

- Electronically operated
- Ground oriented granular material spreader
- Operator with management programming
- Desire spread rate with automatic adjustment
- Maintain consistent pound per mile application rate
- Reduce truck-traffic speed differential

Relation of Salt Use to Travelling Public

- Increased hazard to safe travel
 - Death, injury, and property damage
- Additional economic penalty
 - Delay of traffic and increased cost of operation
Evaluation Settings

- Spreader types
 - Industrial Hydraulic System
 - Muncie System
 - Pengwyn Zero Velocity
 - Swenson Zero Velocity
 - Tyler Zero Velocity

Evaluation Settings...

- Ground Speed
 - 20 Miles per hour
 - 40 Miles per hour

- Size Distribution of Salt
 - Total materials
 - Retained on ASTM #4 Sieve, larger than 4 mm, pea gravel size

Spread Patterns
Tyler System at 20 MPH, Salt Retained on #4 Sieve

Tyler System at 40 MPH, Total Salt

Tyler System at 40 MPH, Salt Retained on #4 Sieve
Conclusions

- Zero Velocity Salt Spreaders in general give a better spread pattern and recovery rate compared to the conventional spreaders at 20 MPH.
- Zero Velocity Salt Spreaders give a much better spread pattern and recovery rate compared to the conventional spreaders at 40 MPH.

Conclusions

- Performance of the Zero Velocity Salt Spreaders depends primarily on the ability of the spreaders to continuously spread the specified amount of salt.
- "Down time" of the spreaders should be taken into account when selecting a Zero Velocity Spreader.