Modeling and Experimental Validation of a Multi-Port Vapor Injected Scroll Compressor

Yuanpei Song

Purdue University
Ray W. Herrick Laboratories
West Lafayette, IN 47907, USA
Outline

- Background/Motivation
- Goals and Objectives
- Experimental Test
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Outline

- Background/Motivation
- Goals and Objectives
- Experimental Testing
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Background

- Vapor compression cycle performance can be improved through incorporation of economization
- Compressors with ports for refrigerant injection enable economization within a single-stage compressor
 - Number of injection ports can be increased relatively easily and at low cost
 - Injection has been demonstrated with scrolls

102: Vapor Injection Port
104: Vapor Injection Passage (Perevozchikov, 2003)
Background

Schematic of Saturated Vapor Injection Cycle
Outline

- Background/Motivation
- Goals and Objectives
- Modeling of Scroll Compressor with Vapor Injection
 - Sub Models
 - Modeling Results
- Experimental Test
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Goals and Objectives

- To find out the working process of vapor injected scroll compressor.
 - Developing the vapor injected scroll compressor model
 - Performing the experiments of prototype
 - Validating model predictions

- To evaluate the improvements brought about by the incorporation of vapor injection
 - Developing a simple cycle model employing flash tank
 - Coupling testing results into cycle model

- To investigate the benefits in the cold climate region
Outline

- Background/Motivation
- Goals and Objectives
- Experimental Testing
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Simplified schematic of hot-gas bypass load stand

P-h Plot
Test Setup
Outline

- Background/Motivation
- Goals and Objectives
- Experimental Testing
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Test Matrix

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Nominal Values Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing Temperature</td>
<td>°C</td>
<td>43.3</td>
</tr>
<tr>
<td>Evaporating Temperature</td>
<td>°C</td>
<td>-10, -20, -30</td>
</tr>
<tr>
<td>Compressor Suction Superheat</td>
<td>°C</td>
<td>11.1</td>
</tr>
<tr>
<td>Higher/Lower Vapor Injection Pressure</td>
<td>kPa</td>
<td>1100/900, 1300/900, 1300/1100, 1500/1300, 1500/1100, 1500/900, 1700/1500, 1700/1300</td>
</tr>
</tbody>
</table>
Model Validation

Suction Mass Flow Rate [kg/s]

Power Consumption [W]
Model Validation

Discharge Temperature [K]

![Graph showing discharge temperature comparison between modeling and experimental results. The graph includes data points for -30°C, -20°C, and -10°C with annotations for +10K and -10K.]
Model Validation

Lower Injection Mass Flow Rate [kg/s]

Higher Injection Mass Flow Rate [kg/s]
The experimental data are fit into the correlation of multiple input variables with limitations

$$\Pi = a_0 + a_1 \times \left(\frac{p_{disc}}{p_{suc}} \right)^{a_2} \times \left(\frac{p_{V,I,h}}{p_{suc}} \right)^{a_3} \times \left(\frac{p_{V,I,l}}{p_{suc}} \right)^{a_4}$$

<table>
<thead>
<tr>
<th>Π</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{V,I,h}$</td>
<td>-0.1262</td>
<td>0.1570</td>
<td>-0.1592</td>
<td>1.097</td>
<td>0.02495</td>
<td>0.998</td>
</tr>
<tr>
<td>$M_{V,I,l}$</td>
<td>-0.4597</td>
<td>0.3204</td>
<td>-0.04321</td>
<td>-0.1482</td>
<td>0.8981</td>
<td>0.999</td>
</tr>
<tr>
<td>\dot{m}_{suc}</td>
<td>-11.82</td>
<td>11.99</td>
<td>-0.004295</td>
<td>-0.0009476</td>
<td>-0.0005733</td>
<td>0.991</td>
</tr>
<tr>
<td>\dot{W}</td>
<td>-27.51</td>
<td>-41.54</td>
<td>-3.488</td>
<td>32.14</td>
<td>0.05131</td>
<td>0.954</td>
</tr>
<tr>
<td>T_{disc}</td>
<td>98.64</td>
<td>0.002351</td>
<td>4.268</td>
<td>0.6079</td>
<td>-0.2864</td>
<td>0.973</td>
</tr>
</tbody>
</table>

$M_{V,I} = \frac{\dot{m}_{VI}}{\dot{m}_{suc}}$
Outline

- Background/Motivation
- Goals and Objectives
- Experimental Testing
 - Test Setup
 - Test Results and Model Validation
- System Model and Analysis
- Conclusion
Cycle Model

Schematic of Saturated Vapor Injection Cycle

P-h plot for Saturated Vapor Injection Cycle
Coupled Analysis
Coupled Analysis

![Graph showing coupled analysis results]
Coupled Analysis

\[\text{COP}_{\text{rel}} = \frac{\text{COP}_{VI}}{\text{COP}_{\text{baseline}}} \]

\[\text{COP}_{VI} = \frac{\dot{Q}_{h,VI}}{P_{VI}} \]
Calculation of Loading in Minnesota

Hourly Temperature Distribution of Minneapolis based on TMY data

Heating and Cooling Load at various ambient temperatures for Minneapolis
Heat Demand in Minnesota

Heating Demand

- Annual Heating Requirement [kWhr]
- Load (kW)

Ambient Temperature [°C]

Load [kW]

Annual Heating Requirement [kWhr]

-30 25 20 15 10 5 0 5 10 15 18.33

0 5 10 15 20 25 30 35

0 2000 4000 6000 8000 10000 12000 14000
Coupled Analysis for Cold Climate

Heating Capacity

Assume pinch point of 5°C and subcooling of 5°C
Coupled Analysis for Cold Climate

Heating COP

\[COP_h = \frac{\dot{Q}_{HP}}{P_{HP}} \]
Coupled Analysis for Cold Climate

System COP

\[\text{System COP} = \frac{\text{Load}}{\text{HP} + \text{Fan} + \text{Aux}} \]

\[P_{\text{Fan, condenser}} = 0.38kW \]

\[P_{\text{Fan, evaporator}} = 0.30kW \]

Ambient Temperature [°C]

System COP

Baseline Cycle
Saturated Vapor Injection Cycle
Coupled Analysis for Cold Climate

Baseline Cycle Saturated VI cycle

Seasonal Energy Efficiency Ratio [Btu/Wh]

8.048

9.059

12.57% improvements in SEER
Outline

- Background/Motivation
- Goals and Objectives
- Modeling of Scroll Compressor with Vapor Injection
 - Sub Models
 - Modeling Results
- Experimental Testing
 - Test Setup
 - Test Results and Experimental Validation
- System Model and Analysis
- Conclusion
Conclusion

- The vapor injected scroll compressor model is validated with experimental results.
- From modeling results, vapor injection can lower discharge temperature and increase heating capacity.
- Testing results indicate that with the increase of pressure ratio, the improvements in COP increase.
- In cold climate region, the heat pump system employing the compressor prototype in this study can bring about 12.57% improvement in SEER.
I would like to thank DOE, Emerson Climate Technologies and UT Carrier Corp for their support as well as Dr. Bell, Dr. Ignatiev, Dr. Mathison and Frank Lee, Bin, Christian, Sugi, Tim and other staff and labmates at Herrick Lab.
Thank you!