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ABSTRACT

This paper considers a systematic analysis of volumetric inefficiency sources in reciprocating compressors. The 
procedure is based on the efficiency detachment approach discussed by Pèrez-Segarra et al. (2005), but includes a 
more detailed evaluation of inefficiencies associated with the compression cycle. A small-capacity reciprocating 
compressor adopted for household refrigeration is simulated through a numerical methodology capable of evaluating 
all the main parameters concerning the compressor operation. An assessment of several volumetric inefficiency 
sources is carried out with reference to results for the thermodynamic process inside the cylinder, fluid flow through 
valves, piston-cylinder clearance leakage, gas pulsation in mufflers and refrigerant thermophysical properties.

1. INTRODUCTION

A compressor is a positive displacement machine, in which the density of the gas entering the compression chamber 
has a major influence on the mass flow rate. The gas density at the suction chamber is influenced by the evaporating
pressure as well as the suction temperature, which is increased by heat transfer in the suction system. Besides 
suction superheating, other well-known effects reduce the overall compressor mass flow rate, such as the clearance 
residual mass, in-cylinder superheating and leakage through the gap between cylinder and piston.

The volumetric efficiency (= / ) is a parameter frequently adopted to relate the actual mass flow rate of a 
compressor, , with its theoretical maximum, . This parameter plays a major role in compressor design since 
it defines the required compressor swept volume for a certain application. Several thermodynamic phenomena that 
take place inside the compressor affect directly the volumetric efficiency and the aforementioned definition does not
discriminate each one of them.

Stouffs et al. (2001) proposed dimensionless parameters to model some of the aforementioned effects, such as 
suction superheating due to cylinder wall heat transfer and valve pressure drop, and successfully established the 
volumetric effectiveness of an air compressor. However, the calibration of the dimensionless parameters is of great
importance in their approach and, therefore, an experimental characterization of the compressor is always needed.

Pèrez-Segarra et al. (2005) proposed an efficiency detachment procedure to analyze the impact of different 
phenomena on the isentropic, mechanical, electrical and volumetric efficiencies. The volumetric losses were divided 
into two main contributions: before the cylinder and inside the cylinder. For the latter contribution, the authors made 
a further division and considered the compression cycle to be formed by four major sub-processes (suction, 
compression, discharge and expansion) with a local efficiency for each one of them. As identified by Pèrez-Segarra
et al. (2005), such a procedure assumes that different phenomena affect each sub-process and, therefore, the 
efficiency of each sub-process is a combination of two or more physical effects. 



1348, Page 2

International Compressor Engineering Conference at Purdue, July 12-15, 2010

The present study follows the efficiency detachment procedure proposed of Pèrez-Segarra et al. (2005), but further 
discriminates the in-cylinder thermodynamic processes in order to provide a more detailed understanding of the 
compressor volumetric inefficiencies.

2. THEORETICAL MODELING OF THE COMPRESSION CHAMBER

The compression chamber of a reciprocating compressor encompasses the volume formed by the piston, cylinder 
walls and the valve plate (Figure 1). The piston moves alternatively along the cylinder axis, between the bottom 
dead center and the top dead center close to the valve plate. A crankshaft mechanism is used to convert the rotational 
movement of the electric motor into the alternative movement of the piston. The volume of the compression 
chamber can be described according to some geometrical parameters (Ussyk, 1984). During the compression cycle, 
mass enters or leaves the cylinder through the suction and discharge valves. Small reciprocating compressors adopt 
reed type valves that open and close automatically, due to the pressure difference between the cylinder and the 
suction/discharge chamber.

The compression process can be represented by a pressure-volume diagram, as shown in Figure 2. Initially, the 
piston is in a certain position A and the mass of gas inside the cylinder is Mt

A. As the piston moves downwards, the 
pressure inside the cylinder is decreased. At a certain position between A and b, the piston reaches a position where 
the suction valve opens and low pressure vapor is drawn into the cylinder through the suction valve, which is opened 
automatically by the pressure difference between the cylinder and the suction chamber. The vapor keeps flowing in 
during the suction stroke as the piston moves towards the bottom dead center (point b). At point b, the piston inverts 
the direction of its motion, therefore increasing the gas pressure. From b to B, mass can still enter the cylinder 
because of flow inertia or may exit due to backflow. The total mass that enters the cylinder after a complete suction 
process is denoted by msuc and the amount that eventually leaves the cylinder is denoted by msuc,r.

During the time interval between points B and C, the suction valve is closed and the vapor trapped in the cylinder 
has its pressure raised as the cylinder volume is decreased. Eventually, during the period C-t, the pressure in the 
cylinder is such that the discharge valve is forced to open. Mass then exits the cylinder until the top dead center t.
From there on, the piston changes again its motion direction, increasing the volume. During the interval t-D, the 
discharge valve closes, and in the same manner as for the suction process, mass may enter or leave the cylinder. The 
total mass that has left the cylinder through the discharge valve is denoted by mdis, whereas mdisr is the amount of 
mass associated with backflow.

Figure 1. Schematic view of the compression chamber.

In addition to the flow through valves, mass enters and leaves the compression chamber through the gap between the 
piston and the cylinder walls during the entire compression cycle. The net amount of mass that leaves the 
compression chamber through the gap is denoted by mlkg. When the piston is back to the position A, the mass inside 
the cylinder is MA . Applying mass conservation to the compression chamber along the entire cycle results:

          
01

lkgr,disdisr,sucsuc
t
A

ft
A mmmmmMM (1)
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After the compressor reaches a steady cyclic operation, the mass at any corresponding points of the p- diagram of 
different cycles is always the same; thereafter the first term may be neglected.

In order to apply the energy equation to the gas volume inside the compression chamber, a control volume is defined
as shown in Figure 3. As can be seen, energy can be transported through the valves and the piston/cylinder gap. On 
the other hand, heat is transferred through the cylinder walls at the same time as work is exchanged between the gas 
and the piston. Based on the energy conservation, the following equation can derived to calculate the time variation 
of the in-cylinder gas temperature (Todescat et al., 1990):
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In Eqs. (2) to (4), pG, TG, vG and hG are, respectively, the instantaneous pressure, temperature, specific volume and 
specific enthalpy of the gas inside the cylinder. Furthermore, Hw is the convective heat transfer coefficient, 
calculated according to the correlation proposed by Annand (1963), Aw is the heat transfer area between gas and 
compression chamber walls and CIL is the volume of the cylinder. Energy and mass conservation equations, along 
with an adequate equation of state, can describe the thermodynamic process the gas undergoes during the entire 
compression cycle.

3. VOLUMETRIC EFFICIENCY

The concept of volumetric efficiency requires the definition of an ideal compressor. According to Gosney (1982), an 
ideal compressor executes an isentropic compression, in which the gas entering the cylinder has the same 
thermodynamic state 1 of the suction line at the compressor inlet. Additionally, an ideal compressor neglects the 
presence of a clearance volume when the piston is at the top dead center. Therefore, the mass flow rate of this 
theoretical compressor is:

          n
c
swid fm 0

1 (5)

where 1 is the gas density at the compressor inlet, sw
c=0 is the total swept volume of the compression chamber and 

fn is the nominal operating frequency of the compressor. 

Figure 2. Pressure x Volume diagram. Figure 3. Control volume over the compression chamber.
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For a standard refrigeration system, the compressor delivers the same quantity of mass that passes through the 
evaporator during one cycle of compression, mevap, at the actual operating frequency fr. Consequently, the volumetric 
efficiency can be defined as (Pèrez-Segarra et al., 2005):

          sw

evap
c
sw

sw

n

r
v

m

f
f

1
0 (6)

The first term on the right side of Equation (6) represents the effect of electric motor slippage, which reduces the 
compressor nominal frequency of operation. The second term, the theoretical volumetric efficiency, considers the 
effect of the clearance volume, which reduces the compressor volume displacement because the remaining gas in the 
cylinder after the discharge process is re-expanded. The third term is defined as a secondary volumetric efficiency, 
which takes into account all other irreversible phenomena that occur inside the compression chamber. Pèrez-Segarra 
et al. (2005) divide the compression cycle into 4 stages (suction, compression, discharge and expansion) and define 
a volumetric efficiency for each one of them by means of the efficiency detachment procedure.

Due to large number of processes in each stage of the compression cycle, the present study follows a more detailed
approach, by distinguishing all physical phenomena taking place inside the compression chamber. The first step is to 
define the mass that flows through the evaporator during one compression cycle, mevap. Based on the control volume 
shown in Figure 4, mevap can be evaluated from:

          lkgr,sucsucr,lkglkgr,sucsucevap mmmmmmmm (7)

By substituting Eq. (7) into Eq. (6), it follows that:

Figure 4. Control volume outside the suction plenum.

The first term on the rightmost side of Eq. (8), v,f, is the volumetric efficiency associated with the operation 
frequency, as defined by Pèrez-Segarra (2005). The second term, v,m, is the volumetric efficiency related to losses
that occur during the suction process, ,, backflow, , , and leakage through the piston/cylinder gap, .
Thus, the expression for this volumetric efficiency can be rewritten in a different manner:
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According to the efficiency detachment procedure, an associated efficiency can be written by adding the losses due 
to sub-processes k. Hence, the associated efficiency for the suction process can be defined as:
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0
1

1 c
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During the gas path from the suction line to the compression chamber, different sources of irreversibility occur. The 
first one is due to gas superheating, which modifies its thermodynamic state from 1= (pevap,Tevap) to suc=
(pevap,Tsuc) due to heat transfer between the gas and warmer surfaces inside the compressor, such as the discharge 
plenum or the crankcase. Other irreversibilities are related to heat transfer that takes place when the gas enters the 
compression chamber and gets into contact with the walls of both the suction port and the cylinder. The gas 
thermodynamic state then changes from suc to G= (pG,TG), which is the instantaneous gas state in the compression 
chamber during the suction process. In order to quantify such effects, Eq. (10) is modified to read the following 
expression:
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The first term on the rightmost side of Eq. (11) is the volumetric efficiency associated with the suction superheating, 
sc

v,suc. The second term is defined as the efficiency due to the in-cylinder superheating, cc
v,suc, and can be rewritten 

according to:

          suc

*
suc

r

suc

suc

cc
suc,v

m1
(12)

r considers the swept volume between the position in which the suction valve opens and the position in 
which the piston reaches the bottom dead center (BDC), as shown in Figure 5a. The relation between the mass that 
actually enters the cylinder and the volume r provides an apparent gas density for the suction process, . This 
parameter conveniently represents the irreversibilities that occur when the gas enters the cylinder, due to the heat 
transfer between the gas and the cylinder walls, as well as the losses caused by the flow restriction in the suction 
valve.

The last term of Eq. (11) is the secondary volumetric efficiency v,v and represents the volume displaced by the
piston that is actually used to take in the gas. This effect can be better understood by observing the processes that 
occur during the expansion stage of the compression cycle. A suitable analysis of such irreversibility can be carried 
out by examining three generic expansion processes as shown in Figure 5b.

Figure 5. (a) p x V Diagram showing the total swept volume and the volume swept during suction.
                       (b) Three generic expansion processes.

Process S represents an isentropic expansion between pressures pdis and psuc. Initially, there is an amount of mass 
mTDC in the clearance volume TDC and the process ends when the pressure reaches psuc at s. A second process A is 
at the same initial thermodynamic condition, however, some mass leaves the compression chamber during the

(a) (b)



1348, Page 6

International Compressor Engineering Conference at Purdue, July 12-15, 2010

expansion and the final volume at which the pressure reaches psuc, A, is smaller than s. Finally, a third expansion 
can occur with heat being transferred to the gas, resulting in a final volume B that can be expressed as:

          BsB (13)

The actual expansion process in a compression chamber occurs in the presence of the aforementioned effects and, 
therefore, can be thought as a combination of multiple processes. Therefore, although an isentropic expansion of 

TDC would reach the specified pressure psuc at s, heat and mass transfer during the expansion will increase (+) or 
decrease (-) the value of the final volume, as shown in Tab. 1.

As indicated by Eq. (2), the energy transport equation for the gas inside the compression chamber can be written in 
terms of its instantaneous temperature, TG, which is affected by the aforementioned phenomena. Alternatively, the 
present formulation allows the analysis of each sub-process k (heat transfer, discharge backflow, etc.) in terms of its 
characteristic end thermodynamic state G

k= (vG
k,TG

k). Consequently, the energy and mass conservation equations 
can be used to represent the direct effect of each phenomenon in terms of a corresponding TG. The generalized 
balance equations for mass and energy are given by:
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The constants C1
k and C2

k are expressed according to Tab 1. Firstly, Eqs. (14) and (15) are solved to determine the 
values of specific volume and temperature for each phenomenon. Then, an equation of state is used to find the
corresponding pressure value. Once the pressure has reached the suction pressure, psuc, the final volume k for the 
sub-process k can be determined.

Table 1. Thermodynamic sub-processes present during the expansion process of the compression cycle.
Phenomenon Effect C1

k C2
k

Cylinder wall heat transfer (+) / (-) wQ 0

Direct Flow through discharge after TDC (-) 0 desm
Discharge valve backflow (+) 0 r,desm

Piston/Cylinder gap leakage (-) Gielkg hhm lkgm

It is now possible to define the swept volume during the suction process as follows:

          aks
c
swr

0 (16)

In Eq. (16), s k a represent, respectively, the swept volume connected to the isentropic expansion, the 
swept volume due to the k sub-processes and an additional volume due to delays in the valve opening. The latter 
term is a consequence of valve dynamics, which happens when the pressure difference between the suction chamber 
and the cylinder is not sufficient to open the valve, reducing the time available for the suction process.

By substituting Eq. (16) into the expression for v,v , one finds:
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The first source of volumetric loss represents the isentropic expansion of the gas left in the cylinder clearance 
volume. The second source is the sum of all irreversibilities that occur during the expansion process and, finally, the 
third source is related to a delay in the opening of the suction valve. From this example, it can be seen the present 
approach is very useful to discriminate the main sources of volumetric inefficiency, allowing a complete assessment 
of new compressor designs through parametric studies.

4. RESULTS

The method presented in this paper was applied to assess volumetric inefficiencies in a small reciprocating 
compressor. To this extent, an enhanced version of the simulation code developed by Ussyk (1984) was employed,
which mathematically describes each compressor component. The code accounts for piston displacement as a 
function of crankshaft angle, the thermodynamic process inside the cylinder, mass flow rate through valves, valve 
dynamics, gas pulsation inside mufflers and refrigerant thermodynamic properties. Several parameters are calculated 
during the compressor cycle, such as the instantaneous pressure in different regions inside the compressor, mass 
flow rate, energy and mass losses, refrigerating capacity, etc. Thermodynamic properties for the refrigerant were 
evaluated through a program link to REFPROP 7.0 (Lemmon et al., 2002). For the valve dynamics, a one-degree of 
freedom model was adopted. A steady-state, incompressible, fully developed flow was assumed for estimates of gas 
leakage through the piston/cylinder clearance (Lilie e Ferreira, 1984).

The R-600a compressor had a swept volume, sw, of 9.5 10-6 m3 and a clearance volume fraction, TDC/ sw,
equal to 7.5%. The operating condition was represented by the evaporating and condensing temperatures, which 
were equal to -25ºC and 55ºC, respectively. Subcooling and superheating were kept constant at 32ºC. Under the 
above listed conditions, the temperature in the suction chamber reached 72 ºC.

The relative importance of each parameter that affects the refrigeration capacity can be assessed by examining Table 
3. As can be seen, gas superheating and isentropic expansion are the two main aspects that reduce the refrigerating
capacity. The cylinder clearance volume is responsible for about 60.7% of the total loss, followed by gas 
superheating between the suction line and the suction chamber, which corresponds to 22.8%. The amount of 
superheating that occurs when the gas enters the compression chamber contributes to an extra loss of 8.3%. The 
irreversibilities inside the compression chamber bring about only 2.1% of loss.

Table 3. Refrigeration capacity losses (W).

Ideal Refrigeration Capacity 257.6
Superheating (suction line to suction chamber) evapsuc

c
sw hf1

0 -33.8

In-cylinder Superheating evapsucsuc
c
sw hf*0 -12.2

Backflow in the suction valve evaprsuc hm , -0.1

Leakage through the piston/cylinder gap evaplkg hm -4.0

Isentropic expansion of cylinder clearance volume evapsuc
c
sw

c
vv hfP *00

, -89.7

Backflow in the discharge valve evapsuc
c
sw

rdis
vv hfP *0,

, -4.6

Heat transfer at the cylinder walls evapsuc
c
sw

qw
vv hfP *0

, 0.0

Leakage through the piston/cylinder gap evapsuc
c
sw

lkg
vv hfP *0

, +1.4

Inertial Direct Discharge flow evapsuc
c
sw

dis
vv hfP *0

, 0.0

Opening delay of the suction valve evapsuc
c
sw

a
vv hfP *0

, -4.8

Actual Refrigeration Capacity 109.8
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5. CONCLUSIONS

The volumetric efficiency is an important parameter commonly adopted to quantify the performance of compressors. 
In this paper, the detachment approach presented by Pèrez-Segarra (2005) was extended to further divide the 
volumetric inefficiencies due to sub-processes taking place inside the compression chamber. The approach 
developed here is more appropriate for numerical simulation, since data like the apparent suction density, are very 
difficult to be experimentally assessed. For the small reciprocating compressor analyzed in this study, the cylinder 
clearance volume is the most important source of volumetric inefficiency, representing approximately 60% of the 
total reduction in the mass flow rate. On the other hand, irreversibilities during the expansion process are seen to be 
negligible.
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