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INTRODUCTION

The formulation of a science involves four distinct levels of develop-
ment. Initially the technically-curious observers start with the collection
and reduction of pertinent data about the phenomena of interest to them.
From a mathematical point-of-view this step is analogous to the discipline
of descriptive statistics. Research engineers desire to describe the cen-
tral tendency, variability, and shape of the field and laboratory data that
they are observing.

As the engineering scientists develop an intrinsic understanding of
this growing science, they conduct simple experiments by trial-and-error
methods. At this second stage of the development workable controls are
devised for the important components that comprise the scientific system
involved. Significant components are identified from the descriptive
data collected in the exploratory investigations.

Intelligible patterns or sensible explanations are detected from the
immense collection of information in the third phase of the development
of a science. The techniques of statistical inference, both estimation and
significance testing, are valuable aides for explaining the relationships
and interactions among the many variables of the complex system. In
addition, modern-day computers permit large quantities of observed data
to be analyzed and reduced into simple statistical models. These models
are the most important results produced at this level of scientific growth.
Today the major research efforts in traffic engineering are concerned
with the development of statistical models. With these models the traffic
engineer has a quasi-mathematical formulation of measured conditions,
and he can also make reasonable predictions of unmeasured conditions
through generalizations deduced for the entire population.

The final level in the evolution of a science concerns the development
of a workable theory or theories that accurately describe the scientific
system or its various components. These theories must adopt the essen-
tial features of thought and terminology which have characterized the
growth of this science. First, a particular problem must be resolved into
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a concept that appears reasonable in comparison with real-world experi-
ences. This conceptual analysis involves defining and delimiting the
nature and scope of the problem to be investigated. After the concept
has been fully described, its elements must be formulated into a mathe-
matical model; that is, expressions are developed to describe the con-
ceptual model in quantitative terms. This model must be verified by
actual field or laboratory experiments to determine if it behaves in a
way similar to the system being investigated. In general, a specific
science has many theories applicable to a reasonable explanation of its
growing and complex knowledge.

The purposes of this paper are to provide an introduction to the
theory of traffic flow, which is the final phase in the development of
the science of traffic engineering, and to illustrate several statistical
models that have been developed to describe various traffic-stream char-
acteristics.

TRAFFIC-FLOW THEORY

The subject of traffic-flow theory has been formulated only to a very
limited extent. This lack of application of theoretical considerations to
traffic movement is largely explained by the extreme complexity of
vehicular traffic and traffic problems, by the concentration of technical
efforts to upgrade quickly an inadequate highway transportation system,
and by the general absence of research and engineering personnel con-
cerned mainly with developing the theory of traffic flow. In fact, applied
mathematicians are primarily responsible for the traffic-flow theories
that have been developed.

Various theoretical concepts have been expressed as mathematical
models to describe the complex phenomenon of traffic flow. These
methods of quantitatively depicting traffic flow are classified under the
following general approaches: statistical models, probabilistic models,
continuous-flow analogies, car-following concept, queuing theory, traffic-
network studies, mathematical experiments, and intersection situations.
Although computing-machine simulation provides a valuable technique
for studying uninterrupted and interrupted traffic flows, simulation is
not a theory of traffic flow. Rather, complex traffic situations can be
analyzed and synthesized by the tool of simulation.

The motion of vehicular traffic is not only governed externally by the
physical laws of nature, but it is further complicated internally by driver
behavior. Thus, theories of traffic flow must evolve from the combined
application of the knowledge afforded by both human-behavioral and
physical sciences to the man-machine system of highway transportation.
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Because the a priori knowledge of the theory of traffic flow is rather
limited, considerable understanding of traffic-stream characteristics can
be gained through the study of statistical models.

FUNDAMENTAL CONSIDERATIONS

The theory of traffic flow is concerned with the four-dimensional
movement of discrete, man-machine objects over a roadway network.
The dimensions include transverse and longitudinal positions, elevation,
and real time. The following general statements about the development
of traffic-flow theory can be summarized from the theoretical and applied
research that has been performed:

1 No single, general theory will ever be devised to describe the
complete system of traffic movement. Theories are being formu-
lated to represent specific traffic situations. At the most, com-
puter simulation permits the synthesis of several elementary
situations.

2. The discipline of traffic-flow theory is concerned only with the
mathematical representation of stream and intersection char-
acteristics. Land-use generation, growth, and assignment models
are generally not included as theories of traffic flow, although the
traffic estimates derived from these planning models are essential
for determining the vehicular volumes on the various sections of
the highway network.

3. Complete descriptions of traffic flow must be statistical to account
for the variations within and among the various drivers and
vehicles which comprise the discrete objects moving in the traffic
stream or through an intersection. However, various components
of the traffic-flow model do not need to be statistical in nature.

4. Theories of traffic flow must be limited to descriptions of central-
tendency measures of traffic-stream characteristics. It would be
extremely difficult to evaluate mathematical models for the move-
ment patterns of individual vehicles because of the random and
complex variations exhibited within individual drivers. At best,
traffic-flow models could be developed to account reasonably well
for the variability among drivers and vehicles.

Several fundamental properties are essential for the accurate repre-
sentation of traffic movement. The following three characteristics have
been cited by F. A. Haight as separating traffic flow from any other type
of flow problems:

1. Finiteness—the discrete objects in the highway-transportation
system are finite in length and travel at finite velocities which
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vary from vehicle to vehicle and with time. In addition, the
various sections of the roadway system are finite in length. In-
dividual vehicles may overtake and pass other vehicles, but speeds
are generally reduced as vehicular volumes increase. These two
features are in counterdistinction to the situation of fluid flow,
where molecules move in a fixed relation with each other and
velocity is increased by a constraint.

2. Ambiguity— the control of the discrete objects is a function of
the individual drivers and of the traffic system. That is, drivers
can be controlled to a limited extent by traffic regulations and
control devices, but they cannot be scheduled in regard to time or
place. This characteristic insures that equilibrium exists in the
system.

3. Time-space— the positions of vehicles are not identical in time
and in space. This feature results from vehicles traveling on the
same highway section at different speeds, in different lanes,
and/or in different directions.

The continuity of traffic movement is represented by the expression
that volume in vehicles per time is equal to the product of speed in

Fig. 1.
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distance per time and density in vehicles per distance. This relationship
is characteristic of a particular highway section with a certain popula-
tion of drivers and vehicles under a given environment at a specific time.
The maximum traffic volume possible is denoted as the capacity of that
roadway location.

The fundamental relationships of speed and volume, speed and
density, and volume and density are presented graphically in Figs. 1 to
3, respectively. The limits of these diagrams represent no flow due to
the absence of any vehicles on the roadway and no flow due to the
presence of a traffic jam. Highway and traffic engineering research has
not completely determined these fundamental diagrams of traffic flow
for the many possible combinations of driver, vehicle, roadway, traffic,
and environmental variables that significantly influence the fundamental
relationships. Therefore, the general shapes of these relationships are

Fig. 2

indicated by the dashed curves in the three diagrams. Research studies
are urgently needed in this area of traffic-stream and intersection
characteristics.

These fundamental diagrams are unique to the system of vehicular
movement. Any satisfactory and realistic theory of traffic flow must be
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compatible with these volume-speed-density relationships. In fact, these
fundamental relations furnish the logical starting point for the develop-
ment of theories of traffic flow.

Fig. 3.

STATISTICAL MODELS

In the development of a science statistical models provide the transi-
tion from the explanation of collected data to the formulation of
theories. Traffic flow is essentially a stochastic or random process.
Therefore, various characteristics of traffic flow can be described by the
techniques of probability and statistics.

After a statistical theory has been formulated about some traffic-
stream characteristic, it must be evaluated and tested by observing
samples of actual traffic flow. This process is analogous to statistical
inference; that is, statistical models for the population are inferred from
random and representative samples taken from this population. Sta-
tistical theories of traffic flow can be considered as estimation and
hypothesis-testing models.

Because there are many topics in parametric and non-parametric
statistical inference, it is possible to develop a wide variety of statistical
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models in the realm of traffic flow. The evolution of these models is
limited only by the imagination and ingenuity of highway and traffic
engineers. Several examples of estimation and significance-testing models
are presented to illustrate statistical theories of traffic-stream character-
istics.

Statistical Estimation

Point or interval estimates are often desired in the evaluation of a
traffic-flow parameter. In addition, statistical estimation involves the
determination of a functional relationship between a dependent variable
and one or more independent variables. This relationship may be linear
or curvilinear, depending on the a priori knowledge of the subject under
investigation. Thus, it is possible to predict with varying degrees of
precision the value of the dependent variable when the independent
variables are known or assumed.
Example No. 1— Mean Spot Speed

The following multiple linear regression equation was derived from
the multivariate analysis of actual traffic flow on two-lane, rural high-
ways:

The coefficient of multiple correlation was 0.788 for this investigation
and was significant at the 5-percent level. The precision of this multiple
estimate was measured by a standard error of estimate equal to 4.47 mph.

To illustrate an application of this statistical model, it is assumed
that an advisory speed limit is to be posted on a particular horizontal
curve. The values of the eight independent variables for this highway
location are, respectively, 20 percent, 10 percent, 4 deg, + 2 percent,
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600 ft, 12 ft, 1 per mile, and 400 vph. Solution of the multiple regres-
sion equation for these roadway and traffic conditions produces a mean
spot speed of 42 mph. If one standard deviation of about 7 mph is
added to the mean speed to approximate the 85th-percentile speed, then
an advisory speed of 49 mph would be calculated from this analysis.
Thus, the advisory speed limit on this curve would be posted as 50 mph.
Example No. 2— Accident Rate

A research study in a large metropolitan area generated the follow-
ing curvilinear regression expression for the estimation of traffic accident
rates:

If the average travel time on a certain arterial street was 2.0 min.
per mile during the peak-hour periods, the expected accident rate would
be 7.2 traffic accidents per one million vehicle-miles of travel.

Example No. 3— Intersection Capacity
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X 5= 1In of percent of commercial vehicles per hour per num-
ber of approach lanes,

X 6= In of coded location of intersection area,

central business

fringe business
outlying business
intermediate residential
outlying residential
rural area

X 7= In of left turns from opposite leg per hour,

X 8= coded adequacy of street markings,

00—
1—

2—

no markings or only crosswalk
center line with or without crosswalk
lane lines with or without other markings

X 9 = percent of through green time,

X 10= percent left-turn time per percent left turns,

X 11= coded parking restriction on approach,

0—

1—

parking restriction not in effect or for less than

100 ft from crosswalk

parking restriction in effect for at least 100 ft

from crosswalk

X 12 = In of coded difference between approach width and exit
width,
1— exit narrower than approach by 10 ft or more
2— exit narrower than approach by less than 10 ft
3— exit equal to approach
4—  exit wider than approach by less than 10 ft
5— exit wider than approach by 10 ft or more
X 13 = squared code of signal-cycle length, and
1— 35 to 44 sec
2— 45 to 59 sec
3— 60 to 74 sec
4— 75 to 89 sec
5— 90 to 104 sec
6— 105 to 119 sec
7— 120 to 134 sec

135 sec or more

X 14 = percent right-turn time per percent right turns.

The complexity of the solution of this equation can be reduced with the

aid of nomographs.
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Hypothesis Testing

Statistical models of the hypothesis- or significance-testing type are
especially useful in appraising the importance of observed statistics.
These statistical tests are valuable techniques for the evaluation of
before-and-after studies designed to measure the effectiveness of a traffic-
engineering improvement.

In significance testing the hypothesis and alternate are first formu-
lated. The appropriate level of significance and test statistic are then
selected, and the sampling distribution of the statistic is determined.
After a rejection region is chosen within the sampling distribution, the
decision of accepting or rejecting the null hypothesis can be made.
Example No. 4— Travel Time

A parametric statistical test for evaluating the significance of the
difference between two sample means is provided by Student's “t” test.
The test statistic is obtained from the following formula:

This significance test is predicted on the assumption that the samples are
drawn from normal populations. However, the condition of homo-
geneity of variance does not have to be assumed.

A before-and-after study was performed to measure the effectiveness
of a progressive signal system in reducing travel time. Mean travel
times of 10.06 and 8.31 min. and variances of 3.07 and 1.03 (min.)2
were calculated for the before and after conditions, respectively. The
sample size in each case was nine test runs. The computed t statistic of
2.59 is larger than the critical value of 1.75 for a 5-percent significance
level and a one-tailed test. Thus, it was concluded that the progressive
signal system produced a significant reduction in travel times.

Example No. 5— Speed Characteristics

Non-parametric statistics are also useful in the testing of statistical
hypotheses. The sign test is a quick and easy method for comparing two
selected statistics under various sets of conditions. This statistical test
requires that there are pairs of observations on the two things being
compared, the two observations of a given pair were made under similar
conditions, and the different pairs were observed under different condi-
tions. The formula presented below is valid for large samples of 30 or
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more observations, and the “z” statistic has a normal sampling distri-
bution :

z= (X —0.5N%0.5)/0.5VN

where z = *“z” statistic,

X = number of plus signs, and
N = sample size.

Note: use -f- 0.5 when X<0.5 N and — 0.5 when X>0.5 N.

In applying the sign test the direction of the differences between the
paired observations is noted; that is, whether the sign of the difference is
plus or minus. The sampled populations in this test may have any shape
and any variability.

To illustrate the use of the sign test as a statistical model in evalu-
ating traffic-stream behavior, it is desired to determine the influence of
out-of-state passenger cars on spot-speed characteristics for two-lane
highways in rural areas. The hypothesis to be tested is that the mean
speeds of out-of-state passenger cars are equal to those of in-state
passenger cars. The mean spot speeds of these two vehicle classifications
were determined at 53 study sites. The out-of-state cars had higher
mean speeds than the in-state cars at 41 locations, while the reverse was
evident at only 12 speed sites. The calculated z value of 3.85 is greater
than the critical measure of 1.96 for a level of significance of 5 percent
and a two-tailed test. Thus, the null hypothesis was rejected, and it
was concluded that the speeds of in-state and out-of-state passenger cars
represent different populations. Any comparisons of speed statistics
among several locations on two-lane, rural highways must consider the
influence of out-of-state passenger cars on spot-speed characteristics.
Example No. s—Accident Control Charts

Quality control charts have application in appraising the safety of
traffic flow. A highway section is considered to be in statistical control
if all the observed variations in traffic accidents are only from chance
causes. Control charts provide a graphical representation of accident
patterns and indicate the extent of variation in accidents due to random
and assignable causes.

Although a control chart based on the binomial distribution is prob-
ably most applicable to the study of traffic accidents, the very small
values of accident rates permit the use of control charts for a Poisson
distribution. The values necessary for the construction of an accident
control chart can be obtained from the following expressions:

£= ¢
UCL = c-f3Vec
LCL= c—3Vc
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The mean number of accidents per year is usually taken as the long-term
annual average of traffic accidents on a highway section. However, the
centerline of the control chart could be evaluated by a reasonable acci-
dent value for the classification of highway being studied. When the
annual number of accidents exceeds the upper control limit, it is quite
possible that the highway section may be out-of-control. This discrep-
ancy indicates the need for an engineering investigation to ascertain if
some assignable cause in the design or operation of the highway is respon-
sible for the high number of traffic accidents.

A certain one-mile section of highway has an ADT of 5000 vehicles
per day and a long term accident rate of 3 accidents per one million
vehicle-miles of travel. A total of 10 accidents occurred on this roadway
last year. The centerline, upper control limit, and lower control limit
are, respectively, 5.5, 12.4, and 0.0 accidents per year. Therefore, the
safety of this highway section was considered to be in-control.



