PG-PuReMD: A Parallel-GPU Reactive Molecular Dynamics Package

Sudhir B Kylasa
Elec. and Comp. Engg. Dept
Purdue University
West Lafayette, Indiana 47907
skylasa@purdue.edu

Abstract—We present a parallel/GPU implementation of our
open-source reactive molecular dynamics code, PG-PuReMD
(Parallel GPU-Purdue Reactive Molecular Dynamics). Using
a variety of innovative algorithms and optimizations, PG-
PuReMD achieves over 350x speedup compared to a single CPU
implementation on a cluster of 36 state of the art GPUs. This is
a significant development, since it enables simulations of over
0.5M atoms in under 0.5 seconds per time-step of simulation
time. We report on various design choices and implementation
details of PG-PuReMD in this paper. PuReMD, on which this
code is based, along with its integration into LAMMPS, is
currently used by over 100 research groups worldwide and is
an important community resource. PG-PuReMD is currently
being independently validated at a small number of institutions
and is in limited release.

Keywords-Reactive Molecular Dynamics; Parallel GPU Im-
plementations; Material Simulations;

I. INTRODUCTION

There has been significant effort aimed at atomistic mod-
eling of diverse systems — ranging from materials pro-
cesses to biophysical phenomena. Parallel formulations of
these methods have been shown to be among the most
scalable applications. Classical molecular dynamics (MD)
techniques typically rely on static bonds and fixed partial
charges associated with atoms. These constraints limit their
applicability to non-reactive systems. ReaxFF, which is an
effort aimed at addressing this limitation, is a novel reactive
force field developed by van Duin et al. [1]. ReaxFF bridges
quantum-scale and classical MD approaches by explicitly
modeling bond activity (reactions) and charge equilibration.
The flexibility and transferability of the force field allows
ReaxFF to be easily extended to systems of interest. ReaxFF
has been successfully applied to diverse systems [1]-[4].

Our prior work in the area led to the development of
the PuReMD (Purdue Reactive Molecular Dynamics) code,
along with a comprehensive evaluation of its performance.
PuReMD incorporates several algorithmic and numerical
innovations to address significant computational challenges
posed by ReaxFF. It achieves excellent per time-step ex-
ecution times, enabling nanosecond-scale simulations of
large reactive systems. Using fully dynamic interaction lists
that adapt to the specific needs of simulations, PuReMD
achieves low memory footprint. Our tests demonstrate that

Hasan Metin Aktulga
Lawrence Berkeley National Laboratory
1 Cyclotron Rd, MS 50F-1650
Berkeley, CA 94720
hmaktulga@lbl.gov

Ananth Grama
Computer Science Dept
Purdue University
West Lafayette, Indiana 47907
ayg@cs.purdue.edu

PuReMD is up-to five- to six-times faster than competing
implementations, while using significantly lower memory.
PuReMD has also been integrated with the LAMMPS
(LAMMPS/User-ReaxC) software package for atomistic
simulations. PuReMD and its LAMMPS version has been
used by several research groups around the world on diverse
systems, ranging from strain relaxation in Si—Ge nanobars
[5] and water-silica systems [6] to explosives (RDX) and
biomembranes (lipid bilayers). PuReMD has a large number
of downloads and an active developer community.

Two important challenges in molecular simulation are the
large number of time-steps required and the size of the
systems that can be simulated. Time-steps in ReaxFF are of
the order of tenths of femtoseconds, but several important
physical analyses require simulation data spanning nanosec-
onds (millions of time-steps) and beyond. GPU clusters
provide significant processing power in small, affordable
hardware systems. These considerations provide compelling
motivations for parallel/GPU acceleration of PuReMD. A
production code with good scalability properties presents
tremendous scientific opportunities for a large community.

The highly dynamic nature of interactions and the mem-
ory footprint, the diversity of kernels underlying non-bonded
and bonded interactions, the complexity of functions de-
scribing the interactions, the charge equilibration procedure,
which requires the solution of a large system of linear
equations, and high numerical accuracy requirements pose
significant challenges for parallel-GPU implementations of
ReaxFF. Effective use of shared memory to avoid frequent
global memory accesses and configurable cache to exploit
spatial locality during scattered memory operations are es-
sential to the performance of various kernels on individual
GPUs. These kernels are also optimized to utilize GPUs’
capability to spawn thousands of threads, and coalesced
memory operations are used to enhance performance of
specific kernels. The high cost of double precision arithmetic
on conventional GPUs must be effectively amortized/masked
through these optimizations. These requirements are traded-
off with increased memory footprint to further enhance
performance. The significant increase in performance from
use of GPUs puts tremendous pressure on parallel-GPU
implementations, since faster computations without com-

mensurate reductions in communication costs result in lower
efficiencies. We address these challenges through a sequence
of design trade-offs of communication and redundant stor-
age, along with alternate algorithmic choices for key kernels.

In this paper, we present in detail, the design and im-
plementation of all phases of PG-PuReMD (Parallel GPU
PuReMD). Comprehensive experiments on a state-of-the-art
GPU cluster are presented to quantify accuracy as well as
performance of PG-PuReMD. Our experiments show over
350x improvement in runtime on a cluster of 36 GPU-
equipped nodes, compared to a highly optimized CPU-only
PuReMD implementation on model systems (water). These
speedups have tremendous scientific impact for diverse sim-
ulations. PG-PuReMD is the first production code of its kind.
It is currently being validated, and in limited release.

The rest of the paper is organized as follows: Section II
discusses the related work on parallel ReaxFF. Section III
gives an overview of reactive potentials for atomistic simu-
lations. In Section IV, we discuss critical design choices
for parallelization of ReaxFF and discuss in detail the
implementation of each phase on a GPU. We also outline nu-
merical techniques used to achieve low computational times
per simulation time-step. We comprehensively evaluate the
performance of PG-PuReMD in Section V.

II. RELATED EFFORTS

The first-generation ReaxFF implementation of van Duin
et al. [1] strongly established the utility of the force field
in the context of various applications. This serial implemen-
tation was integrated into the parallel molecular dynamics
(MD) package LAMMPS [7] by Thompson et al. [8]. Except
for the charge equilibration part, this integration of ReaxFF
into LAMMPS was based on the original Fortran code of van
Duin [1]. In [9], [10], we describe PuReMD, which features
novel algorithms and numerical techniques to achieve high
runtime performance, and a dynamic memory management
scheme to minimize memory footprint. PuReMD exhibits
excellent scalability, and has been shown to achieve up to
5x speedup over the parallel ReaxFF code in LAMMPS on
identical machine configurations of hundreds of processors
and beyond.

Zheng et al. recently reported a single GPU implementa-
tion of ReaxFF, called GMD-Reax [11]. This is the closest
effort in literature to the PG-PuReMD code presented in
this paper. GMD-Reax is reported to be up to 6 times
faster than the User-Reax/C package in LAMMPS. This
speedup of GMD-Reax is in large part due to their use
of single-precision arithmetic in the costly charge equi-
libration computations. Our experiments suggest that in
real applications single precision arithmetic does not yield
acceptable accuracy (gross energy drifts are observed at
picosecond scales and beyond). Although direct comparisons
are not possible (GMD-Reax is not available over the public
domain, currently), our results indicate our PG-PuReMD is

over 2X faster than GMD-Reax on a single GPU, in spite
of its use of full double precision arithmetic. Further, in
this paper, we show excellent scalability of PG-PuReMD to
multiple GPUs.

III. REACTIVE POTENTIALS FOR ATOMISTIC
SIMULATIONS

ReaxFF is a classical MD method in the sense that atomic
nuclei, together with their electrons, are modeled as basis
points. Interactions among atoms are modeled through suit-
able parameterizations and atoms obey the laws of classical
mechanics. Accurately modeling chemical reactions, while
avoiding discontinuities on the potential energy surface,
however, requires more complex mathematical formulations
than those in classical MD methods (bond, valence angle,
dihedral, van der Waals potentials). In a reactive environment
in which atoms often do not achieve their optimal coordina-
tion numbers, ReaxFF requires additional modeling abstrac-
tions such as lone pair, over/under-coordination, and three-
body and four-body conjugation potentials, which increase
its computational complexity. This increased computational
cost of bonded interactions (reconstructing all bonds, three-
body, and four-body structures at each time-step) approaches
the cost of nonbonded interactions for ReaxFF. In contrast,
for typical MD codes, the time spent on bonded interactions
is significantly lower than that spent on nonbonded interac-
tions [12].

An important part of ReaxFF is the charge equilibration
procedure. This procedure recomputes partial charges on
atoms to minimize the electrostatic energy of the system.
Charge equilibration is mathematically formulated as the
solution of a large linear system of equations, where the
matrix is a symmetric sparse matrix with dimension equal
to the number of atoms. Note that the number of atoms in
a simulation may range from thousands to millions. Due
to the dynamic nature (unlike classical MD, bonds are not
static in ReaxFF) of the system, a different (perturbed) set of
equations needs to be solved at each time-step. An accurate
solution of the charge equilibration problem is necessary, as
the partial charges on atoms significantly impact forces and
the total energy of the system. Suitably accelerated Krylov
subspace methods are used for this purpose. Since the time-
step for ReaxFF is typically an order of magnitude smaller
than conventional MD (tenth of femtoseconds as opposed
to femtoseconds), scaling the solve associated with charge
equilibration is a primary design consideration for paral-
lel/GPU formulations. Note that partial charges on atoms are
fixed in typical classical MD formulations; therefore this is
not a consideration for conventional methods.

In the interest of space, we refer readers to [1] for a
detailed discussion on mathematical formulation of ReaxFF.
In the remainder of this paper, we focus on the algorithmic
issues regarding an efficient and scalable parallel GPU
implementation of ReaxFF.

IV. PARALLEL GPU IMPLEMENTATION

We describe our parallel-GPU implementation in two
steps — we first describe the parallelization strategy using
MPI. We then describe how each MPI process is executed
on a GPU. An important aspect of ReaxFF that significantly
impacts design choices for a parallel GPU implementation
is that it uses shielded electrostatics, modeled by range-
limited pairwise interactions with Taper corrections. This
obviates the need for computation of long-range electrostatic
interactions.

A. Problem Decomposition and Interprocess Communica-
tion

There are two important aspects of our parallel-GPU
implementation — problem decomposition and inter-process
synchronization/communication. PG-PuReMD adopts a 3D
domain decomposition technique with wrap-around links
(a torus) for periodic boundary conditions. This domain
decomposition also induces a partition of the degrees of
freedom for parallel charge equilibration. We refer to the
domain of simulation specified in the input files as the
simulation box, and the part assigned to a process as the sub-
domain of that process. Decomposition techniques for MD
have been extensively studied. We discuss decomposition
techniques for ReaxFF in parallel environments in [10]. In
this section, we focus primarily on decomposition techniques
as they relate to our parallel-GPU implementation.

1) Interactions Spanning Multiple Processes: We first
describe our handling of interactions that span multiple
processes. We specifically focus on bond-order potentials,
and associated dynamic bonded interactions in ReaxFF.
Carefully analyzing different ways of handling bonded inter-
actions in ReaxFF that span multiple processes, we outline
the scheme used in PG-PuReMD below:

« Bond(i,j): The process that owns the atom with the
smaller index (indices are unique and are determined
by a field in the input file) handles the bond.

o LonePair(i): This is a single body potential and the
owner of atom ¢ computes the energy and forces
resulting from the unpaired electrons of atom <.

o OverUnder-coordination(i): These are multi-body in-
teractions directly involving all bonded neighbors of
atom %, computed by the owner of i.

o Valence Angle(i,j,k): This includes the valence angle,
penalty, and three-body conjugation potentials, all of
which are computed by the owner of middle atom j.

o Dihedral Angle(i,j,k,1): This includes the torsion and
four-body conjugation potentials, both of which are
handled by the owner of middle atom with the smaller
index. Middle atoms here are j and k.

+ Hydrogen Bond(x,H,z): The presence of a dynamic
bond between atoms x and H implies that the owner
of H atom computes this hydrogen bond interaction.

« Nonbonded(i,j): As in the bonded case, the owner of
the atom with the smaller index computes the van der
Waals and Coulomb interactions between atoms ¢ and
7.

Establishing this coordination mechanism enables us to
avoid double (or multiple) computation of interactions strad-
dling process boundaries. The ratio of such interactions to
those entirely within process sub-domains can be significant,
especially as sub-domain volumes decrease. The potential
drawback of this approach is the reciprocal communication
of forces required at the end of each time-step when pro-
cesses need to compute the total forces on their assigned
atoms. We adopt this approach in PG-PuReMD because
force computations in ReaxFF are relatively expensive,
compared to associated additional communication.

While we avoid double computations for expensive
potential terms, we perform redundant computations in
order to avoid the reverse communication during the
matrix-vector multiplications associated with the charge-
equilibration solve. This strategy results in slightly worse
performance on small numbers of cores due to redundant
computations; however, it delivers better performance by
eliminating a costly communication step, as we scale to
larger number of cores.

2) Selection of the Outer-Shell Method: The range-
limited nature of force fields, associated symmetries, and
relative speed of computation and communication in a par-
allel platform determine the choice of full-shell, half-shell,
midpoint-shell, or neutral territory (zonal) methods [13]. PG-
PuReMD uses the full-shell method as the domain of each
MPI process for reasons discussed below.

To motivate our choice, we illustrate in Fig. 1, position
information of atoms at neighboring process (P2) required
by a process (P1) to compute all ReaxFF interactions that it
is responsible for, based on the conventions we have adopted
in Section IV-Al. Taking the maximum span among all
interactions, we determine the outer-shell width 745, as:

T'shell = ma:c(3 X Tbond; "hbond Tnonb) (1)

A careful inspection of Fig. 1 reveals that the nature of
bonded interactions in ReaxFF does not allow the use
of half-shell boundaries or zonal methods. Due to the
over/under-coordination and valence angle interactions, even
when the midpoint boundary method is used, 7spe;; does not
shrink at all. Consequently, we use the full-shell scheme in
spite of its higher communication cost.

3) Inter-process communication: With the choice of 3D
domain decomposition and full-shell as the outer-shells
of processors, inter-process communication can either be
performed using direct messaging or a staged messaging
scheme. In direct messaging, each process prepares a sep-
arate message for each of its neighbors containing the
required data and sends these messages using point-to-point
communications. In the staged messaging scheme, every

@
P1 P2
bond(i,) & O 2.
o ©
/
lone-pair(i) @ e ~0 =2 Mpond_cut
—0
o
/
over/under-coord(i) o @ O/D =3 Toond_cut
o—©
—0®—o
valence angle(i,j,k) @ =3 pond_cut
\. ww.’///o
_0
. . @
dihedral angle(i,j,k,1) .\\ / /. =3 Myond_cut
& y
@ oo
hbond(xhz) @ @ @ =ryong cun
nonbonded(i,j) @} eeenees @ ~ onbcut

Figure 1. Handling of each interaction in ReaxFF when it spans multiple
processes. Blue colored circles represent atoms that directly participate
in the interaction. Gray colored circles represent atoms that directly or
indirectly affect the interaction’s potential and therefore experience some
force due to it. We show only such atoms in the neighboring process for
clarity. Lighter tones imply weaker interaction. Next to each interaction,
we note its maximum span in terms of the cut-off distances in ReaxFF.

process sends/receives messages along a single dimension
at each stage. In a three-stage communication scheme,
for example, each process sends/receives atoms in -X, +x
dimensions first, then in -y, +y dimensions and finally in
-z, +z dimensions; at each stage augmenting its subsequent
messages with the data it receives in previous stages. Our ex-
periments show that staged communication scheme is most
efficient as the number of processors increases. Therefore
we use this scheme in our PG-PuReMD implementation.

B. CUDA Overview

GPU architectures typically comprise of a set of multipro-
cessor units called streaming multiprocessors (SMs), each
one containing a set of processor cores (called streaming
processors (SPs)). Computational elements of algorithms
are called kernels. Kernels can be written in different
programming languages. Once compiled, kernels consist of
threads that execute the same instructions simultaneously
— the Single Instruction Multiple Thread (SIMT) execution
model. Multiple threads are grouped into thread blocks.
All threads in a thread block are scheduled to run on a
single SM. Threads within a block can cooperate using
shared memory. Thread blocks are divided into warps of 32
threads. A warp is a fundamental unit of dispatch within a
block. Thread blocks are grouped into grids, each of which
executes a unique kernel. Thread blocks and threads have

identifiers (IDs) that specify their relationship to the kernel.
These IDs are used within each thread as indices to their
respective input and output data, shared memory locations,
etc.. Control instructions can significantly impact instruction
throughput by causing threads of the same warp to diverge;
that is, to follow different execution paths. If this happens,
different execution paths must be serialized, increasing the
total number of instructions executed for this warp. When
all execution paths have completed, threads converge back
to the same execution path.For a more detailed discussion
on GPU architectures, we refer readers to [14].

C. GPU Implementation

Once the input simulation box is decomposed into sub-
domains, individual GPUs process each of these sub-
domains. The major computational elements for each
GPUs are: neighbor list generation, initialization, computing
bonded and non-bonded interactions, and communication.
Each GPU starts by identifying its own sub-domain and
its outer-shell and iterates over the major computational
elements for the specified number of time-steps.

1) Computing Neighbor Lists: A significant fraction of
the computation associated with an atom in ReaxFF involves
other atoms within a prescribed distance from the source
atom. To facilitate these computations, we construct a list
of neighbors for each atom. These neighbor lists are gen-
erated by embedding a 3D grid within each process’ sub-
domain. Partitions induced by this 3D grid are called cells
or grid cells. Using the binning method, we can realize O(k)
neighbor generation complexity for each atom, where k is
the average number of neighbors of any atom, by simply
examining neighbor cells for identifying neighboring atoms.
A typical atom may have several hundreds of atoms in its
neighbor list.

During initialization, PG-PuReMD constructs neighbor-
lists for each atom in its own sub-domain. Other data struc-
tures are built from the neighbor list, since the neighborhood
cutoff, r,p. is larger than that for other interactions.

In neighbor generation, the processing of each atom
may be performed by one or more threads. The case of a
single thread per atom is relatively straight-forward. Each
thread runs through all the neighboring cells of the given
atom and identifies neighbor atoms. These neighbors are
inserted into the neighbor list of the atom. Since shared data
structures (cells and their atoms) are only read, and there
are no concurrent writes, no synchronization is required.
The case of multiple threads per atom, on the other hand
requires suitable partitioning of the computation as well
as synchronization for writes into the neighbor list. This
process is illustrated in Figure 2 for the case four threads
per atom. Each thread takes as argument the atom-id for
which they compute neighbors. This atom-id is used by all
threads to concurrently identify neighbor cells. Each of these
neighbor cells is processed by the threads in a lock-step

25|26 27,
— (T 122123 24,
A8 AT 8
— 77 DR 192021,
; | ; A3 A5
ST A9
1] AC-A A2
A5 e
] T T
1231

(a) Input system divided into subdomains, cell 14 and its neighboring cells

Atom lists for cell 14 and each of its
neighboring cells

—/7 Avgo | Atar | Az

— A4~ Ao | At | Az

Sl 2]3] |27}J

List of neighboring cells of cell 14

(b) Data structures for cells, atoms-list and neighbor-list of each atom

Testing for neighborhood cutoff
distance from atom A,
(1 indicates a neighbor,

Ablock of 4 threads
processing 4 atoms

0 indicates not a neighbor)
Atoms list of Ao
neighboring cell 1 — 4 0 1 1
At
A Compute prefix
1.2 sum for the above
array
ALa
An atom from
cell 14
1 1 2 3
A
! generated

Pointer to neighbor
list for A\

ext set of atoms

Start
index

(c) Block of 4 threads processing a atoms-list of neighboring cell to build
the neighbor-list of an atom from cell 14

Figure 2. Neighbor-list generation in PuReMD-GPU

fashion. In the illustrated case of four threads, every fourth
atom in a neighbor cell is tested by the same thread.

2) Computing Bond List, Hydrogen-bond List and QEq
Matrix: PG-PuReMD maintains redundant representations
for bonds and the QEq matrix. For bonds (including hy-
drogen bonds), information is maintained at both atoms on
either end of the bond. For the QEq matrix, both upper and
lower triangular parts of the symmetric matrix are stored. To
generate these lists, we iterate over the neighbor-list of each
atom in its outer shell and generate bond-lists, hydrogen-
bond list, and QEq matrix entries for both atoms. The
concurrency in constructing bond lists, hydrogen-bond lists
and the QEq matrix can be viewed along two dimensions:
(i) the three tasks (bond lists, hydrogen-bond lists and
one QEq entry) associated with each atom pair can be
performed independently; (ii) the processing of each atom
pair (the source atom and the atom in the neighbor list)
can be performed independently. Indeed, combinations of
these two elements of concurrency can also be used. The
base implementation of the first form creates three kernels
for each atom — one for bond list, one for hydrogen bond
list, and one for QEq. However, this implementation does
not yield good performance because the neighbor list is
traversed multiple times, leading to poor cache performance.
For this reason, we roll all three kernels into a single kernel
(i.e., a single function that handles all three lists). With
this kernel, one may still partition the neighbor list, as in
our implementation of neighbor list construction. However,
there are several key differences here — the quantum of
computation associated with an atom pair is larger here
since the combined kernel is more sophisticated. On the
other hand, the number of atom pairs is smaller, since the
neighbor list is smaller than the potential list of neighbors in
cells examined in the previous case. Finally, there are subtle
differences in synchronizations. For instance the number of
synchronized insertions into the lists is much smaller (the
number of bonds is relatively small). For these reasons, PG-
PuReMD relies on a single kernel for each atom and all
processing associated with an atom (i.e., traversal through
the entire neighbor list and insertions) is handled by a single
thread.

3) Implementation of Bonded Interactions: Bonded in-
teractions in ReaxFF consist of bond, over/under-coord,
lone-pair, valence-angles, dihedral-angles and hydrogen-
bond interactions. All these interactions, except hydrogen-
bond, iterate over the bond-list of each atom to compute the
effective force and energy due to respective interactions. In
addition to iterating over the bond-list, the valence-angles in-
teractions kernel generates the three-body-list, which is used
by the dihedral-angles interactions kernel during its execu-
tion. Hydrogen-bond interaction iterates over the hydrogen-
bond list to compute effective force and energy (Fx_pond)s
if hydrogen bonds are present in the input system.

The number of entries in the bond-list for each atom is

small compared to the number of entries in the neighbor-
list and hydrogen-bond-list. Allocating multiple threads per
atom (to iterate over the bond-list of each atom) would
result in a very few coalesced memory operations. This
would imply creation of a large number of thread blocks,
where each thread-block performs the computations of only
a few atoms (even though the occupancy is high, because
of the large number of blocks created, they must wait,
since CUDA limits the total number of active blocks to
eight). This impacts the performance of the kernel. For this
reason, we use a single thread per atom for bond-order,
over/under-coord, lone-pair, valence-angles, and dihedral-
angles kernels.

The valence-angles interaction kernel is complex, with
several branch instructions (thread-divergence) and uses a
large number of registers. The available set of hardware
registers is shared by the entire streaming multiprocessor in
the GPU. Consequently, if a kernel uses a large number of
registers, the number of active warps (groups of schedulable
threads in a block) is limited. Our experiments with this
kernel showed that in typical cases, we could only achieve an
effective occupancy (ratio of active to maximum schedulable
warps) of 25.3% out of the maximum possible occupancy
33%. The limiting factor for the performance of this kernel
is the number of registers used per thread (64 registers/
thread). Allocating multiple threads per atom increases the
total number of blocks for this kernel, and, as a consequence,
decreases the kernel’s performance as the system size in-
creases.

For valence-angles interactions, each thread iterates over
bond-list and each bond in-turn iterates over the entire
bond-list to generate the three-body list for later use. Using
multiple threads per atom increases the number of CUDA
thread blocks to be executed, and in each of these thread
blocks each thread spends a significant number of cycles to
fetch spilled variables from global memory, decreasing the
kernel’s performance. And because of occupancy limitations
discussed earlier more thread blocks cannot be scheduled
onto Streaming Multiprocessors. Similar arguments can be
made about the dihedral-angle interactions kernel as well.
For these reasons, PG-PuReMD creates one thread per atom
for both the valence-angles and dihedral-angles kernels.

Hydrogen-bond interaction, if present, is the most ex-
pensive of all the bonded interactions. This kernel iterates
over the hydrogen-bond-list. The number of hydrogen-bond
entries per atom can be large (up to few hundreds per atom).
The cutoff distance for hydrogen-bond terms is larger than
bond cutoff distance, indicating that multiple threads per
atom would yield better performance. This is because of
coalesced global memory accesses. Each group of threads
working on the same atom, iterates over the hydrogen-bond
list in a strided manner (similar to neighbor-list generation),
computing the hydrogen-bond energy and force on its re-
spective atoms. A final reduction is performed, in shared

Require: atoms list, neighbors list
Ensure: Coulombs and van der Waals forces

1: shared-memory sh_atom_force]];

2: shared-memory sh_coulombsl];

3: shared-memory sh_vdw]];

4: thread_id = blockIdx.x * blockDim.x + threadldx.x;

5: my_atom = GetAtomld (blockIdx.z, threadldx.x,

threads_per_atom);
6: lane_id = thread_id & (threads_per_atom - 1);
7. start = start_index (my_atom, neighbors_list);
8: end = end_index (my_atom, neighbors_list);
9: my_index = start + lane_id,
10: while my_indexr < end do

11: if neighbor_list[my_index] is within cutoff distance then

12: sh_vdw(threadIdz.z] = compute van der Waals force;

13: sh_coulombs[threadldz.x] = compute coulombs force;

14: sh_atom_force[threadldz.z] = compute force on my_atom;
15: end if

16: my_index += threads_per_atom;

17: end while

18: perform parallel reduce in shared memory for coulombs/van der waals
forces;

19: update force on my_atom;

Figure 3. Multiple threads per atom kernel for Coulombs and van der
Waals forces

memory, to compute the final force on each atom.

4) Eliminating bond order derivative lists: All bonded
potentials (including the hydrogen bond potential) depend
primarily on the strength of the bonds between the atoms
involved. Therefore, all forces arising from bonded inter-
actions depend on the derivative of the bond order terms.
Typically the uncorrected bond orders between atoms could
be as many as 20-25 in a typical systems. This also means
that when we compute the force due to the -7 bond, the bond
order derivative evaluates to non-zero values for all atoms &
that share a bond with either 7 or j. Considering the fact that
a single bond takes part in various bonded interactions, the
same derivative needs to be evaluated several times over a
single time-step. Storing these derivatives in memory results
in costly lookups during time critical force computations.
We eliminate the frequent re-computations and memory
overheads of these derivatives by delaying the computation
of the derivative of bond orders until the end of a time-step.
During the computation of bonded potentials, coefficients for
the corresponding bond order derivative terms arising from
various interactions are accumulated into a scalar variable
CdBO;;. After all the bonded interactions are computed,
we evaluate the derivative term and add the force to the net
force on atom k directly.

5) Implementation of Non-Bonded Interactions: Non-
bonded interactions consist of charge equilibration and
Coulombs/van-der-Waals force computation. Coulombs and
van der Waals forces are computed by iterating over the
neighbor-list of each atom. Each atom may have several
hundred neighbors in its neighbor-list. In order to exploit

the spatial locality of the data and coalesced reads/ writes
on global memory, multiple threads per atom are used for
this kernel as well. The process is summarized in Figure 3.

Lines 1, 2 and 3 declare shared memory to store inter-
mediate force values. Lines 7 and 8 mark the beginning
and end of my_atom’s neighbor list. The while loop at
line 10 performs the force computations for the atom. Each
thread operating on the neighbor list of an atom works
on distinct neighbors indicated by the variable my_index.
SIMT execution model of CUDA runtime ensures that all
the threads in a thread block execute the while loop between
lines 10 and 17 simultaneously. Line 18 performs a parallel
reduce operation in the shared memory to compute the final
coulombs/van der waals forces of the system and net force
on the atoms.

Charge equilibration corresponds to the problem of as-
signing partial charges to atoms with a view to minimizing
electrostatic energy under constraints of charge neutrality.
In the absence of electronic degrees of freedom, we do
this using the QEq method of Rappe and Goddard [15].
We rely on well-known Krylov subspace methods, the pre-
conditioned conjugate gradient method (PCG) for our pur-
pose. Our sequential implementation [9] relies on an ILUT
preconditioned GMRES method [16], [17]. However, in a
parallel context our tests indicate better scalability for our
diagonally scaled parallel PCG implementation. Diagonal
scaling works as a cheap and effective preconditioner for
the QEq problem because the coefficient matrix H carries
a heavy diagonal. Consequently, all results reported in this
paper use a diagonally scaled parallel CG solver for charge
equilibration,

It is important to solve the QEq problem to high accuracy
(low residual), otherwise the energy of the system shows
unacceptable drifts as the simulation progresses in time.
PCG involves a matrix-vector product and two dot products
in each iteration. In a sequential context, the matrix-vector
product dominates the QEq solve time. However, in a
parallel context, a significant portion of the QEq solve time
is spent in communications: two local communications (one
for sharing the updated vector contents, and another for
communicating back the partial results from matrix-vector
multiplication) and two global communications (two all-
reduce operations for dot products).

We use the CUBLAS library from NVIDIA for various
vector operations. The sparse matrix-vector product imple-
mentation is similar to the one in [18]. Each row of the
sparse matrix uses multiple threads to compute the product
of the row with the vector, and temporary sums are stored in
shared memory. Note that this corresponds to an optimized
2-D partitioning of the sparse matrix.

6) Data structures and memory management: In a reac-
tive force field, the dynamic nature of bonds, valence-angles
and dihedral-angles interactions, together with the signifi-
cant amount of book-keeping required for these interactions

require large memory and sophisticated procedures for man-
aging allocated memory. We store all the data structures
— neighbor lists, bond lists, hydrogen bond lists, and QEq
matrix, in a redundant fashion (which helps to exploit the
coalesced global memory operations on these lists). Before
allocating memory to any of these lists we estimate the
number of entries for each atom in the corresponding list
at the beginning of the simulation.

For example, let eb; denote the number of estimated
bonds for atom i. We compute max(eby, eba, . .., eb,), and
increment by certain percentage to provide additional buffer
space for growth during the course of the simulation, as
the estimated size of bond list of each atom. Since the
average number of bonds per atom changes gradually, the
number of bonds per atom for the entire system deviates
only slightly from the median number of bonds per atom,
resulting in a very good estimate. A similar technique is
also used for neighbor list, hydrogen-bond list and QEq
matrix as well. This technique has the added advantage
that threads inserting entries into these data structures can
compute their relative index based on the atom for which
they are computing. Since atoms are exchanged between
MPI processes after each time-step the starting and ending
indices do not have to be recomputed at the beginning of
each time-step. For the three-body list, we estimate the
number of three-body interactions per bond during each
time-step and compute the beginning and ending indices
for each bond (three-body list is indexed by bonds per
atom). This estimation Kkernel takes a fraction of the total
time per time-step of the simulation. Since not all bonds of
an atom participate in three body interaction during every
time-step this method yields tremendous savings in memory
compared to the estimation of this list in the PuReMD’s
serial implementation. At the end of each time-step, all data
structures are validated for any memory overflows and usage.
If any of these lists hit a prescribed high water mark then it
is reallocated.

We also augment bond lists and hydrogen bond list
with additional variables that are used to resolve write-
write dependencies between competing threads trying to
update the same memory location (forces on each atom and
various energies of the system). Since atomic operations on
double precision numbers in CUDA is very expensive, using
augmented data structures yields tremendous performance
benefits at the expense of additional memory.

V. EXPERIMENTAL RESULTS

We report on our comprehensive evaluation of the perfor-
mance of PG-PuReMD. All the simulations are performed
on Lawrence Berkeley National Laboratory’s GPU Cluster
(DIRAC). This is a 50 GPU node cluster inter-connected
with Quad Data Rate (QDR) InfinitiBand switch. Each GPU
node contains 2 Intel 5530 2.4 GHz, 8MB cache, 5.86GT/sec
QPI Quad core Nehalem processors (8 cores per node)

and 24GB DDR3-1066 Reg ECC memory. Out of the 50
nodes, 44 nodes have NVIDIA Tesla C2050 Fermi GPUs
with 3GB of memory (this pool was used extensively for
the evaluation of PG-PuReMD). PG-PuReMD is compiled
in CUDA 5.0 environment with the following compiler
options “-arch=sm_20 -funroll-loops -O3” and MPI is used
to link all the object files to produce the final executable.
All the arithmetic operations are double precision. Fused
Multiplication Addition (finad) operations are not used in
the PG-PuReMD implementation so that the results perfectly
match the serial implementation. Thread block size for all
the kernels in this section is 256 except matrix-vector dot
product which uses a block size of 512 threads. Neighbor-
list kernel uses 16 threads per atom, while hydrogen-bonds,
coulombs/van der waals force and matrix-vector dot product
kernels uses 32 threads per atom. The model systems in all
these simulations use a time-step of 0.25 femtoseconds, a
tolerance of 10~¢ for the QEq solver, and NVE ensemble.

We used water systems of various sizes for in-depth
analysis of performance, since it represents diverse stress
points for the code. For the weak scaling tests, we use water
systems with 10,000 atoms per GPU and 16,000 atoms per
GPU, and for strong scaling analysis, we use water systems
with 80,000 and 200,000 atoms.

To better understand the results of our experiments, we
identify six key parts of PG-PuReMD:

e comm: initial communications step with neighboring
processors for atom migration and boundary atom in-
formation exchange.

o nbrs: neighbor generation step, where all atom pairs
falling within the interaction cut-off distance 7,,s are
identified.

o init_forces: generation of the charge equilibration
(QEq) matrix, bond list, and H-bond list based on the
neighbors list.

o QEq: is the charge equilibration part that solves a
large sparse linear system using Conjugate Gradients
with a diagonal preconditioner. This involves costly
matrix-vector multiplications and both local and global
communications.

o bonded: is the part that includes computation of forces
due to all interactions involving bonds (hydrogen bond
interactions are included here as well). This part also
includes identification of 3-body and 4-body structures
in the system.

« nonb: is the part that computes nonbonded interactions
(van der Waals and Coulomb).

Each of these parts has different characteristics: some are
compute-bound, some are memory-bound while others are
interprocess communication-bound. Together they comprise
almost 99% of the total computation time for typical sys-
tems. We perform detailed analysis of these major compo-
nents to better understand how PG-PuReMD responds to

200K

0.8 1
w0
T 06| 1
o
[$)
o
0
kg
E 04t 1
'_

02 R

0 L L L L L L L

0 5 10 15 20 25 30 35 40
of GPUs

Figure 4. Strong scaling results for Water systems (Water-80K and Water-
200K).

0.16 T T
comm —+—
nbrs
0.14 init —— 1
bonded ——
012 ”ggg o
2 ot 1
c
3
g 008 r 1
3
= 006 F 1
0.04 1
0.02 |

40

of GPUs

Figure 5. Strong scaling results for key components of ReaxFF for Water-
80K system.

increasing system sizes and increasing number of processors.
We also use these results to infer the impact of various
machine parameters on performance.

A. Strong Scaling Results

Figure 4 presents timings of PG-PuReMD for two water
systems. It can be seen that as the number of GPUs
increases, the time per time-step for the water systems
decreases consistently, suggesting that PG-PuReMD scales
well when the system size is constant while increasing
the number of GPUs, at least to moderate configurations.
Because of limited available memory on GPUs (3GB of
global memory per GPU), the water-200K system can only
be run on 12 GPUs and beyond.

Figure 5 presents the timings of major components (per
time-step) for the water 80K system. comm, nbrs, init and

1 — ‘ 400
10K:Time step
0.9 16K:Time step —— x
10K:Speedup 1350 o
08| 16K:Speedup --x-- &
1300 o
0.7 P ‘g
—~ | %
% 06 | 250 2
g 3
¢ 05f o 1200 &
T e g
E 04r ,/
= 1150 8
03 —% 2
1100 B
02f (%:
o1 f A 190
0 1 1 1 1 1 1 1 0
0 5 10 15 20 25 30 35 40
of GPUs
Figure 6. Weak scaling results for Water systems (10K/GPU and
16K/GPU).
0.2 T T
comm —+—
nbrs
init ——
bonded ——
045 | nonb —— |
geq ——
- o
kel
c
3
A 1
0.05 | i
M
0 L L L L L L L

0 5 10 15 20 25 30 35 40
of GPUs

Figure 7. Weak Scaling results for key components of ReaxFF for Water
system (16K/GPU).

nonb scale well as the number of GPU’s is increasing for
this system. The time for comm is almost constant after 4
GPUs. nbrs and nonb use multiple threads per atom, when
using 36 GPUs, each GPU is processing about 2222 atoms.
With 16 threads per atom and a block size of 256 nbrs kernel
has about 139 blocks and nonb kernel (32 threads/atom) has
about 278 blocks yielding enough thread blocks to keep the
SM’s saturated because of which we see the curves for these
two kernels trending downwards consistently as the GPUs
are increasing for this system. Because of multiple threads
per atom, the number of thread blocks decreases sharply
for these two kernels when increasing the number of GPUs,
which is the reason why a steep drop is noticed for these
two curves for small number of GPUs. The time for the
bonded kernel is almost constant beyond 27 GPUs. This is
because all the bonded interactions, except hydrogen-bond

interaction, uses single thread per atom implementation.
With 27 GPUs, each GPU processes about 2962 atoms,
resulting in 12 blocks each of 256 threads. From this point
onwards we have less number of thread blocks than SM’s
indicating that it reached the lower bound on its timing
per time-step. Since all the bonded interactions, except
hydrogen-bond interactions, uses single thread per atom
implementation, we see consistent drop when using small
number of GPUs and it tends to become flat after 18 GPUs,
after this point the number of thread blocks created for these
kernels become less than the number of SM’s on the GPUs.
The init kernel, which builds bond-list, hydrogen-bond list
and QEq matrix, drops sharply compared to other kernels
when small number of GPUs are used, because each GPU
is processing large number of atoms (quantum of work per
each thread is also large) and we have large number of thread
blocks. As we increase the number of GPUs, this curve tends
to become flatter since the number of thread blocks becomes
less than the number of SM’s on the GPU.

The communication bound parts of PG-PuReMD do not
scale as well. QFq is one of the most expensive parts of
PG-PuReMD. Since QEq involves four communication op-
erations (two message exchanges and two global reductions)
in every iteration of the linear solver, as the number of GPUs
increases the communication overhead increases as well.
Moreover, as the sub-domain size decreases, the amount
of computation decreases and the communication overhead
starts to dominate.

B. Weak Scaling Results

We used water systems with 10,000 atoms per GPU and
16,000 atoms per GPU for benchmarking the PG-PuReMD
application under weak scaling scenarios. For water systems
with 16,000 atoms per GPU, we achieve a speedup of 359x
on 36 GPUs when compared to single CPU time for the
same water system. Figure 6 illustrates the weak scaling
performance and speedup’s achieved.

Figure 7 presents weak scaling results of water system
with 16K atoms/GPU. For all the components, we observe
that the time per time-step is almost constant, yielding ex-
cellent scaling over the range of GPUs used. An interesting
observation can be made about the QFg computation — this
computation is heavily dependent on the communication.
Furthermore, it is executed in a lockstep fashion for every
iteration of the linear solve. The QFEq time almost doubles
from 4 GPUs case to 36 GPUs. This can be attributed to the
amount of communication and execution of each iteration
in a lock step fashion.

Table I presents efficiency results for water systems under
weak scaling. We achieve a speedup of about 10x per MPI
process when compared to PuReMD implementation. This
results in decreased parallel efficiency as we increase the
number of GPUs. PuReMD [10] achieves an efficiency of
99% with 32 MPI processes; PuReMD runs on CPUs and

10K per GPU 16K per GPU
GPU's | ——984 ¢ | Efficiency | 7-2EL—% | Efficiency
1 11.80 100.00 10.99 100.00
2 13.11 95.97 11.66 99.17
4 14.61 93.46 12.33 97.10
8 15.45 91.52 12.93 96.33
12 16.10 91.21 13.61 95.27
18 16.47 90.17 13.70 94.74
27 20.53 84.68 17.78 89.92
36 21.04 84.02 18.25 89.04
Table 1
EFFICIENCY RESULTS OF WATER SYSTEM FOR WEAK SCALING
SIMULATIONS

it takes 16 MPI processes to completely use a single CPU.
In comparison PG-PuReMD achieves about 84% efficiency
for comparable number of MPI processes. The reduction in
efficiency is a consequence of the faster serial execution by
the GPUs.

VI. CONCLUSION

In this paper, we presented an efficient and scalable par-
allel implementation of ReaxFF using MPI on CUDA plat-
forms. Our open-source implementation is shown to achieve
a 350x speed up compared to single CPU implementation
under weak-scaling scenarios. PG-PuReMD’s accuracy has
been verified against the benchmark production PuReMD
code by comparing various energy and force terms for large
numbers of time-steps under diverse application scenarios
and systems.

ACKNOWLEDGMENT

We thank Adri van-Duin for significant help in validating
our software on a variety of systems. We also thank Joe
Fogarty at the University of Southern Florida for construct-
ing model systems for testing and validation and Lawrence
Berkeley National Laboratories for providing us access to
their GPU cluster for benchmarking our application.

REFERENCES

[1] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. G. III,
“Reaxff: A reactive force field for hydrocarbons,” in J Phys
Chem A, vol. 105, 2001, pp. 9396-9409.

[2] K. D. Nielson, A. C. T. van Duin, J. Oxgaard, W.-Q. Deng,
and W. A. G. III, “Development of the reaxff reactive force
field for describing transition metal catalyzed reactions, with
application to the initial stages of the catalytic formation of
carbon nanotubes,” in J Phys Chem A, vol. 109, 2005, pp.
493-499.

[3] K. Chenoweth, S. Cheung, A. C. T. van Duin, W. A. G. III,
and E. M. Kober, “Simulations on the thermal decomposition
of a poly(dimethylsiloxane) polymer using the reaxff reactive
force field,” in J Am Chem Soc, vol. 127, 2005, pp. 7192—
7202.

[4] M. J. Buehler, “Hierarchical chemo-nanomechanics of pro-
teins: Entropic elasticity, protein unfolding and molecular
fracture,” in Mech Material Struct, vol. 2(6), 2007, pp. 1019-
1057.

[5] Y. Park, H. M. Aktulga, A. Y. Grama, and A. Strachan, “Strain
relaxation in si/ge/si nanoscale bars from md simulations,” in
J Appl Phys, vol. 106, 2009, p. 034304.

[6] J. C. Fogarty, H. M. Aktulga, A. C. T. van Duin, A. Y. Grama,
and S. A. Pandit, “A reactive simulation of the silica-water
interface,” in J Chem Phys, vol. 132, no. 174704, 2010.

[7]1 S. J. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” in J Comp Phys, vol. 117, 1995, pp.
1-19.

[8] A. Thompson and H. Cho, “Lammps/reaxff potential,”
April 2010. [Online]. Available: http://lammps.sandia.gov/
doc/pair_reax.html

[9] H. M. Aktulga, S. Pandit, A. C. T. van Duin, and A. Grama,
“Reactive molecular dynamics: Numerical methods and algo-
rithmic techniques,” in SIAM J. Sci. Comput, vol. 34(1), pp.
C1-C23.

[10] H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama,
“Parallel reactive molecular dynamics: Numerical methods
and algorithmic techniques,” in Parallel Computing, vol.
38(4-5), pp. 245-259.

[11] M. Zheng, X. Li, and L. Guo, “Algorithms of gpu-enabled
reactive force field (reaxff) molecular dynamics,” in J Mol
Graph Model, vol. 41, 2013, pp. 1-11.

[12] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin,
R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J.
Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P.
Grossman, C. R. Ho, D. J. lerardi, 1. Kolossvry, J. L. Klepeis,
T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C.
Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and
S. C. Wang, “Anton: A special-purpose machine for molecular
dynamics simulation,” in ISCA, June 2007.

[13] K. J. Bowers, R. O. Dror, and D. E. Shaw, ‘“Zonal methods for
the parallel execution of range-limited n-body simulations,”
in J Comp Phys, vol. 221, 2007, pp. 303-329.

[14] “Nvidia white paper on fermi architecture.” [Online].
Available: http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.
pdf

[15] A. K. Rappe and W. A. G. III, “Charge equilibration for
molecular dynamics simulations,” in J Phys Chem, vol. 95,
1991, pp. 3358-3363.

[16] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal
residual method for solving nonsymmetric linear systems,” in
SIAM J Sci Stat Comput, vol. 7, 1986, pp. 856-869.

[17] Y. Saad, “Iterative methods for sparse linear systems,” in
SIAM. SIAM, 2003.

[18] N. Bell and M. Garland, “Efficient sparse matrix-vector
multiplication on cuda,” December 2008.

