
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2011

Detecting Inconsistencies in Private Data with
Secure Function Evaluation
Nilothpal Talukder
Purdue University, ntalukde@cs.purdue.edu

Mourad Ouzzani
Purdue University, mourad@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Mohamed Yakout
Purdue University, myakout@cs.purdue.edu

Report Number:
11-006

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Talukder, Nilothpal; Ouzzani, Mourad; Elmagarmid, Ahmed K.; and Yakout, Mohamed, "Detecting Inconsistencies in Private Data
with Secure Function Evaluation" (2011). Computer Science Technical Reports. Paper 1758.
http://docs.lib.purdue.edu/cstech/1758

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

Detecting Inconsistencies in Private Data with
Secure Function Evaluation

Nilothpal Talukder, Mourad Ouzzani, Ahmed K. Elmagarmid, and Mohamed Yakout

Purdue University, West Lafayette, IN, USA
{ntalukde,mourad,ake,myakout}@cs.purdue.edu

Abstract— Erroneous and inconsistent data, often referred to
as ‘dirty data’, is a major worry for businesses. Prevalent
techniques to improve data quality consist of discovering data
quality rules, identifying records that violate those rules, and
then modifying the data to either remove those violations. Most
of the work described in the literature deals with cases where
both the data and the rules are visible to the party that is
in charge of cleaning the data. However, consider the case
where two parties with data and data quality rules wish to
cooperate in data cleaning under two restrictions: (1) neither
of the parties is willing to share their data due to its sensitive
nature, and (2) the data quality rules may reveal information
about the content of the data and may be considered as a
private asset to the business. The question then is how to clean
the data without having to share the data or the rules. While
the data cleaning process involves several phases, our focus in
this paper is on detecting inconsistent data. We propose a novel
inconsistency detection protocol that preserves the privacy of
both the data and the data quality rules without the use of
a third party. Inconsistent data is defined as all records in a
database that violate some conditional functional dependencies
or CFDs. Our approach is based primarily on the secure multi-
party computation framework. We present complexity analysis of
our protocol and a series of experiments about its performance.

I. INTRODUCTION

It is no secret that ‘dirty data’ has continued to trouble
businesses costing staggering $600 billion per annum [1]. In
most cases, data quality problems arise from failure to enforce
integrity and domain constraints. Errors in the data propagate
from initial data acquisition to archival [2] opening the avenue
for more errors in the future (‘Garbage In! Garbage out!’).
‘Dirty data’ can have serious effects for healthcare industry
where wrong treatments due to erroneous medical history cost
lives. On the other hand, data cleaning is a labor-intensive
process costing 30-80% of development time and effort in a
typical data-warehouse project [3].

Recently researchers have been looking into automatic
discovery of data quality rules from the data [4], [5], [6],
[7], [8], which are mainly extensions to traditional functional
dependency (FD). After discovering these rules, they are
enforced on the data to identify and correct the records that
violate the rules i.e., dirty or inconsistent records, to improve
the overall quality. In this paper, we consider conditional func-
tional dependency (CFD) based inconsistency detection [9],
[5]. The main difference between traditional FDs and CFDs is
that FDs are used for schema design and integrity constraints
definition, whereas CFDs enforce binding of semantically
consistent values in a database. This property can be leveraged

to detect inconsistencies in data [5]. Given a database instance
𝐷 and a set of CFD rules Σ, the inconsistency detection
problem is to find the set of records 𝐷′ ⊆ 𝐷 which violate Σ.
While there have been several techniques, either CFD-based
or otherwise, to detect dirty data, there have been little work
on data quality when the data is private.

Let us consider a scenario where two parties with private
databases wish to cooperate in improving their data quality.
They want to check the quality of the data in one database
with the rules discovered in the other database as there may
not be enough evidence (e.g., support, conviction) [9] present
in the data of one party to discover all data quality rules. To
better understand this situation let us take a look at an example.

Example 1.1: We consider a relation CUSTOMER(Name,
CC, Zip, Street, State), where CC stands for country code. The
tables I and II show CUSTOMER relations from two different
databases 𝐷1 and 𝐷2.

As shown in Table I, the following CFD rule can be discov-
ered in 𝐷1: 𝜙1,1 : ([𝐶𝐶 = 44∣𝑧𝑖𝑝] → 𝑠𝑡𝑟𝑒𝑒𝑡). This is an FD
that is applied to a subset of records 𝑡𝑖, 1 ≤ 𝑖 ≤ ∣𝐷′∣, 𝐷′ ⊆ 𝐷
that are semantically equivalent in the attribute ‘CC’ (having
the same value ‘44’). This CFD is interpreted as: in the
United Kingdom (CC = 44), the zip code determines the
street address. Records 𝑡1-𝑡5 are consistent with the above rule
and no inconsistencies are detected in 𝐷1. However, it is not
possible to discover the same rule from 𝐷2, since fewer (two
entries for consistent value ‘Mayfield’) or none (just one entry
for ’Princess’) of the records are consistent with each other.
The reverse is true for the CFD rule 𝜙2,1 : ([𝐶𝐶 = 01, 𝑍𝑖𝑝 =
46825] → [𝐶𝑖𝑡𝑦 = 𝐹𝑜𝑟𝑡𝑊𝑎𝑦𝑛𝑒, 𝑆𝑡𝑎𝑡𝑒 = 𝐼𝑁]) detected in
𝐷2 with records 𝑡8 − 𝑡9. The same rule cannot be detected in
𝐷1 due to inconsistent records 𝑡6 − 𝑡7. Based on the above
example, there can be two different settings for the problem:

Setting 1: Relations can be horizontally or vertically (or
both) partitioned and distributed across different sites. For ex-
ample, if databases 𝐷1 and 𝐷2 represent horizontal partitions
of a database 𝐷, the problem becomes inconsistency detection
in distributed database [10]. Detecting inconsistencies in 𝐷2

requires data to be shipped to one partition (such as, 𝐷1) where
a local inconsistency detection is performed. The choice of the
partition where the data would be shipped is based on optimal
communication cost [10].

Setting 2: In this setting, one party will assist another
party with its locally detected rules to find inconsistencies.
In example 1, the owner of 𝐷2 (𝐷1 resp.) requires rules

TABLE I
CUSTOMER RELATION AND CFD RULES IN 𝐷1

id Name CC Zip Street City State
𝑡1 Smith 44 EH4 8LE Mayfield EDI n/a
𝑡2 Anne 44 EH4 8LE Mayfield EDI n/a
𝑡3 Chris 44 EH4 8LE Mayfield EDI n/a
𝑡4 Ravi 44 EH2 4HF Princess EDI n/a
𝑡5 Robin 44 EH2 4HF Princess EDI n/a
𝑡6 Ismail 01 46825 Bell Avenue Fort Wayne IN
𝑡7 Gyle 01 46825 Bell Avenue Ft Wayn MI

CC Zip Street
44 - - 𝜙1,1: (CC, Zip → Street, {44,−∣∣−})

from the owner of 𝐷1 (𝐷2 resp.) to detect inconsistencies
in its own data. Another motivation for this setting would be
commercial data quality assessment service such as fixing and
standardizing customer addresses. For example, such service
providers may want to use their prior experience (assessment
on 𝐷1’s data) and apply their already discovered data quality
rules to detect inconsistencies in 𝐷2.

In both settings, the database may contain sensitive infor-
mation, like healthcare records and credit card information,
which the data owner cannot share with others. Furthermore,
the data quality rules may involve constant values which may
reveal partial information about the data. In addition, the rules
constitute an asset to the business and hence must also remain
private. In summary, for legal and business reasons the parties
must operate on private data and rules.
Problem Statement: The privacy-preserving inconsistency
detection problem can be stated as finding inconsistent records
in a private database with the assistance of data quality rules
discovered in another private database where the rules need
also to remain private. Without loss of generality, we can
reduce this problem to the case where one party owns the
rules, namely ‘rules owner’, and the other party owns the data
‘data owner’. This problem statement refers to the general
case of privacy-preserving inconsistency detection with any
data quality rules [4], [5], [6], [7], [8]. However, in this paper,
we focus on CFD-based inconsistency detection approaches
and enhance them with privacy preservation constraints.

The simple SQL-based detection technique used with
CFDs [6] groups the records that match on the left hand side
(LHS) attributes in a CFD rule and determines inconsistencies
based on the mismatch on the right hand side (RHS) attribute
values. Our protocol for inconsistency detection in private data
uses the secure multi-party computation (SMC) framework
proposed by Lindell et. al. [11] and uses Yao’s [12] secure
function evaluation (SFE). Our protocol operates in multiple
steps and each step involves specific techniques to ensure
privacy guarantees of the data and the rules. A high level
description of our solution is shown in Fig. 1. Using SFE, our
approach securely performs the oblivious grouping of records
based on the LHS attribute value match (secure blocking and
oblivious grouping steps). Likewise, we identify inconsistent
records (inconsistency detection steps) based on the oblivious
grouping information and provide them only to the data owner.

TABLE II
CUSTOMER RELATION AND CFD RULES IN 𝐷2

id Name CC Zip Street City State
𝑡1 Shawn 44 EH4 8LE Mayfield EDI n/a
𝑡2 Dave 44 EH4 8LE Mayfild EDI n/a
𝑡3 Brian 44 EH4 8LE Mayfield EDI n/a
𝑡4 Bret 44 EH4 8LE Mayfeld EDI n/a
𝑡5 Alice 44 EH2 4HF Princess EDI n/a
𝑡6 Ray 44 EH2 4HF Prncs EDI n/a
𝑡7 Rachel 44 EH2 4HF Royal EDI n/a
𝑡8 Ron 01 46825 Bell Avenue Fort Wayne IN
𝑡9 Zach 01 46825 Bell Avenue Fort Wayne IN
𝑡10 Jim 01 47906 Northwestern West Lafayette IN
𝑡11 Joe 01 47906 State West Lafayette IN

CC Zip City State
01 46825 Fort Wayne IN
01 47906 West Lafayette IN

𝜙2,1: (CC, Zip → City, State, {01, 46825∣∣𝐹𝑜𝑟𝑡𝑊𝑎𝑦𝑛𝑒, 𝐼𝑁})
𝜙2,2: (CC, Zip → City, State, {01, 47906∣∣𝑊𝑒𝑠𝑡𝐿𝑎𝑓𝑎𝑦𝑒𝑡𝑡𝑒, 𝐼𝑁})

Furthermore, we use XOR and additive share of values to
generate oblivious intermediate results. To provide privacy
guarantee when the number of rules is small, we obfuscate
the subset of records relevant to the rules and ensure that it is
sufficiently large.

Introducing privacy constraints in the data quality problem
has received some attention in the literature [13] [14].
However, most of these approaches either use a third party
or will allow the rules owner to know how many records are
linked to a particular data value in a rule and are subject to
k-anonymity based re-identification attacks [15]. Furthermore,
the data owner may be able to infer the values in a rule which
constitute a private asset for the business. Anonymizing [16]
the records before performing private record linkage will
reduce the utility of the data and result in poor inconsistency
detection.

Our main contributions in this paper are:
∙ We propose the first formulation of the problem of privacy-

preserving inconsistency detection involving two parties
where both the data and the data quality rules need to
remain private.

∙ We propose a cryptographic approach for CFD-based
inconsistency detection in private databases without the
use of a third party.

∙ We give computational complexity analysis, and a series
of experiments of our protocol.

II. PROBLEM DEFINITION

In this section, we present the formal definition of the
private inconsistency detection problem with CFDs.

A. Private Inconsistency Detection with CFD

Given a set of private data records 𝐷 (owned by the data
owner) and a set of private CFD rules Σ (owned by the rules
owner), the private inconsistency detection query will return
the set of inconsistent records 𝐷′ ⊆ 𝐷 only to the data owner
such that 𝐷′ violates the rules Σ, also expressed as : 𝐷′ ∕∣= Σ.

Fig. 1. Privacy Preserving Inconsistency Detection Protocol

The data owner and the rules owner are assumed to have the
same schema 𝑅.

The final result of the private inconsistency detection, only
visible to the data owner, is a bit array with a size equal to the
number of records in the database. Each bit indicates whether
the record is inconsistent or not: 𝐶𝑖 = 1, if 𝑡𝑖 is inconsistent
and 0, otherwise.

B. Framework

Our solution to the private inconsistency detection problem
uses cryptographic secure multi-party protocols (SMC) [12].
In our setting, the notion of privacy means that 1) neither the
data nor the rules can be visible to the rules and data owner
respectively and 2) at any stage of the protocol, the rules owner
would not be able to infer the content of the data and the data
owner would not be able to generate the rules. We henceforth
refer to the data owner as 𝒜 and to the rules owner as ℬ.

A trivial solution to this problem, known as the ideal model,
is to use a trusted third party (TTP), where 𝒜 gives her private
data and ℬ gives his private rules to TTP. TTP determines the
inconsistent records with the help of the SQL-based detection
techniques and send the result to 𝒜. In contrast, our protocol
does not use any TTP. It uses secure two-party computation
which functions as if a trusted external party exists. We assume
a semi-honest model (also known as ‘honest but curious’
model). Therefore, 𝒜 (ℬ) honestly follows the protocol steps,
but tries to infer rules (data) from the available information
from the other party. Our proposed privacy preserving incon-
sistency detection protocol has the following properties:
∙ When comparing a data value in a record and a constant

in a rule, the identities of the attributes involved in the
rules are not leaked to 𝒜. Likewise, ℬ learns nothing about
the actual content of the data records as it is additively
shared between 𝒜 and ℬ before the comparison. This is
achieved by the adoption of oblivious attribute selection
protocol [17]
∙ The intermediate results of the protocol (rule matching

set membership, inconsistency bits and group numbers)

are made oblivious by either XOR sharing or additive
sharing between 𝒜 and ℬ which restricts both parties from
inferring anything about the content of data and rules.

III. PRELIMINARIES

A. Conditional Functional Dependencies

For a relational schema 𝑅, a CFD 𝜙 is defined as (𝑅 : 𝑋 →
𝑌, 𝑇𝜙) where (1) 𝑋,𝑌 are sets of attributes of 𝑅 and 𝑋∩𝑌 =
∅, (2) 𝑇𝜙 is a pattern tableau for a CFD 𝜙 with attributes
𝐴𝑖 ∈ (𝑋 ∪ 𝑌), where for each tuple 𝑟 ∈ 𝑇𝜙, 𝑟[𝐴𝑖] is either a
constant or an unspecified value ‘-’ (denoted as wildcard); the
constant is assumed to be drawn from the discrete domain of
attribute 𝐴𝑖, or simply 𝑑𝑜𝑚(𝐴𝑖), and (3) 𝑋 → 𝑌 refers to a
standard FD with a set of attributes 𝐴 ⊆ (𝑋 ∪ 𝑌) such that
∣𝐴∣ ≥ 1 and ∀𝐴𝑖 ∈ 𝐴, 𝑟 ∈ 𝑇𝜙, 𝑟[𝐴𝑖] is semantically bound by
a constant value.

The pattern tableau is used for uniform representation of
both the data and constraints involved in CFD rules. For
example in Table I (II) the pattern tableau for CFD rules
𝜙1,1 (𝜙2,1 and 𝜙2,2) in 𝐷1 (𝐷2) is shown to the right of the
CUSTOMER relation. The pattern tableau 𝑇𝜙 contains one
or more records 𝑟𝑘 representing different rules for CFDs. A
data record 𝑡𝑖 ∈ 𝐷 and a rule 𝑟𝑘 ∈ 𝑇𝜙 are considered a
match (denoted as 𝑡𝑖 ≍ 𝑟𝑘) when the following is satisfied: if
∀𝐴 ∈ 𝑋 ∪ 𝑌 , 𝑟𝑘[𝐴] is a constant then 𝑡𝑖[𝐴] = 𝑟𝑘[𝐴].

B. Inconsistency Detection with CFD

A relation 𝐷 of schema 𝑅 satisfies the CFD 𝜙 (denoted
by 𝐷 ∣= 𝜙) when the following holds: for each record
𝑟𝑘 ∈ 𝑇𝜙 and 𝑡1, 𝑡2 ∈ 𝐷 if 𝑡1[𝑋] = 𝑡2[𝑋] ≍ 𝑟𝑘[𝑋], then
𝑡1[𝑌] = 𝑡2[𝑌] ≍ 𝑟𝑘[𝑌]. The notation 𝑡1[𝑋] = 𝑡2[𝑋] ≍ 𝑟𝑘[𝑋]
denotes that for attribute 𝑋𝑙 ∈ 𝑋 , if 𝑟𝑘[𝑋𝑙] is a constant then
𝑡1[𝑋𝑙], 𝑡2[𝑋𝑙] and 𝑟𝑘[𝑋𝑙] are equal, otherwise (when 𝑟𝑘[𝑋𝑙]
is a wildcard) just 𝑡1[𝑋𝑙] and 𝑡2[𝑋𝑙] are equal. Finally, if Σ
is a set of CFDs, we can say that 𝐷 ∣= Σ if 𝐷 ∣= 𝜙 for each
CFD 𝜙 ∈ Σ. On the other hand, if some records do not satisfy
the CFD 𝜙 (or violate CFD 𝜙), those records are said to be
inconsistent w. r. t. 𝜙.

Data cleaning is a two step process. The first step is to
find inconsistent records. The second step is to provide value
modification suggestion(s) to remove these inconsistencies
[5].

A set of CFDs Σ can be accommodated in the same pattern
tableaux having the same set of attributes. This is known as
merged pattern tableaux [5] (denoted as 𝑇Σ). The merged
pattern tableaux can be split into two parts, one for LHS (𝑇𝑋

Σ)
and the other for RHS (𝑇𝑌

Σ). The attribute that does not apply
to a rule is considered a don’t care value ‘@’ for that specific
rule. Table III shows the merged pattern tableaux for CFDs
𝜙1 and 𝜙2 from Example 1.1 with newly assigned rule ids.

Definition 1: Rule matching set: The rule matching set
𝑆𝑘 ⊆ 𝐷 of a CFD rule 𝑟𝑘 ∈ 𝑇𝜙 having the form 𝑋 → 𝑌 ,
is the set of data records 𝑡𝑖 ∈ 𝐷 that match the rule 𝑟𝑘 on
the left hand side attributes 𝑋; in other words, ∀𝑋𝑙 ∈ 𝑋 the
following holds 𝑡𝑖[𝑋𝑙] ≍ 𝑟𝑘[𝑋𝑙]. Also note that if 𝑆𝑘 ∣= 𝑟𝑘,
then 𝐷 ∣= 𝑟𝑘.

TABLE III
MERGED PATTERN TABLEAUX FOR CFDS 𝜙1 AND 𝜙2

CC Zip
𝑟1 44 -
𝑟2 01 46825
𝑟3 01 46906
Tableau 𝑇𝑋

Σ

Street City State
- @ @

@ Fort Wayne IN
@ West Lafayette IN

Tableau 𝑇𝑌
Σ

Definition 2: Inconsistent records set: The inconsistent
records set Υ𝑘 is the set of data records in 𝑆𝑘 that violate the
CFD rule 𝑟𝑘 ∈ 𝑇𝜙. Formally, Υ𝑘 ⊆ 𝑆𝑘 and ∀𝑡𝑖 ∈ Υ𝑘, 𝑡𝑖 ∕∣= 𝑟𝑘.

Example 3.1: In table I, the CFD rule 𝜙1,1 matches records
𝑡1 − 𝑡5 in 𝐷1 (a match on CC=‘44’). Therefore, we can
write 𝑆1,1(𝐷1) = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5} If we apply the CFD
rule 𝜙1,1 on 𝐷2, we get 𝑆1,1(𝐷2) = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7}
Furthermore, ∀𝑡𝑖, 𝑡𝑗 ∈ 𝑆1,1(𝐷1), 𝑟𝑘 ∈ 𝑇𝜙 the follow-
ing holds 𝑡𝑖[𝐶𝐶,𝑍𝑖𝑝, 𝑆𝑡𝑟𝑒𝑒𝑡] = 𝑡𝑗 [𝐶𝐶,𝑍𝑖𝑝, 𝑆𝑡𝑟𝑒𝑒𝑡] ≍
𝑟𝑘[𝐶𝐶,𝑍𝑖𝑝, 𝑆𝑡𝑟𝑒𝑒𝑡]. That means, all the records 𝑡𝑖 ∈
𝑆1,1(𝐷1) satisfy 𝜙1,1. Therefore, we can write Υ1,1(𝐷1) = ∅
and 𝐷1 ∣= 𝜙1,1. Meanwhile, for 𝐷2, 𝑆1,1(𝐷2) ∕∣= 𝜙1,1 and
Υ1,1(𝐷2) = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7}
C. Cryptographic Primitives

In order to hide the intermediate results of the protocol
from both 𝒜 and ℬ, we use additive sharing and xor sharing
of values. In additive sharing, the value 𝑥 is additively split
between 𝒜 and ℬ such that they have 𝑥𝐴 and 𝑥𝐵 respectively,
and 𝑥 = 𝑥𝐴 + 𝑥𝐵 . Likewise, xor sharing is done as: 𝑥 =
𝑥𝐴 ⊕ 𝑥𝐵 .

In the 1 out of 𝑁 (𝑂𝑇𝑁
1) protocol, originally proposed by

Rabin [18], one party (sender) holds an array of values 𝑥 =
𝑥[0], . . . , 𝑥[𝑁] and the other party (receiver) holds an index
𝑗. The receiver learns the value 𝑥[𝑗] and the sender learns
nothing.

The oblivious attribute selection protocol [17] is used to
generate additive shares of attribute value 𝑡𝑖[𝑋] of data record
𝑡𝑖 for 𝒜 and ℬ. The attribute 𝑋 remains oblivious to 𝒜. This
is used for secure comparison of values between data records
and rules in secure blocking and inconsistency detection with
constants steps.

We use Yao’s secure function evaluation (SFE) [12] to
securely evaluate all the expressions in our protocol and
generate oblivious intermediate results. ℬ generates ‘garbled
circuit’ with the expression and send the circuit to 𝒜 to
evaluate it with the encrypted inputs of both 𝒜 and ℬ. More
details can be found in appendix.

IV. PRIVACY-PRESERVING INCONSISTENCY DETECTION
PROTOCOL

Out protocol for privacy-preserving inconsistency detection
consists of six major steps as shown in Fig. 1:
∙ Secure Blocking
∙ Obfuscated Matching Set Generation
∙ Match Matrix Generation

∙ Inconsistency Detection with RHS Constants
∙ Oblivious Grouping with LHS wildcards
∙ Inconsistency Detection with RHS wildcards
∙ Final Inconsistency Detection

The secure blocking step identifies the records that match
the constant LHS part of a CFD rule, and thus generates the
rule matching sets. The matching set is the union of all rule
matching sets. The obfuscated matching set generation step
securely adds more record-ids to the matching set in order
to prevent k-anonymity based re-identification attack. The
oblivious grouping step considers the wildcard LHS attributes
of a CFD rule and assign group numbers to records based
on the match. Records belong to the same group w.r.t. a
rule, if they match on those wildcard attributes. Inconsistency
detection with RHS constants marks a record inconsistent
if there is a mismatch on RHS constant attribute value of
a CFD rule. Likewise, inconsistency detection with RHS
wildcard step identifies inconsistent records having the same
group number when they have a mismatch on RHS wildcard
attributes. The intermediate results in secure blocking and
inconsistency detection steps are XOR shared between 𝒜 and
ℬ. Similarly, the results of oblivious grouping are additively
shared between them. The notations used for shared results in
our algorithms are described in the Appendix (Table IV).

We make the following assumptions: (i) 𝒜 and ℬ have the
same schema 𝑅, (ii) ℬ has union compatible CFD rules [5] and
a merged pattern tableaux 𝑇Σ (split into tableaux 𝑇𝑋

Σ and𝑇𝑌
Σ),

and (iii) 𝒜 and ℬ agree on a set of attributes to operate on
during the whole procedure. This set includes all the attributes
𝑋 and 𝑌 in the merged pattern tableau 𝑇Σ.

For notational convenience, we denote each entry in the
pattern tableau as 𝑟𝜙 ∈ 𝑇Σ. For additional privacy protection
of the rules, ℬ might choose to include extra attributes besides
all the attributes in the merged pattern tableau. For an entry
in the pattern tableau 𝑟𝜙 of the form 𝑋 → 𝑌 , where 𝑋,𝑌 ⊆
𝑎𝑡𝑡𝑟(𝑅). We use notations 𝑋 ′ and 𝑌 ′ for LHS and RHS
attributes with constant values and 𝑋 ′′ and 𝑌 ′′ for LHS and
RHS attributes with wildcards. Finally, 𝑋 − (𝑋 ′ ∪ 𝑋 ′′) and
𝑌 − (𝑌 ′ ∪ 𝑌 ′′) are the attributes with ‘@’.

A. Secure Blocking

The objective of the secure blocking step is to identify the
records that exactly match the constant part of the LHS of a
CFD rule. These records are members of the rule matching
set, 𝑆𝜙. The set membership for the 𝑖-th record, 𝑡𝑖 is denoted
by 𝑡𝑖[𝑟

𝜙] ∈ {0, 1} and this information is obliviously shared
between 𝒜 (𝑡𝑖[𝑟

𝜙
𝐴]) and ℬ (𝑡𝑖[𝑟

𝜙
𝐵]) such that

𝑡𝑖[𝑟
𝜙
𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵] =

{
1, if record 𝑡𝑖 ∈ 𝑆𝜙

0, otherwise

We perform matching between all the data records and the
constant part of the LHS of a rule and hence generate
one partition per rule referred to as rule matching set. The
partitions or sets can also be overlapping across different rules.
XOR sharing ensures that neither 𝒜 nor ℬ learns the result of

the matching. For additional protection, the oblivious attribute
selection protocol is used so that the attributes used in the
protocol are hidden from 𝒜.

Algorithm 1 shows the secure blocking protocol. For each
entry 𝑟𝜙 : 𝑋 → 𝑌 in the pattern tableau 𝑇Σ, the protocol is
initiated by ℬ. Initially, we consider that all records fall into the
rule, i.e., ∀𝑖, 𝑡𝑖 ∈ 𝑆𝜙 and the XOR shares of set membership,
𝑡𝑖[𝑟

𝜙
𝐴] and 𝑡𝑖[𝑟

𝜙
𝐵] are set to 1 and 0 respectively. The oblivious

attribute selection protocol is used (described in line (a) and
(b) of Algorithm 1) to generate random additive shares 𝑢 and
𝑣 for 𝑡𝑖[𝑥𝑘]. 𝒜 and ℬ then participate in SFE protocol to
determine if (𝑢+ 𝑣) = 𝑟𝜙[𝑥𝑘] for constant attributes 𝑥𝑘 ∈ 𝑋 .
The order of attribute 𝑥𝑘 in each iteration is randomly chosen
by ℬ and is hidden from 𝒜 through this protocol. Lines (c)-(e)
describe the ‘garbled circuit’ generation by ℬ and evaluation
by 𝒜. The Boolean expression used in the protocol has two
parts. The first part ((𝑡𝑖[𝑟

𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[𝑟

𝜙
𝐵](𝑜𝑙𝑑)) checks if 𝑡𝑖 is

still a valid member of 𝑆𝜙 in the current iteration (the mem-
bership becomes invalid after the first mismatch is found). The
second part (𝑢 + 𝑣) = 𝑟𝜙[𝑥𝑘]) evaluates the match/mismatch
between the rule and the record on attribute 𝑥𝑘. In order
for 𝑡𝑖 to be a member of 𝑆𝑝ℎ𝑖, both conditions must be
true. ℬ chooses a random share 𝑡𝑖[𝑟

𝜙
𝐵](𝑛𝑒𝑤) and therefore

generates the ‘garbled circuit’ for the complete expression:
((𝑡𝑖[𝑟

𝜙
𝐴](𝑜𝑙𝑑)⊕𝑡𝑖[𝑟𝜙𝐵](𝑜𝑙𝑑))∧((𝑢+𝑣) = 𝑟𝜙[𝑥𝑘]))⊕𝑡𝑖[𝑟𝜙𝐵](𝑛𝑒𝑤)

which would actually generate the XOR share for 𝒜, i.e.,
𝑡𝑖[𝑟

𝜙
𝐴](𝑛𝑒𝑤). The new XOR shares become old shares (shown

as new and old in the expression) in the next iteration with
the next chosen LHS constant attribute of 𝑟𝜙. Fig. 2 shows an
example of XOR shares of the rule matching set membership
w. r. t. rule 𝑟1 ∈ 𝑇Σ on CUSTOMER relation of 𝐷2 in
Example 1.1.

Algorithm 1: Secure Blocking Protocol
Input: 𝐷 (𝒜), and 𝑋 ′ of 𝑇𝑋

Σ (ℬ)
Output: 𝑡𝑖[𝑟

𝜙
𝐴] and 𝑡𝑖[𝑟

𝜙
𝐵], ∀𝑡𝑖 ∈ 𝐷

/*initialize membership (all records are members)*/
foreach 𝑡𝑖 ∈ 𝐷 do

𝑡𝑖[𝑟
𝜙
𝐴]← 1, 𝑡𝑖[𝑟𝜙𝐵]← 0 ;

end
foreach 𝑥𝑘 ∈ 𝑋 ′ (Chosen by ℬ from a random order of 𝑘) do

foreach 𝑡𝑖 ∈ 𝐷 do
(a) 𝒜 and ℬ use the oblivious attribute selection
protocol to generate random shares 𝑢 and 𝑣 such that
(𝑢+ 𝑣) = 𝑡𝑖[𝑥𝑘]; 𝒜 retains 𝑢 and ℬ retains 𝑣.
(b) ℬ generates the random XOR share for the rule
matching set membership, 𝑡𝑖[𝑟𝜙𝐵](𝑛𝑒𝑤).
(c) ℬ creates the garbled circuit with the following
expression:
𝑡𝑖[𝑟

𝜙
𝐴](𝑛𝑒𝑤)← ((𝑡𝑖[𝑟

𝜙
𝐴](𝑜𝑙𝑑)⊕𝑡𝑖[𝑟𝜙𝐵](𝑜𝑙𝑑))∧((𝑢+𝑣) =

𝑟𝜙[𝑥𝑘]))⊕ 𝑡𝑖[𝑟
𝜙
𝐵](𝑛𝑒𝑤)

(d) ℬ sends 𝒜 keys for inputs 𝑣, 𝑟𝜙[𝑥𝑘] and 𝑡𝑖[𝑟
𝜙
𝐵]; 𝒜

performs 𝑂𝑇 2
1 for keys of inputs 𝑢 and 𝑡𝑖[𝑟

𝜙
𝐴]

(e) ℬ sends 𝒜 the garbled circuit, 𝒜 evaluates it and
obtains the bit 𝑡𝑖[𝑟𝜙𝐴](𝑛𝑒𝑤)

end
end

B. Obfuscated Matching Set Generation

After the secure blocking step, the records are partitioned
into rule matching sets, 𝑆𝜙,∀𝑟𝜙 ∈ 𝑇Σ. We call the union of all
rule matching sets, the Matching Set, denoted as 𝑆 =

∪
𝜙 𝑆𝜙.

The Matching Set can be determined by the following secure
circuit evaluated on 𝒜’s side: ∀𝑟𝜙 ∈ 𝑇Σ,

⋁
(𝑡𝑖[𝑟

𝜙
𝐴] ⊕ 𝑡𝑖[𝑟

𝜙
𝐵]).

Therefore, the subsequent steps in the protocol can consider
just the records in the matching set 𝑆 instead of the whole
database 𝐷. We also notice that the set membership of 𝑡𝑖
would be visible to both 𝒜 and ℬ.

The above naı̈ve approach for determining the matching
set is subject to privacy attacks. For example, the fewer the
number of rules, the higher the chances for ℬ to be able to link
records to the constant parts of the rule. The worst case is: if ℬ
has a single rule that matches a single database record on 𝒜!
Consider another situation where all the rules have constant
values and no wildcards. If this information along with the
list of attributes in the pattern tableaux is known to 𝒜, she
will be able to accurately regenerate the rules on her side. In
order to eliminate this problem, random records-ids are added
to the matching set and thus the obfuscated matching set is
generated.

The objective of generating an obfuscated Matching Set is
to protect both 𝒜 and ℬ from the privacy concerns that may
arise primarily due to a small number of rules The obfuscated
matching set, 𝒮 can be generated by adding extra record-ids
to the existing members of the Matching Set, 𝑆. We define
an obfuscation parameter, 𝜂 as the percentage of records that
need to be added to 𝑆 to generate 𝒮. 𝜂 provides a bound for
the number of records to be added to 𝒮. However, in order
to do this, 𝒜 and ℬ must learn the current size of 𝑆, ∣𝑆∣,
which can be securely obtained by having 𝒜 and ℬ evaluate
the following expression in a secure fashion: ∣𝑆∣ ← ∀𝑟𝜙 ∈

𝑇Σ,

∣𝐷∣∑
𝑖=0

(𝑡𝑖[𝑟
𝜙
𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵]).

The result of secure count of matching set records remains
oblivious to ℬ. To provide sufficient privacy for a small
number of records in the matching set (such as, ∣𝑆∣ = 1) 𝒜
can set 𝜂 to a higher value (𝜂 >> 1.0). On the other hand, for
a sufficiently large number of records it can be set to a smaller
value (such as, 𝜂 << 1.0). The set membership of 𝒮 can be
obliviously obtained by simply OR-ing a randomly generated
bit ‘1’ (for ∣𝑆∣×(1+𝜂) records) with the Boolean expression of
the secure matching set generation. The modified expression to
determine whether 𝑡𝑖 is a member of the obfuscated matching
set, 𝒮 would be: ∀𝑟𝜙 ∈ 𝑇Σ, (

⋁
(𝑡𝑖[𝑟

𝜙
𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵]))∨𝑏𝑖, where 𝑏𝑖

is randomly chosen from {0, 1}. Thus, we can write 𝒮 = {𝑡𝑖 ∈
𝐷∣𝑏𝑖 ∨ (𝑡𝑖[𝑟

𝜙
𝐴] ⊕ 𝑡𝑖[𝑟

𝜙
𝐵]), 1 ≤ 𝑖 ≤ ∣𝐷∣} and ∣{𝑏𝑖 = 1, 1 ≤ 𝑖 ≤

∣𝐷∣}∣ = ∣𝑆∣× (1+𝜂). Therefore, the bound for the number of
records in 𝒮 would be: ∣𝑆∣×(1+𝜂) ≤ ∣𝒮∣ ≤ ∣𝑆∣×(2+𝜂). After
securely evaluating the expression both𝒜 and ℬ become aware
of the members of the obfuscated matching set, 𝒮. Henceforth,
the protocol considers only the records of 𝒮 instead of 𝐷. For
simplicity reasons we consider the records in 𝒮 are indexed
from 1 through ∣𝒮∣. Fig. 2 shows an example of an obfuscated

rid 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

𝑡𝑖[𝑟
1
𝐴] 0 1 0 1 0 0 1 0 1 1 0

𝑡𝑖[𝑟
1
𝑏] 1 0 1 0 1 1 0 0 1 1 0

𝑏𝑖 0 1 1 0 1 1 0 1 1 1 1
𝑡𝑖[𝒮] 1 1 1 1 1 1 1 1 1 1 1

Fig. 2. The XOR shares of rule matching set membership and obfuscated
matching set of 𝐷2 w.r.t. 𝑟1 ∈ 𝑇Σ and 𝜂 = 0.3

matching set for 𝐷2 considering just one rule 𝑟1 ∈ 𝑇Σ and
𝜂 = 0.3.

C. Match Matrix Generation

We denote the exact match (using edit distance) of two
records on some attribute with the value 0 and mismatch
with the value 1. This information is hidden from ℬ and
is used as input by 𝒜 to the ‘garbled circuit’ in oblivious
grouping and inconsistency detection with wildcards steps.
Before these steps, 𝒜 generates ∣𝒮∣ × ∣𝒮∣ distance matrices
for all 𝑚 attributes agreed upon by 𝒜 and ℬ prior to the
protocol. An entry 𝑑𝑘𝑖𝑗 = 0/1 in the 𝑘-th matrix indicates a
match/mismatch between 𝑡𝑖 and 𝑡𝑗 on the 𝑘-th attribute. The
space complexity of match matrices is 𝑂(𝑚× ∣𝒮∣2).
D. Inconsistency Detection with RHS const.

The secure blocking step obliviously generates one rule
matching set, 𝑆𝜙 per rule (𝑟𝜙 ∈ 𝑇Σ). All records 𝑡𝑖 ∈ 𝑆𝜙

exactly match the constants on the LHS in the rule 𝑟𝜙, and
𝑆𝜙 membership is obliviously shared between 𝒜 and ℬ. If
any RHS attribute of the rule is a constant, the record 𝑡𝑖 ∈ 𝑆𝜙

must exactly match that value. This step is very similar to the
secure blocking step; here the secure comparison is performed
between a data record (𝑡[𝑦𝑘]) and a constant RHS (instead of
LHS) attribute (𝑟[𝑦𝑘]) in a rule. During initialization the record
is considered consistent w. r. t. the rule (𝑡[Υ𝜙

𝐴] = 𝑡[Υ𝜙
𝐴] = 0).

The inconsistency/consistency information is then XOR shared
between 𝒜 and ℬ such that:

𝑡𝑖[Υ
𝜙
𝐴]⊕𝑡𝑖[Υ𝜙

𝐵] =

{
1, if record 𝑡𝑖 ∈ 𝑆𝜙 is inconsistent
0, otherwise

Like the secure blocking protocol, ℬ keeps his share fo
inconsistency bits, 𝑡𝑖[Υ

𝜙
𝐵] and 𝑡𝑗 [Υ

𝜙
𝐵]. 𝒜 obtains the following

Boolean circuit from ℬ and securely evaluates it to determine
her share of inconsistency bits, 𝑡𝑖[Υ

𝜙
𝐴] and 𝑡𝑗 [Υ

𝜙
𝐴]:

𝑡𝑖[Υ
𝜙
𝐴](𝑛𝑒𝑤)← ((𝑡𝑖[𝑟

𝜙
𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵]) ∧ (((𝑢+ 𝑣) ∕= 𝑟𝜙[𝑦𝑘]) ∨

((𝑡𝑖[Υ
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑)))))⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤)

The inconsistency bits obtained from the previous iteration
(shown as old in the expression) are used as inputs in the
current iteration to check if 𝑡𝑖 and 𝑡𝑗 are still consistent.

E. Oblivious Grouping with LHS wildcards

The goal of this step is to perform a grouping of the records
in the obfuscated matching set, 𝒮 , that exactly match on all
LHS attributes 𝑥𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑚 of a specific rule. Here,
𝑚 is the number of attributes in 𝑇𝑋

Σ . Each relevant record
will be assigned a group number and that number is additively
shared between 𝒜 and ℬ. For a CFD rule in the pattern tableau

rid 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

𝑡𝑖[𝐺
𝜙
𝐴] 1 10 55 16 6 -61 -71 30 65 -81 87

𝑡𝑖[𝐺
𝜙
𝐵] 0 -9 -54 -15 -1 66 76 -22 -56 91 -76

sum 1 1 1 1 5 5 5 8 9 10 11

Fig. 3. Additive shares of group numbers of 𝐷2 after Oblivious Grouping
performed with attribute ‘ZIP’ w.r.t. 𝑟1 ∈ 𝑇Σ

rid 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

𝑡𝑖[Υ
1
𝐴] 1 0 0 1 0 1 0 1 0 1 0

𝑡𝑖[Υ
1
𝐵] 0 1 1 0 1 0 1 1 0 1 0

𝑡𝑖[Υ1] 1 1 1 1 1 1 1 0 0 0 0

Fig. 4. XOR shares of inconsistency in 𝐷2 records w.r.t. 𝑟1 ∈ 𝑇Σ

𝑟𝜙 ∈ 𝑇Σ, the assigned group number for tuple 𝑡𝑖 is denoted as
𝑡𝑖[𝐺

𝜙]. The expression 𝑡𝑖[𝐺
𝜙] = 𝑡𝑗 [𝐺

𝜙] denotes that for a rule
𝜙 : 𝑋 → 𝑌, ∀𝑋𝑙 ∈ 𝑋 : 𝑡𝑖[𝑋𝑙] = 𝑡𝑗 [𝑋𝑙] ≍ 𝑟𝜙[𝑋𝑙]. The basic
idea of this algorithm is to compare each record 𝑡𝑖 with every
other record 𝑡𝑗 that appears latter in 𝒮, and assign a group
number to 𝑡𝑗 based on the match/mismatch on LHS wildcard
attribute in a CFD rule. Initially, for any record the group
number is the same as the record index (𝑡𝑗 [𝐺𝜙] = 𝑗). The first
iteration of the oblivious grouping (Algorithm 2) assigns the
group number of 𝑡𝑖 to 𝑡𝑗 (i.e., 𝑡𝑗 [𝐺𝜙](𝑛𝑒𝑤)← 𝑡𝑖[𝐺

𝜙]), when
𝑡𝑖 and 𝑡𝑗 are in the same rule matching set (𝑡𝑖[𝑟𝜙] = 𝑡𝑗 [𝑟

𝜙])
and match on the first wildcard attribute 𝑥𝑘1 chosen by ℬ
(𝑑𝑘1

𝑖𝑗 = 0). Otherwise, the group number of 𝑡𝑗 remains the
same (i.e., 𝑡𝑗 [𝐺𝜙](𝑛𝑒𝑤) ← 𝑡𝑗 [𝐺

𝜙](𝑜𝑙𝑑)). Algorithm 2 shows
that the additive shares of group number for 𝑡𝑗 , 𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤)

and 𝑡𝑗 [𝐺
𝜙
𝐵](𝑛𝑒𝑤) are always generated irrespective of whether

there is a new assignment or not. Fig. 3 shows additive shares
of group numbers assigned to records in 𝐷2 on attribute ‘ZIP’
w.r.t. 𝑟1 ∈ 𝑇Σ.

If there is more than one wildcard in the LHS of a rule,
successive iterations are necessary for the oblivious grouping
algorithm. We briefly describe the necessary modifications to
the secure expression of oblivious grouping first iteration to
handle these successive iterations. Basically, the expression
evaluates three things: 1) are 𝑡𝑖 and 𝑡𝑗 in the same rule
matching set (𝑡𝑖[𝑟𝜙] = 𝑡𝑗 [𝑟

𝜙]), 2) do 𝑡𝑖 and 𝑡𝑗 belong to
the same group after the previous iteration (𝑡𝑖[𝐺𝜙](𝑜𝑙𝑑) =
𝑡𝑗 [𝐺

𝜙](𝑜𝑙𝑑)), and 3) is there a mismatch between values 𝑡𝑖[𝑥𝑘]
and 𝑡𝑗 [𝑥𝑘] (i.e., 𝑑𝑘𝑖𝑗 = 1). If all of the above conditions are
true, 𝑡𝑗 will be assigned group number 𝑗. The uniqueness of
this group number assignment ensures that 𝑡𝑗 is not sharing
the group number with any other record. Otherwise, the old
group number is retained, but new shares 𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤) and

𝑡𝑗 [𝐺
𝜙
𝐵](𝑛𝑒𝑤) are generated. The detailed algorithm for the

subsequent iterations is provided in the Appendix.

F. Inconsistency Detection with RHS wildcards

After performing the oblivious grouping of the records per
rule, the next phase of the protocol is to find inconsistent
records based on the RHS wildcards. Like the Oblivious
Grouping step , this step has also to consider pair-wise match
between records. Plainly, the records in the same group are

Algorithm 2: Oblivious Grouping with LHS wildcards
(First Iteration)

Input: 𝒮 ⊆ 𝐷, 𝑡𝑖[𝑟
𝜙
𝐴] and 𝑡𝑖[𝑟

𝜙
𝐵], 1 ≤ 𝑖 ≤ 𝑛, attribute

index 𝑘1
Output: 𝑡𝑖[𝐺𝜙

𝐴] and 𝑡𝑖[𝐺
𝜙
𝐵]

//initialization
foreach 𝑡𝑖 ∈ 𝑆𝜙 do

𝑡𝑖[𝐺
𝜙
𝐴]← 𝑖 , 𝑡𝑖[𝐺𝜙

𝐵]← 0;
end
ℬ chooses a random attribute index 𝑘1, 1 ≤ 𝑘1 ≤ 𝑚
foreach 𝑡𝑖 ∈ 𝒮 do

foreach 𝑡𝑗 ∈ 𝒮, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
(a) ℬ generates a random share 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤) and

keeps it
(b) ℬ creates the garbled circuit with the following
exp.:
if
(𝑡𝑖[𝑟

𝜙
𝐴]⊕𝑡𝑖[𝑟𝜙𝐵] = 1)∧(𝑡𝑗 [𝑟𝜙𝐴]⊕𝑡𝑗 [𝑟𝜙𝐵] = 1)∧(𝑑𝑘1

𝑖𝑗 = 0)
then

𝑡𝑗 [𝐺
𝜙
𝐴](𝑛𝑒𝑤)← 𝑡𝑖[𝐺

𝜙
𝐴] + 𝑡𝑖[𝐺

𝜙
𝐵]− 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤)

else
𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤)←

𝑡𝑗 [𝐺
𝜙
𝐴](𝑜𝑙𝑑) + 𝑡𝑗 [𝐺

𝜙
𝐵](𝑜𝑙𝑑)− 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤)

end
(c) ℬ sends 𝒜 keys for inputs 𝑡𝑖[𝑟

𝜙
𝐵], 𝑡𝑗 [𝑟

𝜙
𝐵], 𝑡𝑖[𝐺

𝜙
𝐵],

𝑡𝑗 [𝐺
𝜙
𝐵](𝑜𝑙𝑑), 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤), and 𝑘1; 𝒜 performs 𝑂𝑇 2

1

for keys of 𝑡𝑖[𝑟𝜙𝐴], 𝑡𝑗 [𝑟
𝜙
𝐴], 𝑡𝑖[𝐺

𝜙
𝐴], 𝑡𝑗 [𝐺

𝜙
𝐴](𝑜𝑙𝑑), and

𝑑1𝑖𝑗 ,...,𝑑𝑚𝑖𝑗
(d) ℬ sends 𝒜 the garbled circuit, 𝒜 evaluates it and
obtains the value 𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤)

end
end

inconsistent, if at least one of their values mismatch on the
RHS attribute(s) in the rule [5]. The initial inconsistency XOR
shares, 𝑡𝑖[Υ

𝜙
𝐴] and 𝑡𝑖[Υ

𝜙
𝐵] are obtained from the inconsistency

detection with RHS constants step. If there are no constants
on RHS, the shares are initialized to 0.

Algorithm 3 shows the inconsistency detection with RHS
wildcards step. In this step, for each wildcard attributes in
the RHS, each record 𝑡𝑖 is compared against the records 𝑡𝑗
such that 𝑖 < 𝑗. The Boolean expression assigned to 𝑡𝑒𝑚𝑝1
actually checks whether both records 𝑡𝑖 and 𝑡𝑗 are members of
rule matching set, 𝑆𝜙, and if they have the same group number.
The inconsistency bits modified in the previous iteration are
shown as old shares in the expression of current iteration. The
expression 𝑡𝑒𝑚𝑝2 checks whether at least one of 𝑡𝑖 or 𝑡𝑗 is
inconsistent. Records 𝑡𝑖 and 𝑡𝑗 will be inconsistent if any of
them are currently inconsistent or there is a mismatch on the
𝑘-th attribute, i.e., 𝑡𝑖[𝑦𝑘] ∕= 𝑡𝑗 [𝑦𝑘]. Therefore, in the expression
both 𝑡𝑖 and 𝑡𝑗 are marked inconsistent if 𝑡𝑒𝑚𝑝1 is 1 and either
𝑡𝑒𝑚𝑝2 is 1, or 𝑡𝑖 and 𝑡𝑗 mismatch on the 𝑘-th attribute, i.e.,
𝑑𝑘𝑖𝑗 = 1. If the above condition does not hold, the old values
are retained, but new shares, 𝑡𝑖[Υ

𝜙
𝐴](𝑛𝑒𝑤) and 𝑡𝑗 [Υ

𝜙
𝐵](𝑛𝑒𝑤)

are generated for 𝒜 and ℬ. Fig. 4 shows an example of XOR
shared inconsistency bits of records in 𝐷2 w. r. t. 𝑟1 ∈ 𝑇Σ.

Algorithm 3: Inconsistency Detection with RHS wildcards

Input: 𝒮 ⊆ 𝐷, 𝑡𝑖[𝑟
𝜙
𝐴] and 𝑡𝑖[𝑟

𝜙
𝐵], 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖[𝐺

𝜙
𝐴] and

𝑡𝑖[𝐺
𝜙
𝐵], 𝑡𝑖[Υ

𝜙
𝐴](𝑜𝑙𝑑) and 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑), ∀𝑡𝑖 ∈ 𝐷′ from

inconsistency detection with RHS constants step
Output: 𝑡𝑖[Υ

𝜙
𝐴](𝑛𝑒𝑤) and 𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤), ∀𝑡𝑖 ∈ 𝐷′

foreach 𝑥𝑘 ∈ 𝑋, 1 ≤ 𝑘 ≤ 𝑚 do
foreach 𝑡𝑖 ∈ 𝒮 do

foreach 𝑡𝑗 ∈ 𝒮, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
(a) ℬ generates random XOR shares 𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤)

and 𝑡𝑗 [Υ
𝜙
𝐵](𝑛𝑒𝑤)

(b) ℬ creates the garbled circuit with the following
exp.:
𝑡𝑒𝑚𝑝1← (𝑡𝑖[𝑟

𝜙
𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵]) ∧ (𝑡𝑗 [𝑟

𝜙
𝐴]⊕ 𝑡𝑗 [𝑟

𝜙
𝐵]) ∧

(𝑡𝑖[𝐺
𝜙
𝐴] + 𝑡𝑖[𝐺

𝜙
𝐵] = 𝑡𝑗 [𝐺

𝜙
𝐴] + 𝑡𝑗 [𝐺

𝜙
𝐵])

𝑡𝑒𝑚𝑝2← (𝑡𝑖[Υ
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑)) ∨

(𝑡𝑗 [𝐶
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑗 [Υ

𝜙
𝐵](𝑜𝑙𝑑))

𝑡𝑒𝑚𝑝3← 𝑡𝑒𝑚𝑝1 ∧ (𝑑𝑘𝑖𝑗 ∨ 𝑡𝑒𝑚𝑝2)
if 𝑡𝑒𝑚𝑝3 = 1 then

𝑡𝑖[Υ
𝜙
𝐴](𝑛𝑒𝑤)← 𝑡𝑒𝑚𝑝3⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤)

𝑡𝑗 [Υ
𝜙
𝐴](𝑛𝑒𝑤)← 𝑡𝑒𝑚𝑝3⊕ 𝑡𝑗 [Υ

𝜙
𝐵](𝑛𝑒𝑤)

else
𝑡𝑖[Υ

𝜙
𝐴](𝑛𝑒𝑤)←

(𝑡𝑖[Υ
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑))⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤)

𝑡𝑗 [Υ
𝜙
𝐴](𝑛𝑒𝑤)←

(𝑡𝑗 [Υ
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑗 [Υ

𝜙
𝐵](𝑜𝑙𝑑))⊕ 𝑡𝑗 [Υ

𝜙
𝐵](𝑛𝑒𝑤)

end
(c) ℬ sends 𝒜 keys for inputs 𝑡𝑖[𝑟

𝜙
𝐵], 𝑡𝑗 [𝑟

𝜙
𝐵],

𝑡𝑖[𝐺
𝜙
𝐵], 𝑡𝑗 [𝐺

𝜙
𝐵], 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑),

𝑡𝑗 [Υ
𝜙
𝐵](𝑜𝑙𝑑),𝑡𝑖[Υ

𝜙
𝐵](𝑛𝑒𝑤), 𝑡𝑗 [Υ𝜙

𝐵](𝑛𝑒𝑤) and 𝑘; 𝒜
performs 𝑂𝑇 2

1 for keys of inputs 𝑡𝑖[𝑟
𝜙
𝐴], 𝑡𝑗 [𝑟

𝜙
𝐴],

𝑡𝑖[𝐺
𝜙
𝐴], 𝑡𝑗 [𝐺

𝜙
𝐴], 𝑡𝑖[Υ

𝜙
𝐴](𝑜𝑙𝑑),

𝑡𝑗 [Υ
𝜙
𝐴](𝑜𝑙𝑑),𝑡𝑖[Υ

𝜙
𝐴](𝑛𝑒𝑤), 𝑡𝑗 [Υ𝜙

𝐴](𝑛𝑒𝑤), and
𝑑1𝑖𝑗 ,...,𝑑𝑚𝑖𝑗
(d) ℬ sends 𝒜 the garbled circuit, 𝒜 evaluates it
and obtains the value 𝑡𝑖[Υ

𝜙
𝐴] and 𝑡𝑗 [Υ

𝜙
𝐴]

end
end

end

G. Final Inconsistency Detection

The final step of the protocol is to securely detect the records
that are inconsistent w. r. t. at least one rule 𝑟𝜙 ∈ 𝑇Σ. The
information that whether a record is inconsistent or not is only
available to 𝒜 and ℬ learns nothing about it. Recall from
section III that the inconsistency of a record is denoted by a
bit, 𝐶𝑖 for 𝑡𝑖 ∈ 𝒮 ⊆ 𝐷. Thus,𝒜 simply evaluates the following
secure expression to determine the inconsistency for record 𝑡𝑖:

𝑡𝑖[𝐶
𝜙]← ∀𝑟𝜙 ∈ 𝑇Σ,

⋁
𝜙(𝑡𝑖[Υ

𝜙
𝐴]⊕ 𝑡𝑖[Υ

𝜙
𝐵])

V. EXPERIMENTS

We have implemented a prototype of our privacy-preserving
inconsistency detection protocol on top of the fairplay secure
two-party computation platform [19]. Developed in Java, fair-
play allows two parties to perform TCP/IP socket commu-
nication and securely evaluate a Boolean expression using
a ‘garbled’ representation of a circuit. The pseudo-random
generator function used in the fairplay implementation is SHA-
1 which generates digests of length 160 bits that are used

for circuit communication. We used the ‘Adult’ dataset from
UCI Machine Learning Repository [20] namely and 6 rules
(5 constant rules and 1 rule with wildcards) to conduct the
experiments.

The goal of the experiment is to measure and report the
performance of the individual major steps of the protocol
(secure blocking, oblivious grouping, and inconsistency detec-
tion with constants and wildcards). All of these major steps
can be performed in parallel for individual rules. The timing
shown here is the average for all rules and attributes used.
Fig. 5a shows the time required by the secure blocking and
inconsistency detection with RHS constants steps with varying
numbers of records (100-1000) from the original dataset and
matching set respectively. Since the secure expressions of
these two steps are very similar, they demonstrate almost
the same performance and the time grows linearly w.r.t. the
number of records. Fig. 5d shows the time required by the
oblivious grouping and inconsistency detection with RHS
wildcards steps with varying numbers of records (100-500).
The time grows quadratically w.r.t. the number of records.
From the detailed time shown in fig. 5b and 5e, it is clear
that most of the time in our approach is spent on oblivious
transfer of inputs. It supports the fact that the communication
complexity dominates the overall protocol. Fig. 5c shows the
sizes of matching set and obfuscated matching sets generated
for 𝜂 = 0.1, 0.4 and 0.8 with varying numbers of records
(100-1000) in our dataset. Since the number of records in the
matching set is sufficiently large (e.g., for 600 records 364
matching set entries), setting 𝜂 to a large value such as 0.4 and
0.8 would include the same number of records as the original
recordset and no performance will be gained. Fig. 5f shows the
significant reduction in time for oblivious transfer when the
group number input share is reduced from 32 bits to 16 bits
in the circuit. However, the ‘garbled circuit’ communication
time remains the same because of the fixed length of SHA-1
function.

The quadratic algorithms in the protocol, namely, oblivious
grouping and inconsistency detection with wildcards (the
complexity analysis is reported in the Appendix) incur high
cost on large datasets. However, hash partitioning the dataset
on the attributes agreed upon between the data and rules
owner can significantly contribute to the performance gain,
while maintaining the correctness of the protocol. The hash
partitioning can be done on the attributes that have either
constants or wildcards on the LHS of all rules, but do not
have wildcards on the RHS. In cases where such attributes
cannot be found, the rules can be partitioned to satisfy these
criteria and thus different hash partitioning can be used on the
same dataset. However, as a trade-off, the rules owner may
have to reveal some information about the attributes (having
wildcards or constants in the rules), but still no data content
will be leaked.

VI. RELATED WORK

Much work has been done on data quality [21], record
linkage [22], and extending functional dependencies [5], [6],

[8], [9] to identify data quality rules that will be used to clean
the data. However, there have been very few efforts on data
quality and data cleaning in private settings. Existing efforts
on private record linkage protocols include [23] and [13].
Scannapieco et. al. [13] transform the records to a vector
space (with the SparseMap approach) before performing the
schema and data matching by a third party. Yakout et. al. [23]
use the same approach for embedding records and eliminate
third party by using secure dot product protocol. The privacy
preserving data quality assessment [14] embeds data and
domain look-up table values with Borugain Embedding. The
encrypted data is verified against encrypted look-up table
values by a third party (certifier). The use of this protocol
will allow the parties to know the statistics of records after
matching with the records. Privacy preserving data mining [11]
and data imputation [24]use cryptographic protocols. However,
they do not provide solution to the data cleaning problem.

VII. CONCLUSIONS

We proposed a novel algorithm for identifying inconsistent
records, detected based on CFD rules, from private data
without compromising both data and rules. To the best of our
knowledge, this is the first work that solves this problem for
rule-based private data cleaning without the use of a third
party. The key idea is to obliviously perform all the steps
involved in identifying inconsistent records, providing the final
result only to the appropriate party. In our case, the final
result is an indicator of inconsistency for each record provided
only to the data owner. The use of Yao’s combinatorial
garbled circuits for secure function evaluation (SFE) provides
sufficient privacy guarantees. The high computational and
communication cost due to SFE is minimized by limiting
the number of input bits (to reduce the overhead of OT
protocol). The obfuscated matching set eliminates the need for
considering the whole dataset (from oblivious grouping step
and onwards) while providing sufficient privacy guarantee.

Introduced mainly for data cleaning, CFD rules can only
detect inconsistent records if the records exactly match the
LHS of the rule. This requires that the LHS of the record
must have to be clean to detect the inconsistent records.
This requirement may not be necessary with other forms of
data quality rules such as conditional inclusion dependencies
(CIND) and Matching Dependencies (MD). Two important
extensions to our privacy-preserving inconsistency detection
framework is to include different data quality rules [8], [25],
[7] as well as provide repair suggestions for dirty data to
complete the picture of the privacy-preserving data cleaning.

REFERENCES

[1] W. Eckerson, “Data warehousing special report: Data quality and the
bottom line,” http://www.tdwi.org/research/display.aspx?ID=6064, 2002.

[2] J. M. Hellerstein, “Quantitative data cleaning for large databases,”
Report for UNECE,2008.

[3] C. C. Shilakes and J. Tylman, “Enterprise information portals,” New
York, USA, 1998.

[4] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga, “Cords:
Automatic discovery of correlations and soft functional dependencies,”
in SIGMOD, 2004.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Number of records

Secure Blocking
Inconsistency LHS Const

(a) Secure Blocking and Inconsis. Detection
LHS Const. overall

 0

 200

 400

 600

 800

 1000

Secure Block. Inc. LHS Const

A
ve

ra
ge

 ti
m

e
in

 s
ec

on
ds

Timing for different tasks (500 records)

Ob. Attr. Selection
Init. of Circuit
Circuit Comm.
Oblivious Transfer
Eval. & Output

(b) Secure Blocking and Inconsis. Detection
LHS Const. details(500 records)

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

N
um

be
r

of
 m

at
ch

in
g

se
t r

ec
or

ds

Number of records in record set

Matching set entries
obf.lower bound Eta=0.1

obf. entries Eta=0.1
obf. lower bound=0.4

obf. entries Eta=0.4
obf.lower bound Eta=0.8

obf. entries Eta=0.8

(c) Number of records with different 𝜂 val-
ues

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

A
ve

ra
ge

 ti
m

e
in

 h
ou

rs

Number of records

Secure Grouping first iteration
Inconsistency Detection with Wildcards

(d) Ob. Grouping and Inconsis. Detection
RHS wildcards overall

 0

 1

 2

 3

 4

 5

Ob. Group. In. Det. Wildcards

A
ve

ra
ge

 ti
m

e
in

 h
ou

rs

Timing for different tasks (300 records)

Init. of Circuit
Circuit Comm.
Oblivious Transfer
Eval. & Output

(e) Ob. Grouping and Inconsis. Detection
RHS wildcards details (300 records)

 0

 1

 2

 3

 4

 5

 6

 7

 8

Group 32bit Group 16bit

A
ve

ra
ge

 ti
m

e
in

 h
ou

rs

Timing for different tasks (300 records)

Init. of Circuit
Circuit Comm.

Oblivious Transfer
Eval. & Output

(f) Ob. Grouping 16 and 32 bit inputs

Fig. 5. Performance of privacy-preserving inconsistency detection

[5] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,
“Conditional functional dependencies for data cleaning,” vol. 0, 2007.

[6] L. Bravo, W. Fan, and S. Ma, “Extending dependencies with conditions,”
in VLDB, 2007.

[7] S. Song and L. Chen, “Discovering matching dependencies,” Tech. Rep.
arXiv:0903.3317, Mar 2009.

[8] A. Arasu, C. Ré, and D. Suciu, “Large-scale deduplication with con-
straints using dedupalog,” in ICDE, 2009.

[9] F. Chiang and R. J. Miller, “Discovering data quality rules,” Proc. VLDB
Endow., vol. 1, no. 1, 2008.

[10] W. Fan, F. Geerts, S. Ma, and H. Müller, “Detecting inconsistencies in
distributed data,” in ICDE, 2010.

[11] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” J. Cryptol-
ogy, vol. 15, no. 3, 2002.

[12] A. C. Yao, “Protocols for secure computations,” in SFCS, 1982.
[13] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid, “Privacy

preserving schema and data matching,” in SIGMOD, 2007.
[14] D. Barone, A. Maurino, F. Stella, and C. Batini, “A privacy-preserving

framework for accuracy and completeness quality assessment,” in QDB,
VLDB, 2009.

[15] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, 2002.

[16] A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco, “A hybrid
approach to private record linkage,” in ICDE, 2008.

[17] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-
preserving remote diagnostics,” in CCS, 2007.

[18] M. O. Rabin, “How to exchange secrets with oblivious transfer,”
Cryptology ePrint Archive, Report 2005/187, 2005.

[19] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay a secure two-
party computation system,” in USENIX Security Symposium, 2004.

[20] A. Frank and A. Asuncion, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, 2010.

[21] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, ser. Data-Centric Systems and Applications. Springer,
2006.

[22] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” IEEE Trans. on Knowl. and Data Eng., vol. 19,
no. 1, 2007.

[23] M. Yakout, M. J. Atallah, and A. Elmagarmid, “Efficient private record
linkage,” in ICDE, 2009.

[24] G. Jagannathan and R. N. Wright, “Privacy-preserving imputation of
missing data,” Data K. Eng., vol. 65, no. 1, 2008.

[25] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “On generating
near-optimal tableaux for conditional functional dependencies,” Proc.
VLDB Endow., vol. 1, no. 1, 2008.

[26] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in FOCS, 1997.

[27] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, 1999.

APPENDIX

TABLE IV
NOTATIONS

Terms Interpretations

𝑡𝑖[𝑟
𝜙
𝐴] and

𝑡𝑖[𝑟
𝜙
𝐵]

XOR shares of rule matching set membership bit
assigned to 𝒜 and ℬ such that
𝑡𝑖[𝑟

𝜙
𝐴]⊕𝑡𝑖[𝑟𝜙𝐵] = 1, if 𝑡𝑖 ∈ 𝑆𝜙 , and 0, otherwise.

𝑡𝑖[𝐺
𝜙
𝐴]

and
𝑡𝑖[𝐺

𝜙
𝐵]

Additive shares of group number assigned to
𝒜(ℬ) such that
𝑡𝑖[𝐺

𝜙
𝐴] + 𝑡𝑖[𝐺

𝜙
𝐵] denotes the group number of

record 𝑡𝑖.
𝑑𝑘𝑖𝑗 An indicator of exact match on attribute values

held by ℬ such that
𝑑𝑘𝑖𝑗 = 0, if 𝑡𝑖 and 𝑡𝑗 exactly match on attribute 𝑘
1, otherwise.

𝑡𝑖[Υ
𝜙
𝐴] and

𝑡𝑖[Υ
𝜙
𝐵]

XOR shares of consistency bit assigned to 𝒜 and
ℬ such that
𝑡𝑖[Υ

𝜙
𝐴] ⊕ 𝑡𝑖[Υ

𝜙
𝐵] = 1, if 𝑡𝑖 ∈ Υ𝜙 , and 0,

otherwise.

The union-compatibility of two or more CFDs is defined
as CFDs having the same set of LHS and RHS attributes
in their pattern tableaux [5]. For example, for two CFDs,
𝜙1 : {𝑋 → 𝑌, 𝑇} and 𝜙2 : {𝑋 ′ → 𝑌 ′, 𝑇 ′} to be union-
compatible, the following must hold: 𝑋 = 𝑋 ′ and 𝑌 =
𝑌 ′. Using these union compatible rules, we can construct

a unified or merged pattern tableau replacing two separate
tableaux 𝑇 and 𝑇 ′ [5]. However, if the CFDs are not union-
compatible, we need to extend the CFDs to have the same
set of attributes. For example, we extend CFD 𝜙1 to have
attributes 𝑍 = (𝑋 ∪ 𝑌) − (𝑋 ′ ∪ 𝑌 ′) and the value for
𝑟𝑘[𝑧],∀𝑧 ∈ 𝑍 where 𝑟𝑘 ∈ 𝑇 are set to ‘don’t care’ symbol‘@’.
The merged pattern tableau is denoted by 𝑇Σ for a set of CFDs
Σ. The definition for CFD violation described in the previous
section now considers only ‘@’-free attributes, 𝑋𝑓𝑟𝑒𝑒 ⊆ 𝑋
and 𝑌 𝑓𝑟𝑒𝑒 ⊆ 𝑌 (attributes with ‘-’ and constants only). Again,
to distinguish between two sets of attributes 𝑋 and 𝑌 , we can
split the pattern tableau 𝑇Σ into two tableaux 𝑇𝑋

Σ and 𝑇𝑌
Σ .

Recall from Table III, the merged pattern tableaux for CFDs
𝜙1 and 𝜙2 from Example 1.1.

A. Random Shares
Our protocol uses random shares of values between 𝒜

and ℬ to denote the rule matching set, inconsistency for a
specific rule, and split data content. Two types of shares are
used a) additive sharing and b) XOR sharing. For example,
in additive sharing, the value 𝑥 is additively split between
𝒜 and ℬ such that they have 𝑥𝐴 and 𝑥𝐵 respectively, and
𝑥 = 𝑥𝐴 + 𝑥𝐵 . None of the parties learn 𝑥. The additions
are done using modular arithmetic (mod 𝑁) where 𝑁 is a
sufficiently large number. For simplicity, we omit the use of
‘mod’ throughout the paper. A bit 𝑧 is XOR shared between
𝒜 and ℬ such that they have 𝑧𝐴 and 𝑧𝐵 respectively, and
𝑧 = 𝑧𝐴 ⊕ 𝑧𝐵 . None of the parties learn the actual value of 𝑧.

B. 1 out of 𝑁 Oblivious Transfer Protocol
Also denoted as 𝑂𝑇𝑁

1 , 1 out of 𝑁 oblivious transfer
protocol was first introduced by Rabin [18]. In this protocol,
one party (known as the sender) holds an array of values
�̄� = 𝑥[0], 𝑥[1], ..., 𝑥[𝑁] from some domain 𝑋 , and the other
party (known as the receiver or chooser) holds an index
𝑗, 1 ≤ 𝑗 ≤ 𝑁 . As a result of the protocol the receiver obtains
the value of 𝑥[𝑗] and nothing else, whereas the sender learns
nothing. Efficient 𝑂𝑇𝑁

1 protocols are described under the
heading of Private Information Retrieval (PIR) by Kushilevitz
et. al. [26]. The communication complexity of this protocol is
𝑂(𝑁0.5+𝑐), where the database is represented as an 𝑁 × 𝑁
bit matrix, 𝑐 = log𝜒 is a constant and 𝜒 is the security
parameter [26]. Latter described in this section, 𝑂𝑇 2

1 is used
in Yao’s secure function evaluation (SFE) protocol [12].

C. Homomorphic Encryption
A homomorphic encryption is a form of encryption where it

is possible to perform algebraic operations (such as, addition
and multiplication) on plaintexts given their ciphertexts. In
our protocol, we need an additive homomorphic encryption
scheme for the oblivious attribute selection protocol described
in the next subsection. With an additive homomorphic encyp-
tion, given two ciphertexts 𝐸(𝑥) and 𝐸(𝑦) of corresponding
plaintexts 𝑥 and 𝑦, it is possible to compute 𝐸(𝑥+𝑦). Paillier
cryptosystem [27] has this additive homomorphic property and
can provide safeguard against semi-honest participants of a
secure protocol.

D. Oblivious Attribute Selection Protocol

In the oblivious blocking step of our protocol, a match is
performed between constant (LHS) attributes in the rule and
data records. To hide the attributes included in the rule from 𝒜
and hide the actual data value from 𝐵, the oblivious attribute
selection protocol [17] is used. After performing this protocol,
the value of a particular attribute (chosen from a rule by ℬ
and hidden from 𝒜) is additively shared between 𝒜 and ℬ;
𝒜 and ℬ learn nothing else. The protocol goes as follows:
𝒜 generates public/private key pairs of additive homomorphic
encryption and sends ℬ the public key. 𝒜 sends the ciphertexts
for attribute values of record 𝑡𝑖, 𝐸(𝑡𝑖[𝑋1]), ..., 𝐸(𝑡𝑖[𝑋𝑚]) to ℬ,
where 𝐴𝑘, 1 ≤ 𝑖 ≤ 𝑚 is the list of attributes initially agreed
by 𝒜 and ℬ. ℬ generates a random share 𝑦 and computes
𝐸(𝑡𝑖[𝑋𝑘]− 𝑦) using a homomorphic encryption scheme. This
value is sent to 𝒜 which then obtains the plaintext, 𝑥 =
𝑡𝑖[𝑋𝑘] − 𝑦. Therefore, 𝒜 and ℬ obtain the additive share of
values for 𝑡𝑖[𝑋𝑘] such that 𝑡𝑖[𝑋𝑘] = 𝑥+ 𝑦.

E. Secure Function Evaluation

Our protocol extensively uses secure function evaluation
with secure two-party computation which was originally pro-
posed by Yao [12]. Yao uses a ‘combinatorial garbled circuit’
approach to securely compute a Boolean function represented
as a circuit. Let us consider that 𝒜 and ℬ want to securely
evaluate a function 𝐶(𝑥, 𝑦) with inputs (each with 𝑛 bits)
𝑥 = 𝑥1, ..., 𝑥𝑛 and 𝑦 = 𝑦1, ..., 𝑦𝑛 owned by 𝒜 and ℬ
respectively. 𝐶(𝑥, 𝑦) must be evaluated without sharing the
inputs with each other. In the ‘garbled circuit’, a random key
is generated for each input wire (0 or 1) of the gates. The
length of the key is the output of a pseudo-random number
generator used in the protocol. For a binary gate, all four
outputs represented as random keys are encrypted using two
corresponding input keys, thus generating the garbled truth
table for a gate. Let ℬ be the garbled circuit generator and
𝒜 be the evaluator. ℬ sends encrypted input bits to 𝒜 and 𝒜
obtains her encrypted input bits from ℬ by 𝑂𝑇 2

1 protocol. 𝒜
evaluates the circuit one gate at a time and obtains the final
output. For more details and complexity of the ‘garbled circuit’
evaluation see [12]. An efficient implement of a secure two-
party computation is fairplay [19] which was latter extended
to multi-party version named fairplayMP. For our setting with
two parties, namely data and rules owner, we use the fairplay
implementation to securely evaluate the Boolean expressions
in our protocol.

In this section we provide the algorithms for inconsistency
detection with RHS constants, and oblivious grouping (suc-
cessive iterations).

Each step in our protocol requires ℬ to prepare a ‘garbled
circuit’ and send it to 𝒜. 𝒜 will then independently evaluate
the circuit with encrypted inputs of both 𝒜 and ℬ, and retain
the output. Each of these circuits are made of gates and wires
(bits). The input and output wires in the gate are encoded
with random binary string or a ‘garbled value’. The ‘garbled
value’ of the output wire is encrypted using a pseudo-random
generator function 𝐹 keyed by the‘garbled values’ of the input

Algorithm 4: Inconsistency detection with RHS constants

Input: 𝒮 ⊆ 𝐷 (𝒜), attributes 𝑌 ′ of 𝑟𝜙 ℬ, and (𝑡𝑖[𝑟𝜙𝐴] and
𝑡𝑖[𝑟

𝜙
𝐵])

Output: 𝑡𝑖[Υ
𝜙
𝐴] and 𝑡𝑖[Υ

𝜙
𝐵],∀𝑡𝑖 ∈ 𝑆

/* initialization: all records are consistent */
foreach 𝑡𝑖 ∈ 𝒮 do

𝑡𝑖[Υ
𝜙
𝐴]← 0 ;

𝑡𝑖[Υ
𝜙
𝐵]← 0 ;

end
foreach 𝑦𝑘 ∈ 𝑌 ′ do

foreach 𝑡𝑖 ∈ 𝒮 do
(a) 𝒜 and ℬ use oblivious attribute selection and
generate random shares 𝑢 and 𝑣 such that
(𝑢+ 𝑣) = 𝑡𝑖[𝑦𝑘]; 𝒜 retains 𝑢 and ℬ retains 𝑣.
(b) ℬ generates random XOR share for inconsistency
bit, 𝑡𝑖[Υ𝜙

𝐵](𝑛𝑒𝑤).
(c) ℬ creates the garbled circuit with the following
expression:
𝑡𝑖[Υ

𝜙
𝐴]← ((𝑡𝑖[𝑟

𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[𝑟

𝜙
𝐵](𝑜𝑙𝑑)) ∧ (((𝑢+ 𝑣) ∕=

𝑟𝜙[𝑦𝑘]) ∨ ((𝑡𝑖[Υ
𝜙
𝐴](𝑜𝑙𝑑)⊕ 𝑡𝑖[Υ

𝜙
𝐵](𝑜𝑙𝑑)))))⊕

𝑡𝑖[Υ
𝜙
𝐵](𝑛𝑒𝑤)

(d) ℬ sends 𝒜 keys for inputs 𝑣, 𝑡𝑖[𝑟𝜙𝐵], 𝑡𝑖[Υ
𝜙
𝐵] and

𝑟𝜙[𝑦𝑘]; 𝒜 performs 𝑂𝑇 2
1 for keys of inputs 𝑢, 𝑡𝑖[𝑟𝜙𝐴],

𝑡𝑖[Υ
𝜙
𝐴]

(e) ℬ sends 𝒜 the garbled circuit, 𝒜 evaluates it and
obtains the bit 𝑡𝑖[Υ𝜙

𝐴](𝑛𝑒𝑤)
end

end

wires. For simplicity reasons, let us consider that all the gates
are binary gates. Hence, for each gate, ℬ has to send a garbled
truth table with 4 entries to 𝐴. The communication overhead
of the secure function evaluation (SFE) protocol is then 4𝑒𝑓 ,
where 𝑒 is the number of gates in the circuit and 𝑓 is the
size in bits of the random number generated by 𝐹 , e.g., the
SHA-1 hash function generates 160 bit values. As discussed
earlier, to evaluate the circuit,𝒜 needs to get her garbled inputs
from ℬ using 𝑂𝑇 2

1 protocol. Therefore, each circuit evaluation
involves 𝑛 oblivious transfers of inputs, where 𝑛 is the
number of input bits in the circuit. The overhead of evaluating
the circuit (computation cost) is negligible compared to the
overhead of the oblivious transfers (communication cost) [19].

Now, let us take a look at the performance of the individual
steps in our protocol. The performance of the ‘garbled circuit’
evaluation in each step depends on the size of the circuit (for
communication of the ‘garbled gates’) and oblivious transfer
of inputs. The ‘garbled circuit’ of each step have different
size and have different number of inputs. Therefore, the
performance is different for each step. First, we ignore the cost
of evaluating the ‘garbled circuit’ required in each iteration of
the steps and determine the complexity in terms of the number
of iterations. The secure blocking and inconsistency detection
with RHS constants steps take each a linear time in the number
of records multiplied by the maximum number of LHS and
RHS constant attributes. Let us consider that the maximum
number of LHS and RHS constant attributes in the rules are
𝑚′

𝑋 and 𝑚′
𝑌) respectively. Therefore, the complexity of these

Algorithm 5: Oblivious Grouping with LHS wild-
cards(subsequent iterations)

Input: 𝒮 ⊆ 𝐷, 𝑡𝑖[𝑟𝜙𝐴] and 𝑡𝑖[𝑟
𝜙
𝐵], 1 ≤ 𝑖 ≤ 𝑛, attribute index 𝑘,

and 𝑡𝑖[𝐺
𝜙
𝐴] and 𝑡𝑖[𝐺

𝜙
𝐵]

Output: 𝑡𝑖[𝐺𝜙
𝐴] and 𝑡𝑖[𝐺

𝜙
𝐵]

foreach 𝑥𝑘 ∈ 𝑋, 1 ≤ 𝑘 ≤ 𝑚, 𝑘 ∕= 𝑘1 in the first iteration, (𝑘’s
are chosen in random order) do

foreach 𝑡𝑖 ∈ 𝒮 do
foreach 𝑡𝑗 ∈ 𝒮, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 do

(a) ℬ generates a random additive share
𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤)

(b) ℬ creates the garbled circuit with the following
expression:
if (𝑡𝑖[𝑟𝜙𝐴]⊕ 𝑡𝑖[𝑟

𝜙
𝐵]) ∧ (𝑡𝑗 [𝑟

𝜙
𝐴]⊕ 𝑡𝑗 [𝑟

𝜙
𝐵]) ∧

(𝑡𝑖[𝐺
𝜙
𝐴](𝑜𝑙𝑑) + 𝑡𝑖[𝐺

𝜙
𝐵](𝑜𝑙𝑑) =

𝑡𝑗 [𝐺
𝜙
𝐴](𝑜𝑙𝑑) + 𝑡𝑗 [𝐺

𝜙
𝐵](𝑜𝑙𝑑)) ∧ (𝑑𝑘𝑖𝑗 = 1) then

𝑡𝑗 [𝐺
𝜙
𝐴](𝑛𝑒𝑤)← 𝑗 − 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤)

else
𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤)←

𝑡𝑗 [𝐺
𝜙
𝐴](𝑜𝑙𝑑) + 𝑡𝑗 [𝐺

𝜙
𝐵](𝑜𝑙𝑑)− 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤)

end
(c) ℬ sends 𝒜 keys for inputs 𝑡𝑖[𝑟

𝜙
𝐵], 𝑡𝑗 [𝑟

𝜙
𝐵],

𝑡𝑖[𝐺
𝜙
𝐵](𝑜𝑙𝑑), 𝑡𝑗 [𝐺

𝜙
𝐵](𝑜𝑙𝑑), 𝑡𝑗 [𝐺

𝜙
𝐵](𝑛𝑒𝑤) and 𝑘; 𝒜

performs 𝑂𝑇 2
1 for keys of inputs 𝑡𝑖[𝑟

𝜙
𝐴], 𝑡𝑗 [𝑟

𝜙
𝐴],

𝑡𝑖[𝐺
𝜙
𝐴](𝑜𝑙𝑑), 𝑡𝑗 [𝐺

𝜙
𝐴](𝑜𝑙𝑑) and 𝑑1𝑖𝑗 ,...,𝑑𝑚𝑖𝑗

(d) ℬ sends 𝒜 the garbled circuit, 𝒜 evaluates it
and obtains the value 𝑡𝑗 [𝐺

𝜙
𝐴](𝑛𝑒𝑤)

end
end

end

steps are: 𝑂(𝑚′
𝑋 × ∣𝐷∣) and 𝑂(𝑚′

𝑌 × ∣𝒮∣) resp.
The oblivious grouping and inconsistency detection with

RHS wildcards are the expensive steps in the protocol and
cost 𝑂(𝑚′′

𝑋 × ∣𝒮∣2) and 𝑂(𝑚′′
𝑌 × ∣𝒮∣2) respectively. Here,

𝑚′′
𝑋 and 𝑚′′

𝑌 are the maximum numbers of wildcards LHS
and RHS in a rule. All the above four steps can be performed
in parallel for individual rules.

The secure obfuscated matching set generation step takes
𝑂(∣𝐷∣ × ∣Σ∣), where it is assumed that ∣𝐷∣ >> ∣Σ∣. The
final inconsistency detection step costs 𝑂(∣𝒮∣×∣Σ∣). However,
these two steps can be performed in parallel by partitioning
the records. Unlike the previous two steps where evaluation
was done based on each rule, these two can be performed
for individual records and all rules. The corresponding costs
would be 𝑂(∣𝐷∣

𝑝 ×∣Σ∣) and 𝑂(∣𝒮∣
𝑝 ×∣Σ∣), where 𝑝 is the number

of partitions.
As mentioned earlier, each iteration involves the cost of

evaluating a ‘garbled circuit’, i.e. a large constant for a
constant size input of individual circuits. For example, in-
consistency detection with RHS wildcards step will take
𝑂(𝒞𝑚′′

𝑌 ×∣𝒮∣2), where 𝒞 is the computation and communica-
tion overhead of evaluating the corresponding ‘garbled circuit’.

We extended the existing Java based implementation of two-
party secure computation platform [19] to develop our privacy-
preserving inconsistency detection prototype. We generated
the secure circuits with SFDL (secure function Description

TABLE V
NUMBER OF CIRCUIT GATES, INPUTS AND OUTPUT BITS

Functions Gates 𝒜 Input ℬ Input 𝒜 Output
Secure Blocking 1804 201 402 1
Oblivious Group-
ing (first)

383 39 66 16

Oblivious Group-
ing (succ.)

487 55 66 16

Inconsistency
(constant)

1806 202 403 1

Inconsistency
(wildcard)

340 41 54 2

Language) specification of fairplay compiler. The table V
shows the number of gates and inputs required by each
major circuit in the protocol. In our protocol, secure blocking
securely compares the additive shares of the data value from a
record and the constant value in the rule. We assume that the
attributes do not exceed 25 characters and we need 200 bits for
a character array converted into UTF-8 format. That is why
the circuits for secure blocking and inconsistency detection
with constant steps are fairly large compared to the others.
However, they take linear time w.r.t. the number of records.
The Oblivious Grouping (first and successive iterations) and
inconsistency detection with wildcards steps use 16 bit integers
as group number shares for the 𝑖-th and 𝑗-th records. These
protocols take quadratic time and as we have seen from the
experiments, most of the time is spent on oblivious transfer
of inputs. Therefore, the number of input bits to the circuits
should be as small as possible.

We performed all our experiments on a machine with 8
processors (3 Ghz each) having 32GB memory and running
GNU/Linux OS and use MySQL database to store the data,
rules and the intermediate results.

We are using a real dataset from UCI Machine Learning
Repository [20] namely ‘Adult’ or ‘Census Income Dataset’.
We considered the following CFD rules discovered from the
‘Adult’ dataset [9]:

∙ {marital-status=‘Married-AF-spouse’ → relation-
ship=‘Husband’, gender=‘Male’},

∙ {marital-status=‘Married-civ-spouse’ → relation-
ship=‘Husband’, gender=‘Male’},

∙ {marital-status=‘Married-spouse-absent’ →
relationship=‘Husband’, gender=‘Male’},

∙ {workclass=‘Never-married’ → occupation=‘?’,
salary=‘<=50K.’},

∙ {relationship=‘Own-child’ → marital-status=‘Never-
married’, salary=‘<=50K.’}, and

∙ { marital-status=‘Married’, gender=‘-’ → relationship=‘-
’}.

For simplicity, we consider the same set of attributes for
both LHS and RHS merged pattern tableaux and the attributes
are as follows: {‘age’, ‘workclass’, ‘education’, ‘marital-
status’, ‘occupation’, ‘relationship’, ‘gender’, ‘salary’ }.

	Purdue University
	Purdue e-Pubs
	2011

	Detecting Inconsistencies in Private Data with Secure Function Evaluation
	Nilothpal Talukder
	Mourad Ouzzani
	Ahmed K. Elmagarmid
	Mohamed Yakout
	Report Number:

