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vSnoop: Improving TCP Throughput in Virtualized
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Purdue University
{ardalan,sgamage,kompella,d@cs.purdue.edu

Abstract—Virtual machine (VM) consolidation has become packets on behalf of the less privileged production VMs.(e.g
a common practice in clouds, Grids, and datacenters. While domUs in Xen) — whenever it isafeto do so. Via such
this practice leads to higher CPU utilization, we observe & ; .
negative impact on the TCP throughput of the consolidated VM;; _?_(ékg ngssgtimsg'tr ﬁﬁls[ag(l)r:?essn%(;‘%;n:) Sls/SMthsecr?chj’tllj(l)i: OfTie
As more VMs share the same core/CPU, the CPU scheduling p " p ) g.
latency for each VM increases significantly. Such increaseehds  reduction in RTT prompts the sender to transmit to the VM
to slower progress of TCP transmissions to the VMs. To addres  at a higher rate, effectively saturating the link betweea th
this problem, we propose an approach called vSnoop, where sender and the receiving VM. vSnoop requires no modification
the driver domain of a host acknowledges TCP packets on v, the guest operating system or applications running in the

behalf of the guest VMs — whenever it is safe to do so. . -
Our evaluation of a Xen-based prototype indicates that vSnap VM. While we implement vSnoop on Xen, the methodology

constantly achieves TCP throughput improvement for VMs (of Of vSnoop is generically applicable to other virtualizatio
orders of magnitude in some scenarios). We further show that platforms (e.g., VMware, KVM, QEMU, VirtualBox) where

the higher TCP throughput leads to improvement in application-  the actual network drivers reside in a driver domain or iasid
level performance, via experiments with a two-tier online action the Virtual Machine Monitor (VMM)

licati dt it f MPI bench ks. L
application and two surtes o ehchmarks In our Xen-based prototype, vSnoop is implemented as

part of the Linux bridge module [5] inside dom-0. vSnoop
does not lengthen the receive 1/0 path and only maintains
Virtual machine (VM) consolidation has been increasinglst minimum state about each TCP connection. As a result,
adopted in cloud (e.g., Amazon EC2[1], Eucalyptus [2], angSnoop is lightweight and incurs very low CPU overhead.
Nimbus [3]), Grid, and datacenter environments. VM consolie have performed extensive evaluation of vSnoop at both
idation involves the hosting of multiple VMs on the same@etwork transport and application levels. Our transpevel
physical host. It allows dynamic multiplexing of computati evaluation indicates that vSnoop constantly achievesehnigh
and communication resources and leads to higher resouT@pP throughput than the original Xen — in some scenarios
utilization and scalability of the physical infrastruatur the improvement is of orders of magnitude. Our application-
Scalable VM consolidation necessitates the sharing of tl#el evaluation shows that vSnoop consequently improves
same CPU by multiple VMs. Even for a multi-core/multi-application performance, such as that of the RUBIS online
processor host, the mapping from cores to VMadsalways auction benchmark and High-Performance Linpack and Intel
one-to-one in order to achieve flexibility, scalability, dan MPI benchmarks.
economy of VM hosting. However, we observe that VM The main contributions of this paper are summarized as
consolidation negatively impacts the TCP transport to VM$ollows: (1) We identify and analyze the impact of CPU
More specifically, as more VMs are scheduled to accesharing on the VMs' TCP throughput (Section II). (2) We
the same core/CPU, the CPU access latency for each \fivbpose vSnoop as a light-weight, VM-transparent approach
(i.e. the interval during which the VM waits for the CPU)to mitigating such impact that can be instantiated on a range
increases. Such increase raises the round-trip time (RT&) oof virtualization platforms (Section 1lI). (3) We develop a
TCP connection to the VM, on top of the latency added hyrototype of vSnoop on Xen (Section V) and demonstrate
network device virtualization. As a result, the sub-méiend improvement in TCP throughput to VMs and in application-
propagation delay between hosts in a local area netwdekel performance (Section V).
(LAN) is overwhelmed by tens/hundreds of milliseconds of
latency due to VM scheduling, which slows down the progress Il. THE PROBLEM AND MOTIVATION
of the TCP transport considerably. In this section we present a detailed description and in-
To mitigate the impact of VM consolidation identifiedvestigation of the problem, namely the negative impact of
above, we propose an approach called vSnoop that aimsVid consolidation/CPU sharing on TCP transport to VMs. On
improve the throughput of TCP connections to consolidatedost existing virtualization platforms, the driver domain
VMs. The key idea of vSnoop is to allow the driver domaithe VMM hosts the actual device driver for a physical device.
of a host (e.g., domO in Xen [4]) to acknowledge TCRs such, the production VMs cannot directly interact with

I. INTRODUCTION
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Fig. 1. Effects of VMs’ CPU scheduling and the hosted 1/O nmiaie TCP connection to VM.

physical devices, including the network interface cardGNI process a packet and (2) the amount of time for the receiver
Regardless of whether the VM platform uses paravirtualiz&M to get scheduled and consume the packet on the RX path.
(e.g. in paravirtualized Xen) or emulated (e.g. QEMU) déeFhe figure shows that, for 93% of the packets, driver domain
vices, the extra hop in the network 1/O path affects netwogkocessing adds less than 0.45ms to the R However, the
performance due to the additional processing performem thenajority of the RTT increase takes plaedter the driver
such as interrupt handling, copying, and queuing. In theepa domain processing. During this period, the packets stay in
we identify a more significant (yet less addressed) hurdfe: A& shared buffer between the driver domain and the receiver
multiple VMs share the same core/processor, each VM m&§/, until the VM gets scheduled to consume the packets.
not get the CPUn timeto process incoming TCP packets and’he “jumps” in Figure 1(b) at 30ms intervals correlate to the
advance the connection. To better understand how (and h8@ms VM scheduling slice used by Xen’s credit scheduler [7].
much) VMs' CPU sharing affects TCP throughput, we seek Figure 1(c) shows the dynamics on the TX path. The major

to answer the following questions: difference between Figures 1(b) and 1(c) is #ierter time

(1) How does the VMs' CPU sharing affect the RTT othe packets spend on the TX path from the VM to domO. Par-
network packets? ticularly, the “jumps” at 10ms intervals suggest that thigeir

(2) Is the RTT increase mostly due to VM scheduling odomain gets scheduled quite frequently. However, both digur
network device virtualization? indicate that the sub-millisecond driver domain overhead i
(3) Given the nature of RTT increase, how is TCP throughpavmpletely dominated by the tens/hundreds of millisecarfds
affected? latency from VM/driver domain scheduling. This observatio

also suggests that such considerable RTT increasaotbe

Investigations.To answer the first question, we conduct a vergliminated by new device®(g, NetChannel2 [8]) that support
simple experiment where a physical host sepidg packets to direct VM access to hardware (which only alleviate the layen
a non-idle (60% CPU load) Xen VM in the same LANN this caused by network device virtualization).
experiment, we vary the number of guest VM£( domUs) Now that we have identified VMs' CPU sharing and
that share the same core with the driver domaig,(dom0) scheduling as the major source of RTT increase, we need to
and observe the effect of VM CPU sharing on the RTT. Fronmderstand how it affects TCP throughput. As seen in Figures
Figure 1(a), we observe that, as the number of non-idle VMgb) and 1(c), Xen’s credit scheduler can add varying amount
per core increases, the RTT of thimg packets increase almostof latency to a packet's RTT. Such latency ranges from a
in proportion to the 30ms VM scheduling slice in Xen. Similanegligible amount to a few tens/hundreds of milliseconds —
findings [6] were recently reported for the “small” instaacedepending on when the VM is scheduled to run as well as
on Amazon’s EC2 platform where two VMs share the santhe precise timing of various events. In general, the credit
core. scheduler schedules the driver domain more frequently than

The answer to the second question is quite insightfube guest VMs. To illustrate this point further and study its
We find that the main culprit of the RTT increase is VMmpact on TCP throughput, we compare packet traces of a
schedulingnot network device virtualization. To “zoom in” to 1MB file transferred to the driver domain with traces of the
the dynamics of VM scheduling, we trace packets (1) withisame file transferred to a guest VM. This experiment involves
the driver domain and (2) between the driver domain and tkiee same 3-VM setup as in the previous experiment. While the
VM — on both receive (RX) and transmit (TX) paths, in draces vary between experiment runs, we pick two tracesevher
scenario where three non-idle VMs are hosted on the sad@mO and the VM get scheduled in almost uniform intervals.
core as domO. Figure 1(b) illustrates the cumulative dgnsitigure 2 shows the traces. The main observation from this
functions (CDFs) for (1) the amount of time for domO tdigure is that scheduling preference towards the driver doma

1Details of the experiment setup is described in section V. 2This latency is comparable to the 0.1ms RTT in the LAN.



1200000 ) embodies the idea of acknowledgement offloading.
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_ oo l 1 [1l. VSNOOPDESIGN
&,
§ 800000 |- ] In this section we present the design of vSnoop. To show
2 600000 | I i the applicability of vSnoop to virtualization platforms thi
2 hosted 1/0O architecture.€., either the driver domain or the
g fooor I 1 VMM provides access to physical devices), we keep the
200000 | ll . description as platform-agnostic as possible and leave the
o Luas A ‘ ‘ ‘ platform-specific details to Section IV. Guided by our aisé&y
0000 0.200 0400 0600 0800 1000 1200 in Section Il, we place a new component called vSnoop inside
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the driver domain that performs early TCP acknowledgement
Fig. 2. Sequenceftime graph for a 1MB transfer to the drienain and ©ON behalf of guest VMS vSnoop is transparent to the VMs
to a guest VM and does not require any modification to the guest operating
system. As its name indicates, vSnagioopson all incom-
ing and outgoing packets to/from the VMs and maintains
results in a much faster transfer to the driver domain than tige necessary state critical &afe early acknowledgement.
the guest VM. More specifically, vSnoop maintains a minimal, per-flow estat
A more detailed explanation of the result above is a@roughout the lifetime of a TCP connection to a VM and
follows: As the driver domain gets scheduled more freqyentuses it to decide whether early acknowledgement for packets
TCP slow start progresses a lot faster as packets are @gstined to a VM may lead to violation of end-to-end TCP
knowledged at a higher rate than in the guest VM’s casgemantics. In particular, vSnoop must avoid the scenargrevh

Since the receive window at the receiver grows with evefie TCP sender receives an ACK for a packet without the
acknowledgement, the advertised window of the connectipacket ever reaching the receiver VM.

advances a lot more quickly too. Larger advertised receive ,

window in turn prompts the sender to increase its congestién OVerview

window and send more data in a shorter span of time. As aFigure 3 illustrates vSnoop’s placement within the driver
result, the connection to the driver domain progresses muddmain and its position relative to the guest VMs. vSnoop
more rapidly than the connection to the guest VM. We poifas two main criteria for safe early acknowledgement: (I) Fo
out that VM scheduling heavily affects small flowise(, the a given TCP connection, vSnoop only acknowledges in-order
“mice” flows that typically spend their entire lifetime in FC packets. To keep vSnoop scalable, vSnoop does not buffer out
slow start). Since a vast majority of flows in a cloud/dataeen of-order packets which may arise as a result of packet losses
environment tend to be short transfers [9], [10], [11], sucbr packets taking a different route. Instead, vSnoop simply
impact can be quite significant on those environments. passes all out-of-order packets to the receiver VM and let

Implications. Findings from our investigations suggest th&!® VM handle them as it normally would in the absence of

following idea: Since much of the RTT increase is due ty>"0OP- (2) vSnoop acknowledges in-order packets only when

VM scheduling on the RX path, if we somehow eliminate OHhe shared buffer between the driver domain and the guest VM

mask this latency, we can greatly improve TCP throughp'&t not full. vSnoop takes this precaution so that all packets
to the VMs. A natural way to hide the portion of rTTacknowledged by vSnoop are guaranteed to be delivered to

that corresponds to VM scheduling is tiffload the TCP the target VM and hence, TCP semantics are preserved at

acknowledgment to the driver domain. This solution levesag?@! fimes. In addition to acknowledging all in-order packet

the fact that the driver domain gets scheduled more fretuenfS100P suppresses all (empty) ACKs coming from the VM

than the guest VMs and, as a result, the congestion wind he ACKS_ correspond to packets glready a_cknowl_edged by

of the sender can be advanced a lot faster. The outcome"gf"o°P- With one exception (to be discussed in Sectmn)]l-p

such an acknowledgement offload is a much faster progresé’gf“mp takes th"_s measure to prevent unnecessary duplicate

TCP connections — most notably for small flows; and a high&CKS from reaching the sender. _

utilization of the high-speed network infrastructure (e  VSNoop identifies TCP flows based on their source and

Gigabit Ethernet, Infiniband) common in Grids, clouds, anfiestination IP- addresses and_ port nl_meers and maintains

datacenters. a small hash table to store information about each flow.
However, offloading TCP acknowledgement to the drive-l;his mechanism is similar to how TCP/IP stack at end-host

domain must be performed judiciously, as one needs to pfggintains per-flow TCP control information. For each flow,

serve TCP's end-to-end semantics. Moreover, such offigadif>"'00P maintains (1) the sequence number of the in-order

is applicable to scenarios where CPUnst the bottleneck packet expected to Ee received otl)y vanoop (NE%EES)’ (ﬁ)

for the consolidated VMs. If the CPU is the bottleneck, theg'/e sequence number expecte_ dto € receved by t c? M
obviously no improvement at the network 1/O path can lead M_SEQ), (3) TCP receive window size (RCWIN), an

more efficient exeCUt_'on of the guest _VM' In the next SeCtlony3It is conceptually possible to implement vSnoop in the Nl@diare and

we present the design of our solution, called vSnoop, thaé leave it as a future research direction.



| VM| | VM| | VM| | VM| | VM| such that they trigger timeout for unacknowledged pacitie¢s,
sender starts retransmissions from the packet whose ssgjuen
[buf [ [buf| [buf| [buf| [buf] number is NEXTSEQ. This packet brings vSnoop online
again and early acknowledgement resumes.

vSnoop ACTIVE C. Technical Challenges and Solutions
e e T —— There are two main challenges in the development of
- recv_hdr.seq == next_seq vSnoop: (1) To keep vSnoop online most of the time; (2) To
Dut_size > 0 & VT make vSnoop behave just like a standard TCP implementation.
recy_hdr.seq = next seq To address the first challenge, vSnoop bounds the advertised
B2 il = 0 GG receive window of ACKs generated by itself or by the receiver

UNEXPECETED __ N . .
e e L oaee o e B NO_BUF VM to the shared buffer sizéo(f_size). Bounding the number

. \ / of outstanding packets in this fashion greatly reducesikieé-
el bl e hood of retransmission when vSnoop is offline, thus increpsi
domain - the likelihood of vSnoop being online most of the time. Our

measurements in Section V-C show that setting an upper bound
NIC for the advertised window doesot make vSnoop any less
efficient than the original Xeni.€., no vSnoop in the driver
Fig. 3. Overview of vSnoop and its per-connection state rimach domain). With this simple design, vSnoop can perform early
acknowledgement for the vast majority of packets, effetyiv
) ) keeping the shared buffer between the driver domain and the
(4) the current mode of operation for this flow (FMODE). M full most of the time. We note that, for “large” flows where
Next we W|II_ show how this per-flow state is maintained anghe receive window of a connection has grown large enough to
used to realize early acknowledgement. fill up the shared buffer, the benefit of vSnoop narrows nedati
to its benefit for “small” flows, as buffer exhaustion leads
to vSnoop going offline more frequently. Nonetheless, our

Figure 3 also depicts vSnoop’s state machine that detexaluation shows that vSnoop always outperforms the aigin
mines early acknowledgement “safety” on a per-flow basiXen for all flow sizes.

While FL_MODE is ACTIVE for a given flow, vSnoop does To address the second challenge, we identify an important
early acknowledgement for all in-order packets in the flovissue in keeping vSnoop’s behavior consistent with TCP
In this state, vSnoop discards empty ACKs (i.e. ACKs witeemantics. It concerns the receive window value advertised
no data payload) coming from the VM to prevent deliverpy vSnoop during early acknowledgement. As described in
of duplicate ACKs to the sender. However, if FMODE is Section Il, the main objective of vSnoop is to make TCP slow-
in either UNEXPECTED_SEQ or NO_BUF state (i.e. the start for connections to a VM behave more like TCP-slow
packet is out-of-order or there is no space in the share@buff start for connections to the driver domain. Therefore, lsimi
then vSnoop goes offline for that flow and let the VM handl® the TCP layer in the driver domain, vSnoop increments
acknowledgement. receive window (RCVWIN) by twice the maximum segment

While vSnoop is offline, it uses the ACKs coming from thesize (MSS) upon acknowledging each packet until receive
VM to update the per-flow VMSEQ and NEXTSEQ values. window reachesuf _size. The outcome is the exponential
Meanwhile, the sender keeps sending packets until unadknogrowth in the congestion window of the sender as defined
edged data reaches the minimum of the sender’s congestignTCP standards. Also, upon receiving an ACK from a VM,
window or receiver's advertised window. At some point theSnoop updates RCWVIN with the value advertised in the
sender would not send any new packets unless it receivesA@K. Therefore, it just takes one VM scheduling slice for
ACK from the VM. Hence, with high likelihood, the VM will vSnoop to synchronize RCWIN with the value advertised
receive all in-flight packets the next time it gets schedulety the VM. We noted in Section IlI-A there is one exception
Subsequently, it is very likely that the VM generates ACKwith respect to dropping ACKs generated by a VM. vSnoop
for all these packets and vSnoop receives them in one batides not drop the ACK coming from a VM that acknowledges
once the driver domain gets scheduled. After this point, tiie last packet acknowledged by vSnoop. This behavior is
the sender sends a new packet, since the sequence numbeppsistent with RFC 793 [12] in order to notify the sender
this packet is going to be equal to NEXSEQ, FLL MODE of the most recent receive window size.
becomedACTIVE again and early acknowledgement resumes. There are two more subtle issues worth mentioning: (1)
This is predominantly the way vSnoop becomes online &§noop cannot drop ACK packets coming from a VM that
vSnoop usually receives all the ACKs in one batch prior teave data payload. vSnoop must pass these packets to their
the sender receiving them. The other less frequent sceimarialestination so that a connection can progress in both di-
which vSnoop gets back online is through TCP retransmissioBctions. Given that these packets may acknowledge packets
More specifically, if VM scheduling intervals become toodon that have already been acknowledged by vSnoop, some TCP

B. vSnoop State Machine
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Guest Domainl

corresponds to an I/O activity from the front-end to the back

Guest Domain2

Guest Domain3

[etfront | [etiront | [etfront | end while aresponsecorresponds to an I/O activity in the
‘ ‘ ‘ reverse direction. Botrequestandresponseoperations reside
‘ netback‘ ‘ netback‘ netback . i
\ \ \—y—‘ on the ring buffer and both point to the actual data to exchang
_ J The data, which can be a network packet or a disk block, is
[ty located on the shared memory pages between domO and a
@@ guest VM so that it is accessible by both back-end and front-
Driver Domain end drivers. Finally, the event channel acts like an interaio
Xen VMM interrupt mechanism between domO and a guest VM.

Figure 4 presents an overview of network device virtual-
ization in Xen and itmetbackand netfrontcomponents. This
Fig. 4. Xen I/O architecture and vSnoop on Xen figure also shows that vSnoop is implemented as part of the
bridge module inside dom0. To better understand vSnoop’s
functionality, we first examine the way Xen handles packet
implementations may discard these packets or cause canpl@rrival had vSnoop not been deployed. Upon the arrival of a
tions. Therefore, for this type of packets, vSnoop rewrites packet at the host’s physical NIC, the driver domain receive
acknowledgement number to (NEX$EQ - 1) to ensure their the packet and determines the receiver VM using the bridge
delivery. (2) vSnoop’s rewriting of the receive window ahét module. Once the receiver is determined, the bridge module
acknowledgement number for packets from a VM invalidatémnds the packet to the correspondi@gbackinstance which
their TCP checksum. Hence, after modifying a TCP headét, turn picks arequestfrom the ring buffer and places a
vSnoop sets the TCP checksum field with the correct valuesponsein its place. Once alresponsescorresponding to
Alternatively, checksum calculation can be delegated t8NI incoming packets to a VM are placatgtbacknotifiesnetfront
with checksum offloading support [13]. by sending an event.
Finally, to preserve end-to-end TCP semantics, vSnoopWhen the receiver VM gets scheduled, the corresponding
requires that no packet be lost between the driver domain amstfront starts consuming theesponsesplaced by netback
the TCP layer in the VM. Fortunately, the following factorsand starts placing new, emptgquestsin the ring for future
collectively guarantee such a condition: (1) Packet tensfincoming packets. What is particularly important is thafoe
between the driver domain and the target VM is merely glacing newrequestsin the ring buffer, netfront allocates
memory copy operation which is deemed reliable. (2) Sinegemory for all packets that would be associated with these
vSnoop bounds the advertised receive window and acknowew requests This guarantees that, once a packet reaches
edges packets only if there is adequate space in the shafiethack no shortage of memory in a guest VM would lead to
buffer, vSnoop greatly reduces the possibility of exhaugsti the packet's dismissal. As we briefly alluded to in Section
kernel resources in the guest VM. (3) Most importantly, ong, this behavior particularly suits vSnoop, as all packet
particular aspect of Xen I/O networking (to be discussed #cknowledged by vSnoop are guaranteed enough resources in
Section 1V) guarantees that intermediary buffers and ressu advance. Each network interface in a Xen VM has a separate
in the guest VM are never exhausted. Considering all theR&X and TX ring buffer and they all interact withetbackin
factors, the presence of vSnoop does not require speciabtuna similar fashion.
of the guest operating system or the network drivers. Over the course of our experiments, we realize that Xen
uses a dynamic algorithm that places variable amount of new

requests in the ring. However, we find out that this algorithm

We have implemented vSnoop for the paravirtualized Xefhes not always perform as well as it was intended and places
platform as the paravirtualized devices are more efficient are|atively few requests in the ring. Therefore, in order for
portable than the emulated devices and they do not require §&noop to perform early acknowledgment for a larger number

NIC

IV. VSNOOPIMPLEMENTATION

A. Background and Overview specifically, we tunenetfront so that it can use at least up

o . . . to 75% of the 256 slots in the ring buffer for placing new
Xen uses asplit driver model for paravirtualized devices : 9 P 9

) . ~requestsWe will refer to our optimization as ‘Xen+tuning’ in
where each driver has a back-end component in the d”“éefction ; P 9

domain (i.e. dom0) and a front-end component in each guesysin the background above, vSnoop is implemented as two

domam_ (V_M)‘ These two components interact with eacll}lnain hook functions attached to the bridge. Based on the
other via ring buffers, shared memory, and event channe(lﬁ

) . fection of packets relative to a VM (incoming or outgoing)
A ring buf(;e_r h?lds all I/O_freq(ljjes-tand_ltesporrlseoperatmnf vSnoop engages eitheBSnoopegressor vSnoopingresshook
corresponding to a specific device. Typically, eaenues function. Both vSnoopegressand vSnoopingress process

“We believe vSnoop’s early acknowledgement methodology atan be packets by operating on socket bUffSk—_(bUff) ker_nel struc-
applied to emulated devices. tures. With the placement of vSnoop in the bridge module,



these functions receivek buff structures with L2 headers.ring buffer is full, this check guarantees early acknowkslg
Therefore, to identify TCP flows, both functions need tpackets are never dropped en route to the receiver VM.
extract IP and TCP header fields frosk buff. Reading the Handling live VM migration. vSnoop can also handle live
headers is a relatively low-overhead procedure as it oM migration. In Xen live migration [14], memory pages
entails looking at the right offset within the structureneé®p belonging to a VM are copied from the source host to
identifies TCP flows based on their source and destinationthiz destination host in multiple iterations while the VM is
addresses and port numbers and maintains a small hash talming. The problem that may arise with vSnoop during
to store information about each flow. For the remainder afigration is that a VM may complete migration before an
this section we show howSnoopegressandvSnoopingress early-acknowledged TCP packet reaches the receiver VM.
maintain the per-flow state (e.g. NEX$EQ, VM _SEQ, Such a scenario would result in an inconsistent state where
RCV_WIN, and FL_ MODE) and implement the state machinehe sender receives an ACK from vSnoop for a packet that
defined in Section III. is not going to be delivered to the VM. To handle live VM
Handling outgoing packets. The primary function ofvS- migration, we adopt a straightforward yet effective salnti
noop egressis to intercept all packets from a VM and setwhere vSnoop gets disabled for all the flows involving the
up/maintain the per-flow information. The per-flow informamigrating VM prior to the first iteration of memory page
tion is usually set up during TCP handshake when the Vibpying. Since the duration of VM migration is magnitudes
sends SYN or SYN-ACK packet. The state can also be iHdnger (typically a few seconds or more), the VM will receive
tialized after the TCP handshake if no per-flow informatisn iall the early-acknowledged packets during this period. édnc
present. The latter enables vSnoop’s operation in the pcesethe VM moves to the destination, vSnoop at the destination
of live VM migration (discussed later this section). Oncéost, if deployed, will initialize the hash table entries the

the state is initializedySnoopegressupdates the per-flow VM’'s active flows and early acknowledgement resumes. If
VM_SEQ, RCV.WIN, and FL_MODE values based on thevSnoop is not deployed at the destination, the VM itself will
ACK packets it receives from the VM. The other functionalithandle its TCP flows as usual.

of vSnoopegressis to drop unnecessary duplicate ACKs
from the VM. This process involves examining whether a
packet received from the VM is an empty ACK, if the packet In this section we present evaluation results on vSnoop:
has already been acknowledged WB$noopingress and if Section V-B evaluates the overhead of vSnoop itself; Sectio
the packet has no control flags set (such as SYN or FNNC focuses on the TCP performance achieved by vSnoop; and
bit). If a packet satisfies all the above conditions, then 8ection V-D demonstrates the effect of vSnoop on applinatio
will be dropped. To speed up the generation of early ACKivel performance.

vSnoopegresssaves the first ACK packet from the VM as

the ACK packet “template” for that flow. The ACK template”- Testbed Setup

reduces the overhead that would otherwise be associathd witThe experiments are performed in our virtualized cloud
vSnoopingressfor generating the ACK packets. As describedomputing testbed connected by Gigabit Ethernet. Each VM-
in Section Ill, when the advertised receive window by thhosting server runs Xen 3.3 with Linux 2.6.18 as the opegatin
VM exceedsbuf_size, vSnoopegresssets the window to system for both the driver domain and the paravirtualized
buf_size to limit the number of outstanding packets so thajuest VMs. (1) The experiments in Sections Il, V-B, and V-C
vSnoop can remain online or become online soon. Rewritifigrolve a client machine and a server. The client machine has
the acknowledgment number for ACKs with data and rex 2.4GHz Intel Core 2 Quad CPU with 2GB of RAM and
calculating a packet's TCP checksum are two other funan Intel Pro Gigabit network card and runs Linux 2.6.19. The
tions of vSnoopegress Finally, vSnoopegressremoves the server hosts the VMs and has a dual-core 3GHz Intel Xeon
information associated with a flow in the hash table onceGPU with 3GB of RAM and a Broadcom NetXtreme 5752
connection is terminated by FIN or RST packets. Gigabit Ethernet card. The VMs each have 256MB of RAM.
Handling incoming packets. The main function ofvS- (2) The experiments in Section V-D involve multiple server
noop.ingressis to perform early acknowledgement as dehosts, each being a PowerEdge Dell server with a 3.06GHz
scribed in Section Ill. Upon receiving a TCP packe§- Intel Xeon CPU, 4GB of RAM, and a Broadcom NetXtreme
noop ingressfirst determines the corresponding flow. If thé&704 Gigabit Ethernet card.

sequence number of the packet matches NESHQ for -

that flow, then this packet becomes a candidate for eafly Profiling vSnoop Overhead
acknowledgementSnoopingressacknowledges a candidate Inthe design and the implementation of vSnoop, we strive to
packet when the following conditions are met: no control flageep vSnoop as light-weight as possible by only includire th
in the TCP header is set; receive window (RGVIN) is non- minimal functionality of the TCP layer at vSnoop that is es-
zero; and the ring buffer is not full. Every tinuSnoopingress sential to TCP acknowledgement offload. To better undedstan
acknowledges a packet, it increases R@YIN by (2 x MSS) the overhead associated with vSnoop, we use the Xenoprof
after confirming that there is enough buffer space in the rif@5] toolkit for system profiling. Xenoprof supports profij
buffer. While packets do not necessarily get dropped when tat the fine granularity of individual processes and routines

V. EVALUATION



vSnoop Routines Single Stream | Multiple Streams scenario, we compare TCP throughput under (1) the vanilla
Cycles| CPU % | Cycles| CPU % > ith f - Secti d 3
vSnoopingress() 500 303 516 305 Xen, (.) Xen wit . oumetfronttuning (. ection IV—A),_an 3)
vSnoop lookup hash()| 74 0.44 91 0.51 Xen with our tuning and vSnoop. With the exception of one
vSnoop build_ack() 52 0.32 52 0.32 scenario, we enable only one core in the server host so that
vSnoop egress() 104 0.61 104 0.61 the impact of VMs’' CPU sharing/scheduling can be studied
TABLE | without interference.
PER-PACKET CPUUTILIZATION FOR VSNOOP ROUTINES To better understand the nature of the experiments we

present Figure 5. This figure shows the cumulative distidout
functions (CDFs) for 1000 successive 100KB transfers from

! M”‘“’f— ' the client to the VM for vanilla Xen, Xen witmetfront
Z: | | tuning, and Xen withnetfront tuning and vSnoop. In this
o .Y | experiment, the server VM is co-located with two other non-
o / A idle® guest VMs. This figure shows that vSnoop (with tuning)
4 0:5 — yields significant and in some cases orders of magnitude
© os of improvement in TCP throughput. In particular, the me-
0s i dian throughput values for ‘vanilla Xen’, ‘Xen+tuning’, dn
0s I ‘Xen+tuning+vSnoop’ are 0.192 MB/s, 0.778 MB/s, and 6.003
o1 { [ e Xen | MB/s, respectively.
o == ¥en-luing +vSnoop It is interesting to point out that for about a third of
oo1 01 ! 10 100 1000 10000 measurements in ‘Xen+tuning+vSnoop’, the TCP throughput

Trroughput (MES) exceeds the link rate. This is because packets get buffared i

Fig. 5. CDFs for TCP throughput of 1000 successive 100KBsfis for the driver domain and the memory copy between the driver
vanilla Xen, Xen with our tuning, and Xen with our tuning an@noop domain and receiver VM is much faster than the link rate. Sim-
ilar phenomenon was reported for UDP connections between

Amazon EC2 instances [6]. Another observation we make is

executed in the Xen VMM, driver domain, and guest VMsy ot simply comparing the average throughput values for the

We use Xenoprof to measure the overhead associated with gifree configurations is not the best way to evaluate vSnoop.

ferent vSnoop routines in terms of the CPU cycles/percentag ;e 1o space constraint we cannot present CDFs for all the
they consume. We additionally instrument vSnoop routioes éxperiments. For the rest of this section we only compare
record the number of packets they process. This informatiffy, megian throughput values for the three configurations.
helps us to obtain the per-packet cost or the cost incurred Rije this type of comparison in many cases under-represent

vSnoop routines at a given point in time. the benefits of vSnoop, we overall find it a suitable way of
Table | presents the average vSnoop overhead for 10'3809§9essing vSnoop’s performance.

Iperf [16] transfers for two scenarios: (1) In the “singleestm” Figure 6 presents the results for different transfer sizes

scenario, there is one connection from the client to @ VNl qer 4 variety of scenarios. All median throughput valueds (

Our measurements show vSnoop adds about 4.5% to the Ci}dq ryns) for a specific transfer size are normalized based
utilization of the driver domain. Much of this cost is assded on the value for the ‘Xen-+tuning+vSnoop’ configuration

with the vSnoopingressroutine. The routine that looks up
a flow's state in the hash table and the routine that buiI(is
the ACK each incur negligible overhead. (2) In the “multiplé;,

stream” scenario, we have 100 concurrent connections to R vMs (including the receiver VM itself) are running oreth
5 VMs running in the server. The per-packet cost or t

S head at _ int of ti ins | ame core respectively. These figures show that vSnoop con-
vonoop overhead at a given point of ime remains farge, antly outperforms vanilla Xen. More importantly, the bén

51FvSnoop increases with higher degree of VM consolidation

and with smaller transfers. Higher VM consolidation worsen
the impact of VM scheduling, thus widening the gap be-

tfleen vanilla Xen and vSnoop; Short transfers are partilyula
susceptible to VM scheduling (Section 1l) and hence benefit
C. TCP Throughput Evaluation more from vSn(_)op. I_t is also worth noting that capping the
) ] advertised receive window by vSnoop (Section III) does not

In this section, we test vSnoop for transport-level perfofyrt TCP throughput. vSnoop outperforms other configunatio
mance. To gain full control over the experiment setup, W&en for the large transfers in the 1-VM scenario, where the

develop our own TCP applicatioNCP-app that works similar  advertised receive window can get very large in the absence
to Iperf. TCP-app involves sending data of various sizemfro

the client to the VM. We set UP. a variety of scenarios to 5All references to non-idle VMs entail 60% CPU load on the VNJass
assess the TCP throughput achieved by vSnoop. For eatilerwise specified.

Varying the number of VMs. Figures 6(a), 6(b), 6(e), and
(c) show the effectiveness of vSnoop when 1, 2, 3 and 5 non-

that incurs slightly higher cost for the multiple streamrsaéo

is vSnooplookup hash() This is intuitive as vSnoop has to
search a larger hash table to retrieve information about
particular flow.
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(9) 10 concurrent connections to a VM (h) Sender subject to VM scheduling (i) domain-0 run on a separate core
Fig. 6. TCP throughput measurements under a variety of sosna
of vSnoop. two other non-idle VMs in their respective hosts.

2. Varying CPU load. To understand the effect of VM CPUS5. Driver domain on a separate coreWhile the previous re-
load, we fix the number of VMs on a core to three and vasults show solid improvement by vSnoop, we wonder whether
the VM CPU load. Figures 6(d), 6(e), and 6(f) show vSnoopSnoop would be even more effective when the driver domain
outperforms other configurations under different CPU laad does not have to compete with the guest VMs for CPU. Figure
the VMs. Higher VM workload makes CPU scheduling moré(i) presents the results from a scenario where the driver
detrimental to TCP throughput, thereby making vSnoop modemain runs on a separate core from the one that supports
useful. 3 non-idle guest VMs. The results indicate that, for short
3. Concurrent connections.Sofar, all the results are basedransfers (up to 1MB), vSnoop outperforms vanilla Xen by a
on a single connection from the client to the VM. Figursignificantly large margin. This is because the driver domai
6(g) shows that vSnoop is also effective when there are &0d the receiver VM now process incoming packets on two
concurrent connections to the VM. The results presented a&parate cores. As a result, whenever the VM is scheduled, it
for a setup where 3 non-idle VMs run on the same core. is likely to processll the packets that the driver domain has
4. Sender subject to VM scheduling.In this scenario, we passed to the VM or will pass while the VM is running, thus
investigate the effectiveness of vSnoop when the senderirisreasing the TCP throughput. However, the benefit margin
also virtualized and subject to VM scheduling like the reeei narrows for large transfers for the same reason mentioned in
This is a quite common scenario inside a cloud or datacenfgenario 1.

where hosted VMs communicate with each other. In fact, o )

our application-level experiments (Section V-D) reflecttsu D- Application-Level Evaluation

a scenario. Figure 6(h) presents the results for a setupewhExperiment with RUBIS. To demonstrate the effectiveness
the client VM and the server VM are each co-located withf vSnoop for real-world applications running in a cloud



RUBIS that, right after an operation is done, the client threadsthe
Client Apache MySQL . . . .
. : : next operationi(e., no sleep time between operations). Table

Il shows the counts of various operations performed as vgell a

= §:§§ womea] | o2 do;n_l tom2 the overall system throughput. With vSn_oop, RUBiS performs
232 hlgher rjumber of each type of operations, which translates
oo | T S i I T e into a higher number of user requests (15585 vs. 12237) and
¥Snoon) vSnOOBdom_G throughput (37 reqg/s vs. 29 reg/s), a 27% improvement.

hostl | host2 host3

Experiments with MPI benchmarks. In these experiments,
we assess the benefit of vSnoop for executing MPI programs in
VMs. Our experiments use (1) the High-Performance Linpack

Fig. 7. RUBIS experiment setup

: - Count Count % (HPL) benchmark [19] and (2) the Intel MPI benchmark
RUBIS Operation w/o vSnoop | w/ vSnoop| Gain | (IMB) [20]. The HPL is computatiorintensive and primarily
Home 359 396 10.3% | wused to find the maximum floating-point operations (flops)
EFOWSGC ecori géé ggg %g-ng per second achieved by a cluster; whereas the IMB is more

rowseCategories .9% o : - .
SearchitemsinCategory 3498 4747 35705 | COMMUNicatiorntensive and (_avaluates the efficiency of vari
BrowseRegions 128 141 10.1% | Ous communication patterns in a cluster.
BrowseCategorylnRegiof} 124 136 9.6% In the HPL experiment, we set up a 4-VM MPICH2 [21]
SearchltemsinRegion 690 749 8.5% fi . t with h VM hosted b distinct
Viewltem 2892 3776 30,506 | ©€xecution environment, with eac osted by a distinc
ViewUserInfo 732 846 15.6% | physical server. Each VM has 256MB of RAM and is co-
ViewBidHistory 339 398 17.4% | located with another non-idle VM with 30% load. Figure
BrowserBackOperation 2750 3511 27-724 8(a) presents the results under various problem sirec(
EndOfSession 16 23 43.7% | 14000, 6000,8000}) and block size B € {2,4,8,16}). The
Total 12237 15585 27.4% results show that vSnoop improves the HPL performance
Average Throughput 29 req/s 37 reqls | 27.5% . P P . ] P

(Gflops) in all runs compared with that achieved by the
TABLE I vanilla Xen. We do notice that the percentage of improvement
RUBIS BENCHMARK RESULTS WITH" BROWSING MIX is less than those seen in the TCP benchmark and RUBIS

experiments. In fact, the lower performance gain is expecte
as the HPL is more CPU-bound than 1/O-bound. As such, the

or datacenter, we run the Rice University Bidding Syste ommunication time saved by vSnoop usually gets dominated

(RUBIS) [17] in our testbed. RUBIS is a benchmark that eva )y the much longer computation time that precedes or follows

uates application server performance for an auction sié tdhe codmmqn|cat|ons. M%reO\;er, syr':/(lzglronlzat?n atnd mter-d
resembles eBay [18]. RUBIS implements the core functidyali, ependencies among nodes for an execution fo procee
another factor that offsets some of the transport effaien

of on-line auction such as browsing and searching for ite g :
bidding, and selling. We use the PHP version of RUBIS whic rough_t by vSnoop. However,_ even in S.UCh an L_mfavorable
has two tiers: an Apache webserver and a MySQL datab gnario, vSnoop constantly yields benef|t‘ of varying ?ke;gre
server. Figure 7 shows our setup: The VMs hosting Apac ally, we note that our rgsults from the Xen+tun|ng con-
and MySOQL (dom-1s in the figure) amachco-located with figuration are almost |dent|(_:al to t_hose from the vamlla Xen
a VM (dom-2) with 30% CPU load. Each of the VMs haso we do not present them in the figure. The reason is t_hat the
768MB of RAM. Since vSnoop is deployed in all server hostl'€Ssage sizes in our HPL runs are too small to benefit from
in the testbed, it will benefit the TCP connections between tR"" netfronttuning enhancement.
client and Apache and between Apache and MySQL. Our experiment with the IMB shows the effectiveness of
We run the RUBIS benchmark for a 7-minute period (1ySnoop in reducing the execution duration of many MPI
without vSnoopi(e., ‘Xen+tuning’) and (2) with vSnoopi.e., communication primitives. We use almost the same setup as
‘Xen+tuning+vSnoop’). We turn on our ‘tuning’ enhancemerthat for the HPL experiment. The only change we make is
in both scenarios. In this experiment, 180 client threads p¢hat we increase the CPU load on the VMs to 60% as the
form operations such as browsing web pages, viewing iteni$]B does not incur much computation to study the CPU
searching for items in a geographical region, etc. We use theheduling impact. Figures 8(b) and 8(c) show the results
“browsing mix” workload where clients trigger read reqest(normalized execution time) under “one-to-manBtdadcasy
to the Web and database servers. The goal of this experimand “many-to-many” Alltoall) communication patterns, with
is to assess how the TCP-level improvement translates inarying message size. The results show that vSnoop leads
application-specific performance improvement — in RUBiS® notably shorter execution time for IMBBroadcastand
case, the number of user requests handled per second. 38 stiditoall benchmarks. Results from IMB’s other communication
test both ‘with vSnoop’ and ‘without vSnoop’ setups, we makpatterns also show the benefit of vSnoop and they are omitted
one slight change to the RUBIS client implementation sudbr lack of space.
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VI. RELATED WORK Extensions to Xen's SEDF schedular are proposed in [30],

hers h d vari - which makes the VM scheduling in Xen communication-
In recent years, researchers have proposed various sluti o re  More specifically, the authors propose preferential

to aIIe_V|ate thg overhead of network device wrtuahzatfo.n scheduling of the recipient VM and anticipatory scheduling
virtualized environments. These efforts can roughly besita ¢ 1o sender VM to improve the performance of network-
fied into three main categories: (1) optimizing the virtaed jiensjve workloads. vSnoop is designed as a driver domain-
/O path, (2) improving communication among VMs on the,e| technique that iagnosticto the specific VM scheduling
same host, and (3) making VM scheduling algorithms awagg,rithm in the VMM. As a result, vSnoop can be deployed
of VM communication. . on a virtualization platform with such an enhanced VM
Menon et al. have proposed several improvements to fgequler. Further, we believe a communication-aware VM
hosted /O architecture in [22], [23], and [24]. [22] show§cheduler, like the one in [30], creates favorable conditio
that much of the virtualization overhead is due to per-packg ysnoop as it can lead to faster consumption of packets on
operations between the guest VM and the driver domaife shared buffer which keeps vSnoop online most of the time.

and proposes packet aggregation _(i.e._ coalescing mUItiIOIGl'he idea of snooping on packets to improve TCP through-
TCP packets of the same connection into one big pack Dt in lossy and high bit-error rate wireless networks was

as a solution that rgduces per-packet overhead. In [23)], posed in [31]. In that work, the wireless access point
authors propose using scat_ter/gather I/O,_ TCP/I_P checks Tthes packets and performs local retransmissions toesgel
offioad, and TCP segmentation offload for improving networ, odes whenever needed. Despite the conceptual similarity

fhe;:‘?;rg\f‘;‘scgo?r‘:ex;ﬁh\é’\gz-v l g'gﬁ’\:;ﬁfﬂﬁiﬁnzi& :rrgng%tbetween their approach and vSnoop, the network and end-host
. characteristics faced by the two are very different. Hehe# t
VM to the VMM for better performance. By addressing IS4 y W very d

. ) Yesign and implementation largely differs from that of v&po
new problem ite.,, TCP throughput degradation due to VMFor gexample,pin vSnoop we %ﬁl):)ad TC&CknowIedger?wF:znt

consolidation)not identified by the above efforts, vSnoopto the driver domain while in [31] TCRetransmissionis
complements these techniques and can be integrated V%Iml

oaded to the base station.

them.

Many research efforts have tried to improve communica-
tion throughput between VMs on theame physical host. VII. CONCLUSION
XenSocket [25], XenLoop [26], Fido [27], and XWAY [28]
use shared memory primitives provided by Xen to bypass theWe have presented vSnoop as a technique that mitigates the
driver domain and create efficient communication channempact of CPU sharing on the throughput of TCP connections
between VMs on the same host. While XenSocket introducesoa consolidated VMs. vSnoop is based on the observation
new type of socket to the application-layer, XWay, XenLoofhat CPU scheduling among VMs adds a significant, last-
and Fido are transparent to applications as the inter-domabp latency to the RTT of TCP packets, resulting in TCP
communication channel is placed underneath the netwdhtoughout degradation. Hence, the idea behind vSnoop is to
stack. IVC [29] is another effort in this direction that tatg offload TCP acknowledgment to the driver domain — whenever
the high performance computing (HPC) domain. More specit-is safe — to hide most of the VM scheduling-related latency
ically, the authors design a VM-aware MPI library which enfrom the sender. Evaluations of our Xen-based prototype, at
ables HPC applications to transparently benefit from efficieboth network transport and application levels, demonrstrat
inter-VM communication channels between co-located VM¢he efficiency and effectiveness of vSnoop for virtualized
vSnoop complements these approaches as it is transparerdid¢ad, Grid, and datacenter environments.
the applications and communication libraries runningdasi
the VMs. Moreover, it is applicable to communications be-
tween VMs ondifferenthosts.
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