
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2009

Homomorphic Encryption based k-out-of-n
Oblivious Transfer Protocols
Mummoorthy Murugesan

Wei Jiang

Erhan Nergiz

Serkan Uzunbaz

Report Number:
09-007

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Murugesan, Mummoorthy; Jiang, Wei; Nergiz, Erhan; and Uzunbaz, Serkan, "Homomorphic Encryption based k-out-of-n Oblivious
Transfer Protocols" (2009). Computer Science Technical Reports. Paper 1722.
http://docs.lib.purdue.edu/cstech/1722

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

Homomorphic Encryption based k-out-of-n
Oblivious Transfer Protocols

Mummoorthy Murugesan

Wei Jiang
Erhan Nergiz

Serkan Uzunbaz

CSD TR #09-007
September 2009

Homomorphic Encryption based k-out-of-n

Oblivious Transfer Protocols

Mummoorthy Murugesan 1, Wei Jiang 2, Erhan Nergiz 1, and Serkan Uzunbaz 1

1 Purdue University, 2 Missouri University of Science and Technology

Abstract. Oblivious Transfer (OT) is an important cryptographic tool,
which has found its usage in many crypto protocols, such as Secure Mul-
tiparty Computations [9], Certified E-mail [2] and Simultaneous Con-
tract Signing [20]. In this paper, we propose three k-out-of-n OT (OTn

k)
protocols based on additive homomorphic encryption. Two of these pro-
tocols prohibit malicious behaviors from both sender and receiver. We
also achieve efficient communication complexity bounded by O(l · n) in
bits, where l is the size of the encryption key. The computational com-
plexity is same or better than the most efficient existing protocols. Due
to the semantic security property, the sender cannot get receiver’s selec-
tion. When the receiver tries to retrieve more than k values, the receiver
is caught cheating with 1− 1/m probability (Protocol II) or the receiver
is unable to get any value at all (Protocol III). We introduce a novel
technique based on the solvability of linear equations, which could find
its way into other applications. We also provide an experimental analysis
to compare the efficiency of the protocols.

Key words: Oblivious Transfer, Cryptographic Protocol

1 Introduction

In recent years, the tremendous amount of data collection has fueled concerns
for information security and privacy. Many cryptographic schemes have been
studied and proposed to accomplish tasks with minimal information disclosure.
Protocols such as Secure Multiparty Computations [9], Certified E-mail [2] and
Simultaneous Contract Signing [20] are few examples. Recent works on Digital
Rights Management advocate privacy through oblivious transfer of digital con-
tents to the sender [14]. In such protocols, oblivious transfer (OT) [19] is an
important basic cryptographic component.

A more concrete example utilizing the OT protocol is as follows. Suppose
Bob, a researcher, wants to download some valuable cryptography research pa-
pers which are sold by an authority, Alice. Bob wants to get k out of n research
papers, which are very valuable for him. However, he does not want Alice to
learn which research papers are retrieved in order to hide his topics of interest
from Alice. In addition, Alice wants to ensure that Bob can get no more than
the k number of papers he paid for. There comes the need for an OT protocol
between Bob as the receiver and Alice as the sender.

2 Authors Suppressed Due to Excessive Length

There are two parties in an oblivious transfer protocol: a sender (e.g., Alice)
who has a set of values and a receiver (e.g., Bob) who wants to get only certain
values from Alice. Here, Alice wants Bob to obtain only a certain number of
values, while Bob does not want to reveal to Alice any information about which
values he chooses to get. The topic of OT has been extensively studied in many
different forms using different cryptographic schemes. In this paper, we make use
of homomorphic encryption that has semantic security property (e.g., Paillier
[18]) to propose efficient k-out-of-n OT (OTn

k) protocols.
There are many types of oblivious transfer protocols, each of which is based

on different techniques and cryptographic schemes. The first oblivious transfer
protocol was designed by Rabin [19], which was followed by other types of OT.
In 1-out-of-n OT, the sender has n values and the receiver transfers one value.
k-out-of-n OT is similar to 1-out-of-n OT where the receiver gets k of n values
instead of one. In this paper, we focus on k-out-of-n OT. Although it can be
achieved through k runs of 1-out-of-n OT, this increases time and communication
complexity for most cases, and hence, it is costly.

We propose three efficient k-out-of-n OT protocols based on a probabilis-
tic public key cryptosystem with additive homomorphic and semantic security
properties. The semantic security property prevents the sender from getting the
receiver’s selections. The last two protocols (Protocol II and III) are designed in
such a way that even a malicious receiver fails to get any advantage. Protocol II
offers a high probability of detecting cheating receiver. Protocol III introduces a
novel technique based on the feasibility of solving a system of k linear equations
with more than k unknowns. Thus, any attempt to retrieve more than k values
will prevent the receiver from getting any value at all.

The rest of the paper is organized as follows: Section 2 provides an overview
on existing OT protocols and background information. In Section 3, we present
three efficient OTn

k protocols. Section 4 presents experimental results, and Sec-
tion 5 concludes the paper with future research directions.

2 Background and Related Work

Rabin [19] first introduced OT2
1, which is based on quadratic roots modulo a com-

posite. After that, different versions of OT2
1 were proposed in [6, 7]. Brassard et

al. introduced OTn
1 named as all-or-nothing disclosure of secrets (ANDOS) in-

spired by OT2
1 [3, 4]. This resulted in making the OTn

1 an open research problem
in cryptographic protocol design.

The OTn
k has become another open research problem following 1-out-of-n

OT. Noting that these three problems can be reduced to each other, several
works appeared based on this topic. In [21], Wu et al. stated that k-out-of-n
t-bit string OT can be achieved applying Rabin’s version of OT, O(kt log n)
times. In another version, OTn

k is achieved using a OTn
1 scheme O(k) times

[21]. Although there are efficient reduction protocols [16], there are numerous
proposed OTn

k schemes [5] that do not rely on existing OT2
1 or OTn

1 protocols,
giving better complexity than the reduction versions of these protocols.

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 3

The OTn
k scheme suggested by Noar and Pinkas [16] has a computation com-

plexity O(wk log n) invocations of a basic OT2
1, where w is a security parameter.

The drawback of this scheme is that it works only when k ≤ n1/4. In [21], effi-
cient homomorphic based OTn

k was proposed for a condition when k ≥ n/ logn.
However, compared to our scheme, their protocols require interaction between
sender and receiver, and a complex zero-knowledge paradigm is used to check
that the receiver does not cheat to get more than k items. In a more recent work
[5], efficient OTn

k protocols were proposed based on the Diffie-Hellman Problem.
The overall computation and communication complexity of this scheme are O(n)
and O(nk), same as ours. However, their most secure protocol requires more than
double the number exponentiations needed in our protocols.

The most efficient protocol based on homomorphic encryption is proposed in
[13] by Malek and Miri. Let us denote this protocol as MM05-OT. This is an OTn

1

protocol that has O(log n) communication complexity and O(n) computational
complexity. This version of the protocol could be used to design an efficient OTn

k

with O(k log n) communication and O(nk) computational complexity. However,
a technical flaw in construction of this protocol (see Appendix 6.1) makes it
produce wrong results almost all the time.

In all three protocols, we use a probabilistic public key encryption scheme
(Paillier’s cryptosystem [18]) with the additive homomorphic property. Such an
encryption function has semantic security (defined in [12]), and is additive
homomorphic. Appendix 6.2 gives a formal definition of such systems. We use
E(x) and D(c) to denote the encryption and decryption functions respectively,
where x is a plaintext, c is a ciphertext.

3 Protocols for k-out-of-n OT

The k-out-of-n OT is defined as follows: Suppose there are two parties, a sender
and a receiver. The sender has a set of n values v1, . . . , vn. The receiver retrieves
k of these values without letting the sender know which values are retrieved. In
other words, the transfer of k values is oblivious to the sender. Without privacy
requirement, we can assume that the receiver sends a n-bit selection string to
the sender. If n = 5, a selection string X = {0, 1, 0, 1, 0} retrieves data values
v2 and v4. The value 0 at positions 1, 3 and 5 means that the data values v1,v3

and v5 are not selected. The sender can compute the component-wise product
of X with data values, Zi = Xi ∗ vi. Thus, Z = {0, v2, 0, v4, 0} contains the data
values retrieved by the receiver. We define a well-formed selection string with
respect to n and k as follows:

Definition 1. (Well-formed Selection String Xk
n) Let Xk

n be a n-bit selection
string from the receiver. Xk

n is considered well-formed with respect to k-out-of-n
protocol if the string Xk

n contains exactly k 1’s and n − k 0’s.

The simple protocol given above has two issues that need to be addressed to
make the protocol oblivious. First, the receiver’s selection string X should not
be revealed to the sender. Second, the receiver should not be able to get more
than k values from the sender i.e., X should be well-formed.

4 Authors Suppressed Due to Excessive Length

We can define two aspects of security in Oblivious Transfer protocols: 1)
Sender’s security and 2) Receiver’s privacy. Sender’s security is about making
sure that the receiver gets only the k values, and no more values are released.
Receiver’s privacy is based on hiding the k selections from the sender so that
the sender does not know which values are selected by the receiver. There are
two behavior patterns that the sender and receiver may adopt.

1. Semi-Honest parties will follow the steps of the protocol; they may also
process the outputs and the messages exchanged to gain extra information.

2. Malicious parties may try to break the protocol by not following the pre-
scribed step, and deviating as necessary to gain advantage over the other
party.

We now present three efficient k-out-of-n protocols. In Protocol I (Section 3.1),
we consider a semi-honest receiver and a malicious sender. In Protocol II (Sec-
tion 3.2) and Protocol III (Section 3.3), we provide security in the presence of
malicious receiver and sender. Protocl III uses a novel approach based on the
solvability of equations. We believe this technique is a powerful tool, and in the
future could be used in other settings as well.

3.1 Protocol I: Semi-honest Receiver and Malicious Sender

In this single-round protocol, we consider a semi-honest receiver and a malicious
sender. There are three action phases in the protocol as given below.

Step 1. Receiver’s Request: The receiver creates a public-private key pair
(kpu, kpr) in probabilistic public key encryption scheme. While the private key
kpr is kept confidential with the receiver, the public key (kpu) is revealed to the
sender. We denote the number of bits to represent the keys as l (i.e., |kpu| = l
and kpu < 2l). The receiver creates a n-bit selection string X as explained
before, where bit Xi = 1 if the ith data value is to be retrieved from the sender.
Otherwise, Xi is set to 0. Thus, k out of n bits of the string X are set to 1. To
hide the selections from the sender, X is encrypted bit-wise using the public key
kpu: X̄ = {E(Xi), . . . , E(Xn)}. The receiver sends the encrypted bits X̄1, . . . , X̄n

to the sender.
Step 2. Sender’s Reply: The data values v1, . . . , vn are stored at the

sender. We denote the number of bits to represent any vi as α (i.e., vi < 2α). The
sender receives X̄ but cannot distinguish between Xi = 1 and Xi = 0 due to the
semantic security of the encryption scheme. The sender creates Z̄1, . . . , Z̄n from
X̄ and v1, . . . , vn as Z̄i = X̄i ×h vi, where ×h is the multiplication of constant
against a ciphertext, allowed in the encryption scheme. Note that Z̄1, . . . , Z̄n are
in encrypted form, and consequently the sender has no way of knowing which k
values are selected by the receiver. The sender sends Z̄1, . . . , Z̄n to the receiver.

Step 3. Unpacking at Receiver: The receiver decrypts the values of
Z̄1, . . . , Z̄n to get Z1, . . . , Zn When Xi = 1, the corresponding Zi is vi. When
Xi = 0, the corresponding Z̄i is E(0), and thus the receiver gets no information
about the data values not selected by X . These values reveal the k data values
for the indices when Xi = 1.

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 5

Security Analysis: We now analyze why this protocol is secure in the presense
of a semi-honest receiver and a malicious sender. There are two possible effective
malicious behaviors for the sender: 1) To discover receiver’s selection of k values,
and 2) To input the wrong data values.

The sender receives the following from the receiver: X̄1, . . . , X̄n, k and kpu.
While k is a public knowledge, kpu is a random value to the sender. The n
ciphertexts, X̄1, . . . , X̄n are generated using the key kpu by the receiver. These
are from a semantically secure encryption scheme. Let C∗

1 , . . . , C∗

n be a set of
randomly generated numbers containing same number of bits as X̄is. Since the
encryption scheme is semantically secure and the sender’s computing power is
polynomially bounded, it is impossible for the sender to distinguish between
X̄1, . . . , X̄n and C∗

1 , . . . , C∗

n without knowing kpr. As a result, the sender will not
gain any non-negligible knowledge regarding the index values from X̄1, . . . , X̄n.

Under the second malicious behavior, the sender refuses to properly execute
the steps of the protocol, resulting in receiver getting wrong results. This is
equivalent to input modification problem, where the sender purposefully modifies
the data values. Zero-knowledge proofs [10] can be used to prevent the sender
from changing data values once they are committed. However, that does not
prevent the sender from committing wrong values to start with. Thus even zero-
knowledge proofs cannot prevent such behavior. We consider the problem of
input modification to be outside the scope of this problem.

A semi-honest receiver always sends a well-formed selection string X to the
sender. Suppose the receiver tries to decrypt more than k values from Z̄i, . . . , Z̄n

to obtain the corresponding data values. Since the server has multiplied the
selection bit with the data values, only k of Z̄i, . . . , Z̄n will be non-zeros, and
the remaining Z̄i will contain 0. Thus the receiver will not gain any additional
knowledge about the non-selected data values.

Complexity: We define the computational complexity as the number of encryp-
tions/decryptions performed, since they are the most expensive operation in the
protocol. To encrypt the selection string, the receiver performs n encryptions,
and to get the results at the end, it performs n decryptions. At the sender’s
side, there are n homomorphic multiplications. Thus the sender’s complexity is
bounded by O(n). The overall computational complexity of the protocol is O(n).

Communication complexity is measured as the number of bits exchanged
between the server and the receiver. The receiver transfers the selection string
as n ciphertexts. At the final step, the sender sends back n ciphertexts. As a
result, the overall communication complexity of the protocol is O(l · n) in bits,
where l is the number of bits of the encryption key.

3.2 Protocol II : Malicious Receiver and Malicious Sender

Protocol I is secure when the receiver is semi-honest, but fails when we consider
a malicious receiver. If a receiver sets more than k bits in X to 1, it will reveal
more than k data values to the receiver.

We now present a variation of Protocol I that works even in the presence of
malicious receiver and malicious sender. Instead of sending only one selection

6 Authors Suppressed Due to Excessive Length

string, in Protocol II the receiver sends m encrypted selection strings. Out of
these m strings, m − 1 strings are revealed to the sender, and are verified by
the sender to be well-formed. These strings are formed such that the opened
selection strings do not reveal the actual user selection. The sender uses the
remaining un-opened selection string for OT. This protocol prevents the receiver
from getting more than k values with m−1

m probability. Moreover, the receiver
is caught if he tries to cheat. We now explain the steps of Protocol II in detail.
The corresponding algorithm is given in Algorithm 1.

Step 1. Receiver’s Request: The receiver first creates m public-private
key pairs (kj

pu, kj
pr). It also generates random selection strings with n-bits each

such that only k random bits are set to 1 and the remaining n−k bits are set to
0 (i.e., well-formed w.r.t. n and k). There are n!

k!(n−k)! possible n-bit strings with

k 1’s and n − k 0’s. When n = 20 and k = 10, the number of possible strings is
184, 756. The receiver generates m such strings. Let these strings be X1, . . . , Xm,
and we denote the i-th bit of string Xj as Xj

i . Note that these strings contain 1’s
in random positions and the ordering has no relation to the indices of the data
values selected by the receiver. Let Xreal be the actual selection string intended
by the receiver. This string is kept secret at the receiver. Using the m public
keys, the receiver encrypts the m random strings as follows:

X̄1 = E1(X
1
1), . . . , E1(X

1
n)

...

X̄m = Em(Xm
1), . . . , Em(Xm

n)

Ej is the encryption using key kj
pu. The receiver sends X̄1, . . . , X̄m to the sender,

along with the individual cryptographic hashes (e.g., SHA-1, SHA-2) of the m
private keys (step 1(e) of Algorithm 1).

Example 1. For n = 5 and k = 2, let Xreal = {0, 1, 0, 1, 0} be the actual user
selection string. For m = 2, let us assume the receiver generates two random
strings as X1 = {1, 0, 0, 1, 0} and X2 = {0, 0, 1, 1, 0}.

Step 2. Sender’s Reply: The sender randomly picks m−1 encrypted strings
from X̄1, . . . , X̄m and requests their encryption keys (step 2(a)) so that these
encrypted strings can be decrypted and verified to be well-formed (to contain
exactly k 1’s and n − k 0’s).

Step 3. Receiver’s reply: The receiver gets a request for m − 1 private
keys from the sender. By sending these m− 1 private keys the receiver can now
prove to the sender that m− 1 (out of m) selection strings are well-formed. Let
us assume u (1 ≤ u ≤ m) is the index of the only one selection string whose
private key is not requested. This means that X̄u = X̄u

1 , . . . , X̄u
n is the selection

string that remains secret.
While X̄u is not opened by the sender and subsequently used for the oblivious

transfer, X̄u is a random string that is well-formed for k. Xu contains k 1’s and
n−k 0’s but is not necessarily the equivalent of Xreal, the actual selection string
intended by the receiver. To make Xu and Xreal equivalent, the receiver finds

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 7

a permutation P that permutes the sequence X̄u to get X̄ ′
u

so that X ′u and
Xreal are equivalent. X̄ ′

u
contains the same ciphertexts of X̄u but re-arranged

so that Xreal and X ′u are the same, i.e., both retrieve same data values from the
sender. Since the X̄ ′

u
is still in encrypted form, the sender cannot get the real

selection string. The receiver also sends the public key of u (ku
pu) to the sender

(steps 3(a)-(c)).

Example 2. From Example 1, let us assume that the sender wants to open X̄1.
The selection string X2={0, 0, 1, 1, 0} remains un-opened, and the sender has the
encrypted X̄2 as {E2(0), E2(0), E2(1), E2(1), E2(0)}, Let these be {e1, . . . , en}.
The real user selection string Xreal is {0, 1, 0, 1, 0}. The receiver now com-
putes a permutation P so that entries of X̄2 will give Xreal. One such pos-

sible permutation is {1 → 3, 2 → 5, 3 → 2, 4 → 4, 5 → 1} that produces X̄ ′
2

as {e5, e3, e1, e4, e2}, which is equivalent to {E2(0), E2(1),E2(0), E2(1),E2(0)}.
There are also other permutations that will result in Xreal.

4. Sender’s reply: After receiving the m − 1 keys, the sender first verifies
whether the hash values of the keys match the hash values sent by the receiver
at Step 1(e). If any of them does not match, the sender stops the protocol as
the receiver is attempting to send different keys than the ones used at Step 1(d).
If the hash values match, the sender then verifies whether all m − 1 decrypted
selection strings are well-formed. If any of the strings is not well-formed, the
sender stops the protocol as the receiver is attempting to get more than k values.
If all the m−1 strings are well-formed, the sender is assured with 1

m probability
that the un-opened string is also well-formed.

The sender uses the permutation P to re-order the un-opened string X̄u to
get a new sequence X̄ ′

u
. It computes Z̄1, . . . , Z̄n from X̄ ′

u
and v1, . . . , vn, where

Z̄i = X̄ ′
u
i ×h vi. The sender sends Z̄ values to the receiver.

3. Unpacking at Receiver: The receiver decrypts the values of Z̄1, . . . , Z̄n

to get the k data values for the indices when Xreal
i = 1 (step 5(a)).

Security Analysis: The main difference between Protocol I and II is that the
receiver could act malicious in Protocol II. Suppose the receiver is dishonest,
then the only possible malicious behavior is to obtain more than k values from
the sender. (Though it is possible for the receiver to obtain less than k values,
retrieving less than k values is not considered as an attack on the protocol.)

At step 4(d) of Algorithm 1, the sender computes the component-wise prod-
uct of X̄ ′

u
with the data values. To get more than k data values, it is imperative

that X̄ ′
u

must contain more than k non-zero values. To achieve this, the receiver
needs to send more than k encryptions of non-zero values in one of the selection
strings from X1, . . . , Xm at Step 1(b). However, X̄ ′

u
is used at step 4(d) only if

all the remaining m − 1 selection strings are opened by the sender at step 4(b).
For the receiver to succeed in cheating, the selection string that contains more
than k non-zero values should not be selected at step 2(a) by the sender. This
occurs with probability 1

m . Moreover, this selection string is selected with m−1
m

8 Authors Suppressed Due to Excessive Length

Algorithm 1 Protocol II: k-out-of-n Oblivious Transfer

Require: Receiver’s inputs: X1, . . . , Xn, k; Sender’s inputs: v1, . . . , vn.
1: Receiver:

(a). Create n-bit selection string as Xreal; Set Xreal
i = 1 to retrieve value vi;

otherwise, set Xreal
i = 0.

(b). Create m random n-bit strings, X1, . . . , Xm, so that they contain exactly k
1’s and n− k 0’s.

(c). Create m public-private key pairs (k1

pu, k1

pr),. . . ,(k
m
pu, km

pr).
(d). for j = 1 to m do

(d.1). Compute X̄j
i ← Ej(X

j
i) for i = 1, . . . , n.

(d.2). Compute hj ← HASH(kj
pr).

(e). Send X̄1, . . . , X̄m, k, h1, . . . , hm to the sender.

2: Sender:

(a). Randomly select m − 1 selection strings and request the private keys from
receiver.

3: Receiver:

(a). Let X̄u be the selection string that is not selected by the sender.
(b). Compute a permutation P that makes X̄u and Xreal equivalent.
(c). Send the permutation P , m− 1 private keys requested by the sender and the

public key ku
pu of X̄u.

4: Sender:

(a). Verify whether the hash values of the m − 1 keys match with h1, . . . , hm. If
not, stop the protocol.

(b). Decrypt the m− 1 selection strings with their corresponding keys sent by the
receiver. Verify whether all the m− 1 strings are well-formed. If not, stop the
protocol.

(c). Use the permutation P to compute X̄ ′
u

from the only remaining selection
string, X̄u.

(d). Compute Z̄i = X̄ ′
u
i ×h vi, for i = 1, . . . , n.

(e). Send Z̄i, . . . , Z̄n to the receiver.

5: Receiver:

(a). Retrieve k data values by computing vi = D(Z̄i) for all i when Xreal
i = 1.

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 9

probability, and if that happens, the receiver is caught cheating by the sender
at step 4(b).

Let us suppose a cheating receiver sends a selection string X̄ ′ with more than
k 1’s to the sender at Step 1(e), and this string is selected by the sender at Step
2(a). At step 3(c), the receiver may try to send a different key (k′′) than the one
used (k′) in the encryption of X̄ ′. However, to go undetected by the sender at
step 4(b), the receiver needs to find a key k′′ such that the hashes of k′ and k′′

are the same. This is equivalent to finding a collision in hash functions, which
is extremely unlikely for SHA-1 or SHA-2. Thus the receiver cannot change the
keys once the sender requests m − 1 keys.

A malicious sender may try to learn the selections of the receiver. At step
1(e), the sender receives the encryptions of m random well-formed strings as
X̄1, . . . , X̄m, along with the hashes h1, . . . , hm of the private keys. Only one
of these selection strings remains un-opened at step 4(b). So, the other m − 1
sequences are random strings generated by the receiver with k 1’s and n −
k 0’s. As there are n!

k!(n−k)! such combinations, these random strings do not

reveal any information about Xreal, the actual user selection. The sender itself
could have generated such strings. The hash values are generated from one-way
cryptographic hash functions. Thus, computing the actual strings (i.e., randomly
generated private keys) from hashes h1, . . . , hm, involve brute force attack on the
key space (in the range of 21024), which is computationally impossible.

Let us now consider the selection string X̄u that is not opened by the sender.
This contains n ciphertexts, encryptions of 1’s and 0’s as {X̄u

1 , . . . , X̄u
n}. The

sender learns nothing about the contents of these ciphertexts due to semantic-
security property of the encryption scheme. At step 4(c), the receiver uses the
permutation P on X̄u to get a new sequence, X̄ ′

u
1 , . . . , X̄ ′

u
n. Since the sender

gains no knowledge about user’s selection from X̄u, the re-ordered selection
string X̄ ′

u
also does not reveal any information. Thus a malicious sender will

not gain any information about the receiver’s selection in this protocol.

Complexity: At step 1(d) of Algorithm 1, the receiver performs n · m encryp-
tions, and n decryptions at step 5(a). At the sender’s side, there are n · (m− 1)
decryptions at step 4(b), and n homomorphic multiplications at step 4(d). Thus
the overall computational complexity of the protocol is O(n · m).

At step 1(e), the receiver sends n · m encrypted values and m hash values.
Since the ciphertexts have more bits than the hashes, the communication com-
plexity is bounded by O(l · n · m) bits, where l is the number of bits of the
encryption key. The sender sends back n ciphertexts to the receiver at step 1(e).
As a result, the overall communication complexity of the protocol is O(l · n ·m)
in bits. Protocol II needs an extra interaction between the sender and receiver
as compared to Protocol I and III.

3.3 Protocol III - Hybrid Scheme

We now present a hybrid (based on cryptography and algebra) protocol for OTn
k .

This scheme allows the receiver to construct k equations with k unknowns, where

10 Authors Suppressed Due to Excessive Length

the unknowns are the data values from the sender. By solving the equations, the
receiver gets the k data values it wants to retrieve. The equations are hidden
(i.e., in encrypted form) from the sender such that the selected values are kept
confidential from the sender. If the receiver attempts to retrieve more than k
values, then the receiver is unable to even form the equations. (See Appendix
6.3 for a general discussion on the solvability of linear equations). Thus the
greedy receivers will not get any data value at all. Algorithm 2 lists the steps of
the protocol. We now describe each phase of the protocol in detail.

Step 1. Receiver’s Request: Similar to Protocol I, the receiver creates a
n-bit selection string X where bit Xi = 1 if the i-th value is to be retrieved from
the sender. Otherwise, Xi is set to 0. private key kpr: X̄i = E(Xi). The receiver
sends the encrypted bits X̄1, . . . , X̄n to the sender.

Example 3. Refer to Table 1 that shows an example OT5
2. As shown in Table

1(a), the receiver sets X2 and X4 to 1 so that v2 (35) and v4 (85) are retrieved.

Step 2. Sender’s Reply: The sender generates two k × n random pertur-
bations matrices, A and B. The matrix A is generated using a random number
R1

1 as the seed to the random number generator. Thus A consists of k ·n random
positive integer values. We denote the number of bits to represent any Ai,j as β
(i.e, Ai,j < 2β). A can be completely re-generated given only the value of R1

1.
The matrix B is generated by using n random seeds R2

1, . . . , R
2
n. Each random

seed (R2
i) is used in generating k numbers which form the i-th column in matrix

B. Any i-th column of B can be completely re-generated given only the value of
R2

i . We also require that all the columns and rows are independent in A and B,
i.e., their rank is k (assuming k ≤ n). This property ensures that the resultant
k equations are independent, which are then solved by the receiver. A randomly
constructed matrix usually has this property. While A is revealed to the receiver
(through R1

1), B is kept secret at the sender.
In the first step, the sender uses A and R2

1, . . . , R
2
n to compute a k×n matrix

Y 1, where Y 1
i,j = R2

j ∗ Ai,j for i = 1, . . . , k and j = 1, . . . , n (step 2(c)).

Y 1 =

R2
1 ∗ A1,1 , . . . , R2

n ∗ A1,n

. . .
R2

1 ∗ Ak,1 , . . . , R2
n ∗ Ak,n

Using Y 1, the sender computes Z̄1
1 , . . . , Z̄1

k as follows (step 2(e)):

Z̄1
1 = X̄1 ×h Y 1

1,1 +h . . . +h X̄n ×h Y 1
1,n

...

Z̄1
k = X̄1 ×h Y 1

k,1 +h . . . +h X̄n ×h Y 1
k,n

+h is the homomorphic addition operation. Note that Z̄1, . . . , Z̄k are in encrypted
form and thus the sender has no way of knowing which k values are selected by
the receiver. These k values and the matrix A can be used by the receiver to

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 11

construct k equations with k unknowns (assuming X is well-formed w.r.t n and
k), where the unknowns are k of the n random seed values, R2

1, . . . , R
2
n.

In the second step, the sender uses the perturbation matrix B and v1, . . . , vn

to compute a k × n matrix Y 2, where Y 2
i,j = vj ∗ Bi,j for i = 1, . . . , k and

j = 1, . . . , n (step 2(d)).

Y 2 =

v1 ∗ B1,1 , . . . , vn ∗ B1,n

. . .
v1 ∗ Bk,1 , . . . , vn ∗ Bk,n

i Xi X̄i vi

1 0 E(0) 50
2 1 E(1) 35
3 0 E(0) 46
4 1 E(1) 82
5 0 E(0) 28

A=

„

2 3 7 6 1
10 4 2 7 9

«

R2 = {12, 3, 7, 2, 4}

B=

„

4 6 1 3 9
5 11 2 2 4

«

(a) Inputs (b) Random Matrices: A2×5 and B2×5

Y 1=

„

24 9 49 12 4
120 12 14 14 36

«

Y 2=

„

200 210 46 246 252
250 385 92 164 112

«

Z1

1 = 9 + 12 = 21
Z1

2 = 12 + 14 = 26

Z2

1 = 210 + 246 = 456
Z2

2 = 385 + 164 = 549
(c) Matrices Y 1 and Y 2 (d) Computing Z1 and Z2

3r2 + 6r4 = 21
4r2 + 7r4 = 26

Solve to get
r2 = 3, r4 = 2

3 generates {6, 11}
2 generates {3, 2}

B=

„

∗ 6 ∗ 3 ∗
∗ 11 ∗ 2 ∗

«

6v2 + 3v4 = 456
11v2 + 2v4 = 549

Solve to get
v2 = 35, v4 = 82

(e) Solving for Random seeds (f) Final steps in OT5

2

Table 1. An Illustration OT5

2 in Protocol III

Using Y 2, the sender creates Z̄2
1 , . . . , Z̄2

k as follows (step 2(f)):

Z̄2
1 = X̄1 ×h Y 2

1,1 +h . . . +h X̄n ×h Y 2
1,n

...

Z̄2
k = X̄1 ×h Y 2

k,1 +h . . . +h X̄n ×h Y 2
k,n

12 Authors Suppressed Due to Excessive Length

The sender sends Z̄1
1 , . . . , Z̄1

k, Z̄2
1 , . . . , Z̄2

k , and also the random seed R1
1 (i.e.,

matrix A) to the receiver.

Example 4. In Table 1(b), we show a perturbation matrix A, the secret matrix
B and the random seeds for B as R2. Table 1(c) shows matrices Y 1 and Y 2.
Z̄1 is computed as follows: Z̄1

1 = E(0) ×h 24 +h E(1) ×h 9 +h E(0) ×h 49 +h

E(1)×h 12 +h E(0)×h 4 and Z̄1
2 = E(0)×h 120+h E(1)×h 12+h E(0)×h 14+h

E(1)×h 14+hE(0)×h 36. This results in Z̄1
1 = E(21) and Z̄1

2 = E(26). Similarly,
Z̄2

1 = E(456) and Z̄2
2 = E(549) are computed and sent to the receiver. �

Step 3. Unpacking at Receiver: The receiver decrypts the values of
Z̄1

1 , . . . , Z̄1
k to get Z1

1 , . . . , Z1
k. The decrypted values form k equations with k

unknowns as follows.

Z1
1 = X1 ∗ R2

1 ∗ A1,1 + . . . + Xn ∗ R2
n ∗ A1,n

...

Z1
k = X1 ∗ R2

1 ∗ Ak,1 + . . . + Xn ∗ R2
n ∗ Ak,n (1)

Since the receiver can re-generate the perturbation matrix A (constructed by
using R1

1), the random values Ai,j are already known to the receiver. Assuming
that X contains k 1s and n− k 0s, the k equations from equation 1 will contain
k unknowns which are the R2

i ’s. By solving these k equations, the receiver gets
the k random seeds from R2

1, . . . , R
2
n, for the columns selected by X .

Similarly, the receiver decrypts the values of Z̄2
1 , . . . , Z̄2

k to get Z2
1 , . . . , Z2

k

and forms the following k equations.

Z2
1 = X1 ∗ vi1 ∗ B1,1 + . . . + Xn ∗ vik

∗ B1,n

...

Z2
k = X1 ∗ vi1 ∗ Bk,1 + . . . + Xn ∗ vik

∗ Bk,n (2)

These k equations contain k unknowns which are the data values, and the co-
efficients are matrix B elements from k columns. These co-efficients are known
to the receiver from the previous step, by solving equation 1. Thus the receiver
is able to solve equation 2 to obtain the k data values. If the protocol is run
multiple times, the sender generates new perturbation matrices for each run.

Example 5. As shown in Table 1(e), the receiver forms two equations, 3r2+6r4 =
21 and 4r2+7r4 = 26 after receiving E(21) and E(26) from the sender. Note that
the co-efficients are directly from the perturbation matrix A. Since the receiver
knows that X2 = 1 and X4 = 1, it uses only the 2nd and 4th column elements
from A. The solution for these equations is r2 = 3 and r4 = 2. This matches with
R2 in Table 1(b). The receiver generates the elements of 2nd and 4th columns
of B using 3 (r2) and 2 (r4) and forms another set of equations, 6v2 +3v4 = 456
and 11v2 + 2v4 = 549 with data values v2 and v4 as unknowns. The receiver
solves these equations to get the data values as v2 = 35 and v4 = 82. �

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 13

Algorithm 2 k-out-of-n Oblivious Transfer

Require: Receiver’s inputs: X1, . . . , Xn, k, kpu, kpr ; Sender’s inputs: v1, . . . , vn, R1

1,
R2

1, . . . , R
2

n.
1: Receiver:

(a). Set Xi = 1 to retrieve value vi; otherwise, set Xi = 0
(b). Encrypt each Xi separately as X̄i = E(Xi), for i = 1, . . . , n; Send X̄1, . . . , X̄n,

k, kpu to the sender

2: Sender:

(a). Generate the k × n perturbation matrix A through R1

1

(b). Generate the k× n perturbation matrix B, whose elements of i-th column are
generated by R2

i .
(c). Compute k × n matrix Y 1: Y 1

i,j = R2

j ∗ Ai,j , for i = 1, . . . , k and j = 1, . . . , n
(d). Compute k × n matrix Y 2: Y 2

i,j = vj ∗Bi,j , for i = 1, . . . , k and j = 1, . . . , n
(e). Compute Z̄1

i = X̄i ×h Y 1

i,1 +h . . . +h X̄i ×h Y 1

i,n, for i = 1, . . . , k
(f). Compute Z̄2

i = X̄i ×h Y 2

i,1 +h . . . +h X̄i ×h Y 2

i,n, for i = 1, . . . , k
(g). Send Z̄1

1 , . . . , Z̄1

k ,Z̄2

1 , . . . , Z̄2

k and R1

1 to the receiver.

3: Receiver:

(a). Decrypt Z1

i = D(Z̄1

i) and Z2

i = D(Z̄2

i) for i = 1, . . . , k
(b). Generate the perturbation matrix A using R1

1

(c). Construct k equations with X,Z1 and A; solve the equations to get k random
seeds for matrix B

(d). Construct k equations with X,Z2 and k random seeds from 3(c); solve the
equations to get the k data values.

Security Analysis: Suppose the sender is dishonest and tries to discover re-
ceiver’s selections. The only information the sender receives is the encrypted
selection string, X̄1, . . . , X̄n at step 1(b). Since the encryption scheme is seman-
tically secure and the sender’s computing power is polynomially bounded, it is
impossible for the sender to gain any knowledge from X̄ .

Suppose the receiver is dishonest and tries to obtain more than k values
from the sender. To achieve this, the receiver first needs to send more than
k encryptions of non-zero values at step 1(b). This will result in k equations
(computed at steps 2(e)-(f)) with more than k unknowns. Let us consider the
equations involving the random seeds at step 2(e), which the receiver solves at
step 3(c). Since there are more unknowns than the equations, this will result
in non-unique solutions for the random seeds. Thus the receiver will not be
able to construct the equations for the data values at step 3(d) since only the
unique random seeds can generate the co-efficients. Without the co-efficients,
the k values Z2

1 , . . . , Z2
k are just random values to the sender. Let us consider

a scenario where the receiver generates all possible random seeds and tries to
generate the co-efficients for the equation 2. Since X contains more than k 1’s, for
each co-efficient assigment, the receiver needs to solve k equations with more than

14 Authors Suppressed Due to Excessive Length

k unknowns by performing O(k3) multiplications. For each case, there will be
many non-unique solutions for the data values from equation 2. Thus a malicious
receiver gets no data values at all if it attempts to cheat.

Example 6. In Table 1(a), suppose the receiver wants to retrieve v1 also in OT5
2.

This will result in the following assignment of X and X̄: X = {1, 1, 0, 1, 0} and
X̄ = {E(1), E(1), E(0),E(1), E(0)}. The sender will generate only two equations
as follows: Z̄1

1 = E(1)×h24+hE(1)×h9+hE(0)×h49+hE(1)×h12+hE(0)×h4
and Z̄1

2 = E(1)×h 120+h E(1)×h 12+h E(0)×h 14+h E(1)×h 14+h E(0)×h 36.
The corresponding equations are: 2r1+3r2+6r4 = 45 and 10r1+4r2+7r4 = 146.
With three unknowns, the receiver will be unable to solve these equations to get
the unique values in R2 to generate the columns of B. This means that the
equations for the data values cannot be constructed. Thus the system is secure
even in the presence of greedy receivers. �

Complexity Analysis: At step 1(b) of Algorithm 2, the receiver performs n
encryptions, and 2k decryptions at step 3(a). Also, at steps 3(c)-(d), the receiver
solves k equations which results in a complexity of O(k3) ordinary multiplica-
tions. However, the expensive encryptions dominate the O(k3) operations to
result in O(n) as the complexity for the receiver. At the sender’s side, there are
n ·k homomorphic additions and n ·k multiplications at steps 2(e)-(f). Thus the
computational complexity of the protocol is O(n · k).

At step 1(b), the receiver sends n encrypted values. At step 2(g), the sender
sends back 2k ciphertexts to the receiver. Since n > k, the overall the commu-
nication complexity of the protocol is O(l · n) in bits.

4 Experimental Analysis

We now report the performance of the protocols, implemented in C and executed
on Ubuntu 8.10 with a Intel dual core 2.33 GHz processor and 4 GB RAM. Since
computational complexity is the major bottleneck, we show the performance
results in terms of time taken at the sender side, since the receiver’s computation
is a constant number of decryptions. The sender’s data values are generated
randomly, with the maximum being 232 (integer values). Similarly, the random
matrix elements are also random integers. We use Paillier encryption scheme for
all the three protocols.

Figure 1(a) shows the effect of k on the running time for a fixed n = 100.
For this experiment, the key size in the Paillier encryption is set to 1024 bits,
sufficiently large for practice (see Appendix 6.4 for a discussion on selecting
key size based on the size of data values). The Y-axis shows the running time
in seconds for k ranging from 5 to 25, while n is fixed at 100. Protocol I is the
most efficient, taking a constant time of .03 seconds. Protocol II with m = 10 and
m = 20 take 6 and 12.5 seconds respectively. Protocol III’s running time increases
sub-linearly as k increases, but remains well under Protocol II (m = 20).

At step 3(c)-(d) of Algorithm 2 (Protocol III), the receiver solves equations
to get the k values from the sender. In this experiment, we measure the time

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 15

0

2

4

6

8

10

12

14

5 10 15 20 25

k

T
im

e
(s

ec
o

n
d

s)

Protocol I Protocol II (m=10)
Protocol II (m=20) Protocol III

(a) OT100

k : Time with varying k

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

number of equations

T
im

e
(m

. s
ec

o
n

d
s)

(b) Time taken for solving equations

Fig. 1. Experimental Results

taken for solving the equations. We used the Matlab software to solve the linear
systems by varying the number of equations, which is kept same as the nuAmber
of unknowns. Figure 1(b) shows how the running time changes sub-linearly as
the number of equations increases. For solving 50 equations (with 50 unknowns)
it takes approximately 3.5 milli seconds, and for 100 equations the running time
is 7.7 milli seconds. Compared to the time spent on encryptions and decryptions
from Figure 1(a), the time taken for this step is negligible.

5 Conclusion and Future work

In this paper, we present three efficient k-out-of-n OT protocols that take ad-
vantage of additive homomorphic crypto system. While Protocol I is efficient, it
does not protect the sender from malicious receiver. Protocol II is efficient, and
withstands malicious behaviors from sender and receiver. Moreover, the receiver
is caught if it attempts to retrieve more than k values with 1/m probability.
Protocol III presents a novel technique based on the solvability of linear equa-
tions. A malicious receiver will be unable to solve k equations with more than
k unknowns. Protocols I and III are very efficient in terms of communication
cost since they require only one round and exchange of O(n) messages from the
receiver to the sender. Protocol II require one additional interaction, which we
plan to eliminate in our future work. Furthermore, our protocols are efficient in
terms of computation complexity as shown in the experimental results.

As a future work, we shall improve the complexity of communication from
the receiver to sender. In case of retrieving small number of items obliviously
from a large database, there will be a big network overhead while sending the
encrypted index values to the sender. A more efficient protocol could be less
dependent on the size of the database.

16 Authors Suppressed Due to Excessive Length

References

1. J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In
A. Odlyzko, editor, Advances in Cryptography, CRYPTO86: Proceedings, volume
263, pages 251–260. Springer-Verlag, Lecture Notes in Computer Science, 1986.

2. M. Blum. Three application of oblivious transfer: Part i: Coin flipping by telephone;
part ii: How to exchange secrets; part iii: How to send certified electronic mail. 1981.

3. G. Brassard, C. Crépeau, and J.-M. Robert. Information theoretic reductions
among disclosure problems. In FOCS, pages 168–173, 1986.

4. G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets.
In Proceedings on Advances in cryptology—CRYPTO ’86, pages 234–238, London,
UK, 1987. Springer-Verlag.

5. C.-K. Chu and W.-G. Tzeng. Efficient k-out-of-n oblivious transfer schemes. Jour-
nal of Universal Computer Science, 14(3):397–415, feb 2008.

6. C. Crépeau. Equivalence between two flavours of oblivious transfers. In CRYPTO
’87: A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology, pages 350–354, London, UK, 1988. Springer-Verlag.

7. C. Crépeau and J. Kilian. Weakening security assumptions and oblivious transfer.
In CRYPTO ’88: Proceedings on Advances in cryptology, pages 2–7, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

8. I. Damgard, M. Jurik, and J. Nielsen. A generalization of paillier’s public-key
system with applications to electronic voting, 2003.

9. O. Goldreich. The Foundations of Cryptography, volume 2, chapter General Cryp-
tographic Protocols. Cambridge University Press, 2004.

10. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. Journal of ACM,
38:690–728, 1991.

11. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

12. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. In Proceedings of the 17th Annual ACM Symposium on Theory of
Computing (STOC’85), pages 291–304, Providence, Rhode Island, U.S.A., May 6-8
1985.

13. B. Malek and A. Miri. Optimal secure data retrieval using an oblivious transfer
scheme. In IEEE International Conference on Wireless And Mobile Computing,
Networking And Communications, volume 2, pages 25–31, 2005.

14. H. min Sun, K. hang Wang, and C. fu Hung. Towards privacy preserving digital
rights management using oblivious transfer, 2006.

15. D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM conference on Computer and communications se-
curity, pages 59–66, San Francisco, California, United States, 1998. ACM Press.

16. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC
’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 245–254, New York, NY, USA, 1999. ACM.

17. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as fac-
toring. In Advances in Cryptology - Eurocrypt ’98, LNCS 1403, pages 308–318.
Springer-Verlag, 1998.

18. P. Paillier. Public key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - Eurocrypt ’99 Proceedings, LNCS 1592. Springer-
Verlag, 1999.

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 17

19. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Aiken Computation Laboratory, Harvard University, 1981.

20. M. Stanek. M.: Efficient simultaneous contract signing. In In 19th Interna-
tional Conference on Information Security (SEC 2004), 18th IFIP Word Computer
Congress, pages 441–455. Kluwer Academic Publishers, 2004.

21. Q. Wu, B. Qin, C. Wang, X. Chen, and Y. Wang. t-out-of-n string/bit oblivious
transfers revisited. In ISPEC, pages 410–421, 2005.

6 Appendix

6.1 Deficiency of MM05-OT Protocol

As we mentioned before, there is a flaw related to the MM05-OT protocol that
makes it to produce incorrect results. One of the key steps in the MM05-OT
protocol is to encrypt a ciphertext using Paillier’s scheme. However, as we show
below, encrypting a ciphertext under Paillier’s scheme will “almost always” result
in incorrect result.

The main idea behind the MM05-OT protocol is to submit the encrypted
index bits of the selection to sender. For example, to select the 3rd entry out
of 8 values, the receiver sends [E(0), E(1), E(1)] and [E(1), E(0), E(0)] to the
sender. The following construction is an example commonly used in the MM05-
OT protocol.

E(x̄1 · E(x̄0v0 + x0v1)) = E(x̄1)
E(x̄0v0+x0v1)

Thus the MM05-OT protocol relies on using ciphertexts in the multiplicative
operation of the Paillier. However, this step “almost always” causes the MM05-
OT protocol to produce incorrect results. We have the following claim:

Claim. The probability for MM05-OT to produce correct results is negligible.

Proof. Let P denote the probability that the MM05-OT protocol produces the
correct result, l be the size of the encryption key in bits, and M be a plaintext
According to Paillier’s scheme, E(M) is uniformly distributed in

[

0, 22l − 1
]

, for

any M in
[

0, 2l − 1
]

. Since the MM05-OT protocol requires encrypting a cipher-

text, the protocol generates correct results only when E(M) is in
[

0, 2l − 1
]

.
Therefore, we have the following analysis:

P = Prob
(

E(M) ∈
[

0, 2l − 1
])

=
2l

(2l)
2 =

1

2l

In practice, l is generally greater than 1024. Thus, P ≤ 1
21024 → 0. As a conse-

quence, the MM05-OT protocol almost never generates correct results.

18 Authors Suppressed Due to Excessive Length

6.2 Additive Homomorphic Encryption

In our hybrid OTn
k protocol, we adopt a probabilistic public key encryption

scheme with the additive homomorphic property. Now we briefly present some
of its key features (assuming that all the values are in appropriate domains).

1. The encryption function is additive homomorphic, i.e., ∀(r1, x1), (r2, x2) ∈
R × X, E(r1, x1) +h E(r2, x2) = E(r3, x1 + x2), where r3 can be computed
from r1, r2, x1 and x2 in polynomial time. (+h indicates the operation to
“add” two encrypted values).

2. The encryption function has semantic security as defined in [12]. Informally
speaking, a set of ciphertexts do not provide additional information about
the plaintext to an adversary with polynomial-bounded computing power.

3. The encryption function is probabilistic, i.e., if r1 6= r2, then E(r1, x) 6=
E(r2, x) but D(E(r1, x)) = D(E(r2, x)), where D denote the decryption
function. This property can be derived from the semantic security definition.

4. Given a constant k and a ciphertext E(r1, x), we can efficiently compute k×h

E(r1, x) = E(r2, k · x) (×h indicates the operation to multiply a ciphertext
with a constant).

Note that our protocol is a generic in that any homomorphic probabilis-
tic public key encryption systems, such as those proposed in [1, 15, 17], can be
adopted in its implementation. In our empirical study (Section 4), we adopt
Paillier’s cryptosystem [18] since it is efficient and commonly used in practice.

6.3 Solving Linear Equations:

Since Protocol III (Section 3.3) uses the idea of solving linear equations, we
now give a brief introduction to solving m equations with n unknowns. Let the
system of equations be the following:

b1 = a11 · x1 + · · · + a1n · xn

...

bm = am1 · x1 + · · · + amn · xn

The unknowns are x1, . . . , xn, while a11, . . . , amn are the coefficients and b1, . . . , bm

are the constant values. The solution to this problem is an assignment of values
to the unknowns x1, . . . , xn. This system of equations have different solutions
depending on the values of m and n:

1. m < n: If the number of equations is less than the number of unknowns,
then there are infinitely many solutions. If we assume only positive values
for the unknowns, then the solutions for each unknown xi is in the range
(0, MIN(b1

a1i

, . . . , bm

ami

)). An exhaustive search in this space will give all the
possible assignments for the unknowns, resluting in many solutions. Thus
the solution is not unique when m < n.

2. m = n: If the number of equations and unknowns are the same and the
equations are linearly independent, then there is a single unique solution.

The complexity of solving n equations with n unknowns is typically O(n3).

Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols 19

6.4 Selection of the Key Size (l) :

The encryption function of the paillier scheme requires that the plaintext x
is less than 2l, where l is the key size. The data values vi’s are assumed to
be less than 2α, and the perturbation matrix entries are less than 2β. In the
randomization step (step (d) of Algorithm 2), the data values are multiplied with
the perturbation matrix to produce matrices, Y 2. This results in the entries of
Y 2 to be less than 2α+β. In Step 3 (Unpacking at Receiver) of the protocol, the
receiver decrypts Z̄2

i to get Z2
i . Suppose α + β > l, then it would result in a

vi ∗Bji that is greater than 2l. This results in wrong solutions to be computed at
the receiver. Thus, the essential condition for the protocol to succeed is α+β < l.
With this condition, the entries Y 2

i,j ’s are less than 2l. Based on the values of α
and β, the receiver selects the key size.

Let us consider Z2
1 as z1 + .. + zk where z1 = vi1 ∗ B1,i1 . It is possible

that while each zi is less than 2l, the sum Z1 may be larger than 2l. Though
this is very unlikely to happen, we can alleviate this problem by selecting the
key size (l) such that α + β + k < l, where k is the number of data values
transferred. This condition is sufficient for the protocol to succeed all the time.
The protocols in Certified E-mail [2] and Simultaneous Contract Signing [20]
use OT for transferring keys of symmetric key encryption schemes such as DES
and AES. The generally accepted key size for AES is 128 bits (α). For random
numbers in matrix A and B, 32 is a sufficient β value. This leaves the key size(l)
for the Paillier scheme in our protocol to be greater than 160 bits. Thus the key
size of 1024 is sufficient for the practical purposes of running our protocol.

	Purdue University
	Purdue e-Pubs
	2009

	Homomorphic Encryption based k-out-of-n Oblivious Transfer Protocols
	Mummoorthy Murugesan
	Wei Jiang
	Erhan Nergiz
	Serkan Uzunbaz
	Report Number:

