
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Automatic Failure Inducing Chain Computation through Aligned Automatic Failure Inducing Chain Computation through Aligned

Execution Comparison Execution Comparison

William N. Sumner

Xiangyu Zhang
Purdue University, xyzhang@cs.purdue.edu

Report Number:
08-023

Sumner, William N. and Zhang, Xiangyu, "Automatic Failure Inducing Chain Computation through Aligned
Execution Comparison" (2008). Department of Computer Science Technical Reports. Paper 1710.
https://docs.lib.purdue.edu/cstech/1710

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Automatic Failure Inducing Chain
Computation through Aligned Execution

Comparison

William Sumner
Xiangyu Zhang

CSD TR #08-023
September 2008

Automatic Failure Inducing Chain Computation through Aligned

Execution Comparison

William N. Sumner Xiangyu Zhang

Department of Computer Science, Purdue University

West Lafayette, Indiana 47907

{wsumner,xyzhang}@cs.purdue.edu

Abstract

In this paper, we propose an automated debugging
technique that explains a failure by computing its causal
path leading from the root cause to the failure. Given
a failing execution, the technique first searches for a
dynamic patch. Fine-grained execution comparison be-
tween the failing run and the patched run is performed
to isolate the causal path. We introduce a formal sys-
tem, wherein the corrected version of a faulty program
is assumed so that the concept of ideal failure inducing
chain (FIC) can be defined by comparing the failing run
and the run on the corrected program using the same
input. Properties of such chains are studied. A product
of the formal system is a metric that serves in the ob-
jective evaluation of the proposed technique. We iden-
tify a key enabling technique called execution indexing,
whose goal is to establish a mapping between equivalent
points in two different executions so that comparison
can be meaningfully performed. We show that a control
structure based indexing scheme, when integrated into
the formal system, demonstrates very nice properties
that can be exploited to develop an effective and effi-
cient debugging algorithm. The evaluation shows that
the metric lives up to its promise, computing desired
FICs, and the proposed approach is able to compute
high quality FICs. The results of our technique signif-
icantly supercede the state of the art.

1 Introduction

Software development is mainly a human activ-
ity and humans inevitably make mistakes, resulting
in bugs (faults) in the software. Software bugs are
the main source of various computer-related problems.
Companies lose money as software crashes. End users
constantly suffer from malware due to software vul-

nerabilities. Handling the large volume of bug reports
can easily drain a developer’s energy. Identifying and
removing bugs from software is a long-standing open
challenge. Recently, significant progress has been made
in model checking and static code analyses that are
capable of capturing bugs at compile time. However,
these techniques face problems such as false positives
and scalability. Furthermore, they are mostly designed
for specific kinds of faults and thus lack of generality.
As a result, software bugs often survive the compile
time sanitization and lead to runtime failures. The pro-
cess of understanding and fixing the fault that causes
a failure is called debugging in this paper. The com-
mon practice of debugging is that upon observing a
failure, such as a segment fault or a wrong output, the
programmer sets breakpoints, restarts the execution,
changes values at breakpoints, and inspects the result
of the perturbation. Such a practice is tedious and
sometimes painful for developers.

Long-lasting efforts have been devoted to the au-
tomation of debugging. Fault localization focuses on
automatically computing the faulty statement through
techniques such as statistical analysis [1, 2, 3, 4] that
aggregates information from multiple runs. The out-
come of most of these techniques is a ranked list of
statements that are candidates for the faulty state-
ment. The onus is on the programmer to understand
the failure and decide which listed candidate is faulty.
However, due to the lack of information about how
a fault leads to a failure, such an inspection is very
labor-intensive. Furthermore, fault localization hardly
handles cases in which the root cause lies in the high
level requirements instead of the code.

Dynamic slicing [5, 6] tries to explain a failure by
capturing all the statement executions that a failure is
data/control dependent on. However, it is often the
case that the failure not only depends on the faulty
states induced by the fault but also a large number
of benign states, resulting in very fat slices that con-

1

tain a large volume of useless information. Previously,
various techniques have been proposed to make slices
thinner [7, 8]. However, their success is still limited
due to the following factors. First, most slicing-based
techniques focus on a single run – the faulty run – and
have not taken advantage of other runs. Deciding if a
statement execution is faulty based on only the failing
run is very challenging. Existing proposals of consid-
ering multiple runs, such as dicing [9], hardly work for
realistic programs as they do not handle cases in which
the execution of the faulty statement does not neces-
sarily lead to a failure. Second, to prune slices, these
techniques often assume symptoms other than an ob-
servable failure, such as correct outputs in a failing run
[8]. These symptoms may not be generally available.

Recently, Zeller et al. proposed the idea of isolat-
ing the state transitions that are critical for a failure
by comparing the failing execution with a similar but
correct execution [10, 11]. In the real world, developers
have a “correct” oracle execution in mind. During de-
bugging, they keep comparing the state in the failing
execution to the oracle to identify faulty variables. The
technique tries to mimic such a procedure by compar-
ing the state in the faulty run with that in a similar
but correct run, which serves as the oracle. Ideally, this
approach can address many of the issues of fault local-
ization and slicing. For example, it aims to produce
a chain of state transitions that explain the induction
of the failure, which is much more informative than a
ranked list and not limited to code errors. It excludes
benign transitions by looking at a reference execution,
resulting in thinner chains, when compared with slic-
ing.

Unfortunately, the state of the art in [10, 11] has not
fully exploited the potential of the idea for the following
reasons. First, while the idea is intuitive, the process is
not formalized. Important properties that are critical
for effectiveness and efficacy have not been studied. A
metric is missing for objectively deciding the quality
of the reported transition chains. Second, state com-
parisons are supposed to be performed at correspond-
ing points in the two respective executions. Due to
the differences between the two executions, construc-
tion of such correspondence is challenging. In [10, 11],
it was carried out in an ad-hoc way such that points
that are not semantically compatible may be selected
for comparison. As a result, the computed chain is
often hardly relevant to the failure. Third, our experi-
ence shows that the reported state transitions that are
supposed to explain failure causality often fail to do
so because they are caused by the inherent semantic
differences between the two different executions.

In this paper, we propose an automated debugging

technique that computes the causal path of a failure,
which is a subsequence of the failing run that explains
the failure. Given a failing run, the technique searches
for a dynamic patch. If a patch can be found, which
is true for most cases, the technique aligns the failing
run and the patched run by establishing a mapping
between instruction instances in the two runs. The
states of aligned pairs are compared to identify faulty
variables and causality testing is performed to identify
subsets of faulty variables that are essential. The se-
quence of essential faulty states explains the failure.
The contributions are highlighted as follows.

• We formally define the concept of failure inducing
chain (FIC), which is a subsequence of the failing
execution that gives rise to faulty states resulting
in the failure. An ideal FIC is the subsequence
generated by comparing the failing execution and
the execution of the corrected program with the
same input. Such ideal FICs serve as the ultimate
goal and thus the metric for FIC computation. In-
teresting properties are identified for ideal FICs.

• We find that one of the most important enabling
techniques for FIC computation is execution in-
dexing (EI), whose goal is to identify aligned points
in the two executions so that state comparison
is meaningful. Comparisons performed at mis-
aligned points introduce substantial noise because
the semantics at those points are inherently dif-
ferent. We propose to use an indexing scheme
based on program control structure, named struc-
tural execution indexing (SEI), in FIC computa-
tion. We prove that with SEI the formal model
manifests certain properties that are key to effec-
tiveness and efficiency.

• We propose and implement the idea of first patch-
ing a failing execution and using the patched ex-
ecution as the reference to isolate the failure’s
causal path.

• We propose a demand-driven algorithm, which ex-
ploits FIC properties and delivers efficiency.

• We implement a prototype. We evaluate the effec-
tiveness of both the metric and the proposed tech-
nique. The results show that the metric lives up to
its promise by producing desired FICs. The pro-
posed technique delivers high quality FICs. When
compared with the state of the art in [10, 11], our
technique computes much higher quality chains,
largely due to the introduction of structural in-
dexing and using a patched execution instead of a
different execution as the reference.

2

2 A Formal Model

In debugging, understanding the causal path from a
fault to a failure is the most critical task. We call such
a path the failure inducing chain (FIC).

Despite their importance, FICs have not been for-
mally defined and systematically studied. Approxima-
tions exist [12, 11, 10]. Unfortunately, the essence of
these techniques is subtle and objective evaluation can
hardly be achieved due to the absence of formalization.
In this section, a formal model is introduced, in which
the concept of an ideal FIC is proposed, assuming the
presence of the corrected version of a faulty program.
While this is not a realistic assumption for debugging,
ideal FICs do serve as a metric to evaluate our solu-
tion, which is called an approximate solution. Essential
properties of ideal FICs will be studied. In Section 4,
the approximate solution is presented as a practical re-
laxation of the formal model.

As an FIC is essentially part of the failing execution,
its formulation requires that we first define program
execution. This paper assumes sequential programs.

Definition 1. A program execution is a sequence of
tuples in the form of < i, d = op(o1, o2, ..., on), v >,
in which i is a unique identifier for the executed in-
struction, d is the destination, o1, o2, ..., on are the n
source operands, and v is the value of the definition.

A program execution is a sequence of executed in-
structions. Destination and source operands are vari-
ables. The identifier i uniquely represents an instruc-
tion execution instance. A simple form of i is sj with
s being the source code location and j being the ex-
ecution instance, e.g., 42 means the second execution
instance of statement 4. Intuitively, the FIC of a fail-
ing execution is a subsequence of the execution that
explains the causality between faulty states from the
root cause to the failure. Fig. 1 (a) shows a faulty
program that has a faulty statement x=1, whereas the
corrected version has x=0. The failure is manifested as
the output being True at statement 7. Consider the
failing execution E in Fig. 1 (b). The subsequence of
11, 31, 41 and 71 constitutes an FIC. Informally, an
FIC should have the following properties: (1) state-
ment executions in an FIC propagate faulty state; and
(2) they are essential to the manifestation of the fail-
ure, i.e., perturbing these executions may fail to pro-
duce the failure. Note that not all variables that are
directly or transitively computed from the faulty state-
ment execution contain a faulty value. In Fig. 1 (a), if
statement 2 changes to y=(x>=0), y contains the cor-
rect value despite it uses a faulty variable x. Therefore,
a definition based on def-use relations of variables is

insufficient; it must be based on faulty state. The sec-
ond property is also essential since not all faulty state
necessarily contributes to the failure. For instance, in-
serting a statement z=x<<1 in between statements 6
and 7 in Fig. 1 (a) introduces a faulty value into vari-
able z. However, z has nothing to do with the failure
and thus should not be part of the FIC. The aforemen-
tioned concept and properties are intuitive but vaguely
defined. For example, whether a state is faulty is often
decided by the programmer. A computable definition
demands the introduction of a second execution that
serves as a reference. Next, we introduce the formal
definition of program state and faulty program state.

Definition 2. The program state at an execution point
i, denoted as S(i), is a function with the signature of
V ar −→ V al×Def , which represents a mapping from
variables to their values and the definition points of the
values.

A simpler definition of program state that maps
variables to only their values is not adequate for our
purposes. Our technique relies on comparing states in
two executions, one being faulty and the other being
benign. It is possible that a variable is defined by a
statement in one execution to a value and by a com-
pletely different statement in the second execution to
the same value. In such a case, the variable is decided
to be benign if only values are compared, which is not
desirable. In practice, a variable might be reset to zero
by different statements in different executions, giving
rise to the aforementioned case. Examples of program
state are shown in Fig. 1 (c)1. The variables are pre-
sented in the first row and their values at execution
steps are listed. Symbol ‘ ’ represents undefined and
‘T’ and ‘F’ denote True and False, respectively. In this
paper, predicates are formulated as variables, such as
the predicate (x > 0) in Fig. 1 (c), in order to iden-
tify faulty control flow. To precisely determine faulty
state, the corrected version of the faulty program is
assumed2. Note that this corrected version does not
exist in practice during debugging, which makes the
definition to be an ideal one. Nonetheless, we need
such an ideal definition to evaluate the effectiveness of
the proposed technique. And for evaluation purposes,
it is often the case that both the faulty program and
its patched version are available.

Intuitively, a state in the failing execution that dif-
fers from the benign execution is faulty. Unfortunately,
effective comparison of two executions is a non-trivial
challenge. If the comparison is not carefully designed, a
state in the beginning of one execution could be subject

1For readability, definition points are omitted.
2In this paper, we assume a program has only one fault.

3

x=1;
y=x<<1
if (x>0)

 t=x<<2;
s=y<<1;
output (...);

x=0;
y=x<<1;
if (x>0)

else t=0;
s=y<<1;
output (...);

E E�Code

x=1; //Correct: x=0;
y=x<<1;
if (x>0)
 t=x<<2;
else t=0;
s=y<<1;
output (s+t>0);

11

21

31

41

61

71

{x→(1,11)}11
21
31

51
61
71

FIS

1
2
3
4
5
6
7

S�S
x,y,s, t,(x>0) x,y,s, t,(x>0)
1,_,_,_,_ 0,_,_,_,_

1,2,_,_,_ 0,0,_,_,_

1,2,_,_,T 0,0,_,_,F

1,2,4,4,T 0,0,0,0,F
1,2,4,4,T 0,0,0,0,F

{x→(1,11)} or {y→(2,21)}
{(x>0)→(T,31)} or
{y→(2,21)}
{t→(4,41)} or
{s→(4,61)}
{(s+t>0)→(T,71)}

(a) (b) (c) (d)

{x→(1,11)}

Figure 1. An example to illustrate our formal model.

to comparison with a state at the end of the other ex-
ecution. In other words, the correspondence between
steps in the two executions needs to be established.
This challenge is formulated as execution indexing (EI)
in our prior work [13].

Definition 3. An indexing function regarding two ex-
ecutions E and Ẽ of the same program, denoted as
idx : E −→ Ẽ, produces a mapping between the two
executions. Two execution points in the two respective
executions are aligned iff the indexing function maps
one to the other. An indexing function is valid if it
produces unique indices for different points in E.

A statement execution i ∈ E may have idx(i) = ⊥

if it does not have the aligned execution point in Ẽ
due to the difference between the two executions. One
may notice that the definition of indexing function is
with respect to the same program but we have two pro-
grams, the faulty program and its corrected version, in
our formalization. To accommodate this case, we as-
sume the faulty statement is a mutant of the correct
statement so that they are treated as the same state-
ment by the indexing function. Practical relaxations to
accommodate missing statements or additional state-
ments that significantly distinguish the faulty program
from the corrected version will be discussed in Sec-
tion 4.

The horizontal lines in Fig. 1 illustrate the indexing
function for the two executions. More particularly, the
line below 21 and 2̃1 indicates idx(21) = 2̃1. The lack
of a line below 41 means idx(41) = ⊥.

Facilitated by execution indexing, faulty state can
be clearly defined.

Definition 4. At an execution point i ∈ E, its state
S(i) is faulty iff (1). idx(i) 6= ⊥ and (2). there exists a

var s.t. S(i)(var) 6= S̃(idx(i))(var) with S̃ representing
the states in the ideal execution.

The variable var is called a faulty variable. The
definition point of the value of var is called a faulty

definition. Note that the equivalence comparison in
condition (2) requires both the values to be identical
and their definition points to align with each other.
Consider the example in Fig. 1. State at 11 is faulty
with x being the faulty variable and 11 being the faulty
definition.

As mentioned earlier, not all the variables (even
faulty variables) at a particular execution point con-
tribute to the failure. In order to identify relevant
faulty variables, the failure inducing set (FIS) is de-
fined regarding a faulty state.

Definition 5. Let S(i) be a faulty state and j be i’s
closest successor with idx(j) 6= ⊥. A failure induc-
ing set at i, denoted as FIS(i), is a minimal subset

of S(i) − S̃(idx(i)) that has to be retained in order to
induce FIS(j), or induce the failure if j happens after
the failure, when the rest of S(i) can be overwritten by

the correct state S̃(idx(i)).

Intuitively, an FIS is a minimal faulty state subset
that induces the next FIS. We say a state subset is
induced if the variable mappings defined in the subset
happen. Fig. 1 (d) shows examples of FISs. Execution

E is faulty and Ẽ is the corresponding ideal execution.
FIS(71) = {(s + t > 0) → (T, 71)} because the faulty
value of the predicate (s + t > 0) has to be retained
to expose the failure while the remaining variables can
be overwritten with the correct values. Furthermore,
there are two FISs at 61 as shown in different colors
in column (d). Copying the correct values, i.e., values

from S̃, to the complement set of either FIS does not
mask the failure. For example, copying the correct
values from S̃(61) to all variables except s results in
a state ‘0,0,4,0,F’, which still causes 71 to print the
wrong value. This justifies {s → (4, 61)} being a valid
FIS(61). These two FISs are also minimal.

It is worth noting that Definition 5 dictates local
causality, i.e., causality between consecutive aligned
points in the failing execution. In comparison, Zeller’s

4

cause effect chains demand global causality, i.e., his
causal state transition at a step needs to induce the
final failure. We found that global causality is undesir-
able as the resulting chains may be problematic. Con-
sider the example in Fig. 1 (d), if global causality is
enforced, FIS(31) and FIS(61) may be computed as
{y → (2, 21)} and {t → (4, 41)}, respectively, because
both lead to the final failure. However, FIS(31) does
not result in FIS(61) so that the chain does not explain
the flow of faulty state.

Property 1. The FIS for a given execution point may
not be unique.

The property has been demonstrated by Fig. 1 (d).
The different FISs at each execution step are displayed
in different colors. Multiple FISs at an execution step
represent the multiple independent ways of leading to
the failure.

Definition 6. Given a sequence of FISs for the failing
execution, the sequence of definitions that are captured
in these FISs constitute an FIC.

In Fig. 1, the two FIS sequences are rendered in
different colors. FIS(11) has two colors because it be-
longs to both sequences. The same is true for FIS(71).
The definition points in the FISs in the red chain con-
stitute the FIC 11 → 31 → 41 → 71. The blue chain
leads to another FIC 11 → 21 → 61 → 71. Both explain
the failure. Note that although comparisons occur only
at aligned points, the resulting FIC may contain exe-
cution points that are not aligned, e.g., 41 is present
in one of the FICs although it does not align with any
point in the benign run.

A metric to evaluate an approximate FIC compu-
tation proposal is to compare computed FICs to the
corresponding ideal chains. Extra care has to be taken
because of the non-uniqueness of FICs. One expensive
solution is to compute all ideal FICs. Our solution is to
always select the first FIS returned by the deterministic
FIS computation procedure at each step.

3 Indexing in FIC Computation

The computation of an FIC hinges on the indexing
function. A näıve indexing scheme such as mapping
the ith instance of statement s, denoted as si, in one
execution to the ith instance of the same statement
in another execution fails to provide meaningful align-
ment in many cases [13].

Consider the example in Fig. 2(a). Assume in one
run, method F() is called at line 2, and in the other
run, it is called at line 4. It is often undesirable to

1 if (P1)
2 F();
3 if (P2)
4 F();

1 if (P1)
2 F();
3 s1;
4 s2;

(a) (b)

Figure 2. Cases that fail naı̈ve EI schemes.

create the mapping between the two calls despite that
they are both the first instance. For a similar reason,
a calling context based indexing approach fails to work
[13].

Another simple indexing method based on a wall-
clock does not work well either. Consider the code in
Fig. 2 (b). Assume a very heavy method F() is called
in one run but not in the other run. A time based
indexing will very likely map s1 and s2 in the second
run to some points inside the method call of F(). As
a result, FISs computed by comparing these points are
often not useful.

Although EI is in general an undecidable problem,
in our prior work [13], we proposed an indexing func-
tion based on program control structure that provides
good approximation. We called it structural execution
indexing (SEI). The intuition of SEI is that two points
in two respective executions align if and only if they
are instances of the same statement and their imme-
diate enclosing control constructs align, which in turn
requires the transitive enclosing constructs align up to
the highest level – the two method bodies of the main
function. More formally, all possible executions of a
program can be described by a language called an exe-
cution description language (EDL) based on structure.
An execution is a string of the language.

Code

1 s1;
2 s2;
3 s3;
4 s4;

1 if (...)
2 s1;
3 else
4 s2;

1 while (...) {
2 s1;
3 }
4 s2;

1 void A() {
2 B();
3 }
4 void B() {
5 s1;
6 }

EDL
S −→ 1̄ 2̄ 3̄ 4̄ S −→ 1̄ R1

R1 −→ 2̄ | 4̄
S −→ 1̄ R1 4̄
R1 −→ 2̄ 1̄ R1 | ǫ

S −→ 2̄ RB

RB −→ 5̄

Str. 1 2 3 4
1 2
1 4

1 2 1 4
1 2 1 2 1 4

2 5

Table 1. EDLs for simple constructs.

Table 1 presents the EDLs for a list of basic pro-
gramming language constructs. The second column
shows sequential code without nesting, whose execu-
tion is described by a grammar rule that lists all the
statements. Note that a terminal symbol s is denoted
as s̄ in the EDL grammar rules for readability. In the
third column, the if-else construct introduces a level

5

of nesting and thus the EDL has two rules, one express-
ing the top level structure that contains statement 1
and the intermediate symbol R1 representing the sub-
structure led by 1. The two alternative rules of R1
denote the substructure of the construct. In the fourth
column, the self recursion in the second grammar rule
for the while loop expresses the indefinite iterations
of the loop. Intuitively, an EDL describes all possi-
ble executions and the alphabet of the EDL contains
all the statement ids in the program. Grammar con-
struction is based on program control structure. In
particular, statement instances that are dynamically
control dependent on the same predicate instance or
function call site should be parsed by the same gram-
mar rule. Consider the rules for the while construct in
the fourth column of Table 1. Statements 1 and 4 have
the same dependence and they are listed on the right
hand side of the first rule; the body of rule R1 lists the
statements that are dependent on statement 1. Note
that statement 1 is control dependent on itself as the
execution of a loop iteration is decided by its previous
iteration.

The EDL for the program in Fig. 1 is shown as fol-
lows.

S −→ 1̄ 2̄ 3̄ R3 6̄ 7̄
R3−→ 4̄ | 5̄

The formal definition and more complicated exam-
ples of EDLs can be found in [13].

At runtime, an execution can be parsed by an EDL
parser to a derivation tree. The structural indexing
function that maps one point in E to its aligned point
in Ẽ can be defined based on the derivation tree.

Definition 7. (Structural Indexing) Given an ex-
ecution E and a point i in E, let p be the path leading
from the root in the derivation tree of E to the leaf node
representing i, idx(i) is the point in Ẽ that shares the

same path p in the derivation tree of Ẽ.

Informally, the path from the root of the deriva-
tion tree to a leaf node represents the dynamic nesting
structure of the statement instance. Therefore, SEI
associates points in two executions that have the same
nesting structure and execute the same statement. SEI
was shown to be a valid indexing function in [13] ac-
cording to Definition 3.

The derivation trees for the two executions in Fig. 1
(b) are shown in Fig. 3. It is easy to tell that all state-
ments in the left tree except 4 share the same path with
some statement in the right tree, which explains the
horizontal lines in Fig 1. Real executions with loops,
recursion, and non-structural control flow give rise to
complicated derivation trees. Handling these cases can

R3

1 2 3 4 6 7

S

R3

1 2 3 5 6 7

S

E: E:

Figure 3. Structural indexing for executions
in Fig. 1

be found in [13]. A cost-effective implementation was
also presented with the average overhead of 42%.

One might notice that the constructive definitions in
Section 2 regarding FIS and FIC are independent of the
underlying indexing function as long as it is valid. In
other words, even with a bad indexing function that
significantly misaligns the two executions, FISs and
thus the FIC can still be computed. However, the com-
puted FIC will instead comprise the inherent semantic
differences at these misaligned steps rather than the
relevant faulty states. In other words, the quality of
the FIC is heavily decided by the quality of the index-
ing function. We find that FIC computation possesses
nice properties if the execution indexing function sat-
isfies certain conditions.

Definition 8. An indexing function is order-
preserving, iff for two points i and j in E, with idx(i) 6=
⊥, idx(j) 6= ⊥ and i happening before j, then idx(i)
must happen before idx(j).

Property 2. If the indexing function is order preserv-
ing, given any two execution points i and j in the fail-
ing execution, i happens before j, if FIS(i) ≡ FIS(j),
for any point k in between i and j with idx(k) 6= ⊥,
FIS(k) ≡ FIS(i).

The property states the stability of FISs. It says if
two steps in the failing execution have identical FISs,
all the intermediate steps have the same FIS. It requires
the indexing function to be order preserving. Consider
a counter-example in Fig. 4. Aligned points in the two
executions are connected. Assume at point h in E that
precedes i, a variable x is defined. Since the EI function
is not order preserving, it may happen that the equiv-
alent assignment to x occurs after idx(j) in Ẽ. Since x
has different values at i and idx(i), x is a faulty vari-
able at i. The same is true at j. Assume x belongs
to both FIS(i) and FIS(j). Let k be a point in be-
tween i and j, whose alignment idx(k) happens after
the assignment to x. Variable x has the same value
at k and idx(k) and the definition points are aligned
too, precluding the presence of x in FIS(k). In other
words, FIS(k) cannot be identical to FIS(i)/FIS(j).

6

x→(5,h) FIS(i)

x→(5,h) FIS(k)

x→(5,h) FIS(j) j

i

k

h x=5

x=5

idx(i)

idx(j)

idx(h)

idx(k)

E E

… …

… …

… …

… …

… …

… …

… …

… …

… …

Figure 4. A counter-example for Property 2,
assuming FIS(i) ≡ FIS(j) and the EI func-
tion is not order preserving. Steps are rep-
resented by rectangles. Aligned steps are
connected by double-arrows. Shaded round
boxes list the assumptions.

Proof. Recall that variable definition points are part
of an FIS. FIS(i) ≡ FIS(j) implies all the definitions
in FIS(i) occur before i and are not killed in between
i and j, otherwise, they cannot be present in FIS(j).
At any point k in between i and j with idx(k) 6= ⊥,
the same set of variables as those in FIS(i) are able to
induce FIS(j) as they are not re-defined. Furthermore,
this set of variables must be faulty at k too. Otherwise,
there must be a variable x ∈ FIS(i) that becomes
benign at k. That is to say, in the ideal execution, x is
re-defined at an point in between idx(i) and idx(k) to
the same value and the re-definition point is aligned to
the definition of x in the faulty run, which must happen
before i. This is contradictory to the condition that the
indexing function is order preserving. Finally, it is easy
to see that FIS(i) is also a minimal set at k to induce
FIS(j). Therefore, FIS(k) ≡ FIS(i) ≡ FIS(j).

This property will be shown in Section 4 to be very
important for the efficacy of FIC computation.

Theorem 1. Structural execution indexing is order
preserving.

Proof. Let idx : E → Ẽ establish correspondence be-
tween E and Ẽ using SEI. Let i, j be points in E such
that i precedes j and idx(i) 6= ⊥, idx(i) 6= ⊥. Un-
der SEI, both i and j are paths in the derivation tree.
All structural indices share a common root represent-
ing the entry point of the program, so i and j have at
least one node in common. Consider the last common
node of i and j in the derivation tree. Because the indi-
vidual production rules of SEI express temporal order
within a structural region, the paths of i and j must
separate at this node such that the continuing path of

i precedes the continuing path of j in the derivation
tree. However, these same paths identify idx(i) and

idx(j) in Ẽ, so the continuing path of idx(i) precedes
the continuing path of idx(j). Thus, again because the
production rules capture local temporal order, idx(i)
must precede idx(j).

Not all valid indexing functions are order-preserving.
The indexing scheme that relies on the id of a statement
and its instance count is not order-preserving.

Theorem 2. Assume FIS computation terminates at
i, meaning FIS(i) ≡ φ and FIS(j) 6= φ with i and j
being consecutive aligned points and i preceding j. If
the state at i is benign, FIS(j) must be a singleton that
contains an instance of the faulty statement r, which
is herein called the root cause.

Recall the definition of FIS implies backward com-
putation. The theorem says that if FIS computation
terminates at a benign state in the failing execution, it
captures the root cause.

Proof. Let’s first prove FIS(j) is a singleton. Assume
FIS(j) contains two faulty variables x and y that are
defined at k and l, respectively. Since i has a benign
state, k and l must occur after i and before/at j. That
is to say, there must be at least one execution point
in between i and j. Let’s assume it is k. The point
k must be aligned because the state at i is benign so
that the next executed statement must be the same for
both E and Ẽ. That contradicts the condition that i is
the immediate aligned predecessor of j. As there must
not be any other execution points in between i and j
and FIS(j) has a faulty variable, this variable must be
produced at j from benign values. Therefore, j has to
be an instance of the faulty statement.

Our experience shows that FIS computation mostly
terminates at a benign state if the fault is a single state-
ment fault3 so that the root cause is caught. The con-
cept of root cause is not as simple as one might think.
Multiple instances of a faulty statement may contribute
to a failure. For instance in the following example (a),
both instances of the faulty statement contribute to the
final faulty output. In such a case, the first instance is
considered as the root cause and captured in FIS(21).

1 for (i=0 to 1; i++)
2 sum+=1;//should be sum+=2
3 output(sum);

1 for (i=0 to 1; i++)
2 A[i]=0;//should be A[i]=1
3 output(A[1]);

(a) (b)

3More complex faults will be discussed in Section 4.

7

It is wrong to assume the first execution instance
of the faulty statement must be the root cause. Con-
sider the example in (b). The failure is that value 0
is printed while value 1 is expected. We can see that
the faulty statement gets executed twice. The second
instance is the root cause instead of the first one. Ac-
cording to Definition 5, FIS computation terminates at
the second instance of statement 2, which means even
though 22’s aligned predecessor 12 does not have a be-
nign state, i.e., A[0] has a faulty value at 12, FIS(22)
still captures the root cause. That is to say, the tech-
nique often goes beyond what is stated in Theorem 2.
Unfortunately, it is in general not provable that the
FIS computation implied in Definition 5 always cap-
tures the root cause. An example can be constructed
to show that FIS computation can terminate at a faulty
state and the last computed FIS does not capture the
root cause. In practice, we have not encountered such
a case.

In general, one can observe that FIC computation
facilitated by SEI produces a subsequence that starts
with the root cause, ends with the failure, produces
faulty values, and has causality between individual
steps. Such a chain is exactly what a programmer ex-
pects in order to understand the failure.

Comparison with A Slicing-based FIC Defini-
tion. In our prior work [12], we informally defined an
FIC as the dependence chop in between the root cause
and the failure, i.e., the set of executed instructions
that are dependent on the root cause and also depended
on by the failure. A few limitations of the slicing-based
definition motivate us for the new formalization. First,
instruction executions that are dependent on the root
cause and also depended on by the failure are often
benign, meaning they do not produce faulty state and
thus do not contribute to understanding the failure. A
simple example is presented as follows

1 x=1; //should be x=0
2 y=x+1;
3 if (x>=0)
4 output(y);

The root cause is at 1 and the failure is at 4, since both
2 and 3 are dependent on 1 and depended on by 4. The
chop contains all the statement executions. However,
as we can see, the chain 1 → 2 → 4 is the one that
explains the failure. Second, a slicing-based FIC is of-
ten much fatter than an FIC defined in this work as it
contains all possible chains from the root cause to the
failure including the proposed chain. Our initial expe-
rience shows that studying one chain is usually enough

to understand the failure. Moreover, as a programmer,
being presented with a smaller chain is often prefer-
able. However, this needs to be confirmed by a larger
scale study.

Third, traditional slicing techniques based on
data/control dependence tracking are often not suffi-
cient to disclose a failure induction path due to the
existence of implicit dependence [12], which is neither
data nor control dependence and cannot be computed
by tracing one execution. The computation of implicit
dependence is often more expensive than data/control
dependencies.

Fourth, a slicing-based FIC is computed by track-
ing instruction level dependencies instead of compar-
ing with the ideal execution. As a result, in cases such
as a method is called in the faulty run but not in the
ideal run, the slicing-based FIC traces each relevant
exercised dependence in the method call, whereas the
comparison-based FIC identifies and presents relevant
state differences at the method call boundary. The lat-
ter case is often more preferable because knowing that
the method call as a whole is faulty is in many cases
enough without knowing all the instruction level details
in the call.

4 An Approximate Solution

The formal system presented earlier enables the
computation of FICs. However, in reality, relaxations
have to be made in order to develop a practical debug-
ging algorithm.

4.1 Constructing A Reference Execution

The definition of FIC assumes the availability of the
corrected program. While such an assumption is useful
for evaluation, it is not realistic for debugging. There-
fore, we need to construct a reference execution from
the failing one. A simple idea is to select an execution
similar to the failing execution that produces correct
output. In Zeller’s work [10], delta debugging [14] was
used to systematically explore the input space to find
an input that is close to the failure inducing input but
is able to drive the faulty program to produce correct
output. Unfortunately, it demands a test oracle that
decides if an execution produces the desired output.
More importantly, even if such an input can be found,
the semantic difference determined by the two different
inputs inevitably confuses FIS computation because a
faulty (benign) variable regarding to the ideal execu-
tion may no longer be a faulty (benign) variable re-
garding to the selected execution.

8

We proposes to construct a reference execution from
the failing execution by patching it. A failing run is
patched if it produces the desired output for the fail-
ure inducing input. Note that patching an execution
is completely different from patching a faulty program.
In our prior work [15], we have found that a failure
can often be patched by switching the branch outcome
of a predicate instance. It has been shown that 9 out
of the 12 real bugs collected in [15] can be patched
by predicate switching. In this work, we have also con-
ducted a larger scale experiment on all failing test cases
for SIR [16] programs. Results are shown in Table 2.
On average, 80% of the failing executions had critical
predicates that could patch the executions for use as
oracles.

Program Execs w/o
criticals

Total
Executions

% w/o
criticals

tcas 126 1536 8.20%
replace 982 3267 30.05%

print tokens 113 484 23.35%
print tokens2 560 2064 27.13%

schedule 130 799 16.27%
schedule2 61 316 19.30%

Table 2. Switched predicate presence.

There are cases in which more than one predicate
can be found such that switching any one of them pro-
duces the correct output. Our criterion is to select
the first such predicate as it is often the closest one to
the root cause. Predicate switching patches a failing
run in two possible ways. In the first case, the pred-
icate instance to be switched happens before the root
cause such that predicate switching prevents the faulty
statement from being executed. In this case, an FIC
computed by comparing a failing run with its patched
version often captures the root cause. In the second
case, the predicate to be switched happens after the
root cause, as a result of some faulty state. Switching
the predicate re-directs the control flow back to the
desired path. In such a case, the FIC often does not
capture the root cause but rather part of the ideal FIC.
However, we argue that capturing part of an ideal FIC
is equally desirable as capturing the root cause. It was
presented in a recent white paper [17] by national re-
search council that the majority of software errors are
requirement errors. Therefore, there usually does not
exist a statement or a set of statements that constitute
a root cause.

4.2 State Differencing and Minimizing

Recall that an FIS is the minimal faulty state subset
that induces its successive FIS. The minimality require-
ment implies that an exponential number of possible
subsets have to be tried. In [10], a state comparison
algorithm was proposed. In the algorithm, the state
of an execution at a particular point is represented by
a memory graph [18] that reflects the variables, val-
ues, and indirect memory structures applicable to the
execution at that point. As such, each node in the
graph corresponds to a single scalar value or memory
structure, and each edge in the graph reflects a mem-
ory reference relationship. By establishing edge and
node correspondence between two memory graphs for
an execution point i in E and its peer idx(i) in Ẽ re-
spectively, it is possible to express state difference as
the graph difference. Standard delta debugging [14]
is then applied to the graph difference to isolate the
minimum set that produces the failure once applied.
However, the algorithm does not extend into comput-
ing the FIS at an execution point, rather it only seeks
to find the minimal state at a point which will induce
execution failure in the end. As discussed with Defini-
tion 5, local causality is more restrictive. As such, only
the very last state in the entire FIC is derived to mini-
mally induce the failure itself. In our FIS computation
algorithm, this relevant state is computed first, and all
prior states within the FIC can then be derived “back-
wards” from their successors. Constructively, delta de-
bugging is then applied such that each state minimally
induces not merely the failure, but the precise failure
inducing state of its successor in the FIC.

4.3 A Demand-Driven Algorithm

Recall that FIC computation with SEI support has
the stability property (Property 2), which says that if
the FISs computed at any two aligned points are the
same, there is no need to compute FISs in the middle
of these two points as they will be identical. Based on
this property, a hierarchical algorithm can be designed
to compute FISs in a demand-driven fashion. The idea
is to carry out state comparison and causality test-
ing top-down and in reverse order along the indexing
tree of the failing execution until the right granularity
is reached. The top-down traversal descends into and
examines only as much of the indexing tree as is nec-
essary to find the appropriate FISs, and the FISs are
computed bottom up along this reverse order traversal
via the leaves representing indices at each level. Thus,
each FIS is computed to induce the successive one ex-
cept the last FIS, which induces the observed failure.

9

S

E: 1 4 11 12 … …5 …. …. 6 … … 7 2 8 … … 9 … …10 3

RA RB

RC RD RE RF RG

R11
……

……

……

…… …… ……

main () {

 A ();

 B ();

}

A () {

 C ();

 D ();

 E ();

}

B () {

 F ();

 G ();

}

C () {

 if ()

 …

}

…

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 5. An example for the algorithm.

Consider the example in Fig. 5. The code is on
the left; an execution and its index tree are shown on
the right. The index tree reflects the nested function
calls. Assume all the execution points presented in
the trace are aligned with some points in the other
run, and suppose the failure is first observable immedi-
ately after point 3. Because point 3 is the closest point
to the failure in both executions, the final FIS, which
induces the failure directly, must be calculated there.
Then, instead of performing state comparison at all
these points, the hierarchical algorithm first performs
comparison at points with the indexing depth of 1, i.e.,
points 1, 2 and 3, corresponding to the highest level
of the execution. If the FISs at two consecutive steps
are not identical, assuming FIS(2) 6= FIS(3), the al-
gorithm moves one step down and computes FISs for
the points in between 2 and 3 with the depth of 2.
They are 8, 9, and 10. The process repeats until the
adjacent FISs are all identical or the finest granular-
ity is reached. Observe, that if FIS(9) 6= FIS(10),
then FIS(8) must be computed with respect to in-
ducing FIS(9), and upon returning one level in the
traversal, FIS(2) must be computed to properly in-
duce FIS(8). The algorithm requires a lesser number
of state comparisons and causality tests compared to a
linear algorithm that computes FISs backwards step by
step. Since the computation of ideal FICs and that of
approximate FICs only differ by using either an ideal
execution or a patched execution as the reference, the
same algorithm can be used to compute both ideal and
approximate chains.

Pseudo-code of the algorithm is shown in Algo-
rithm 1. Using the failing execution and the gener-
ated passing execution, CalculateFIC() generates
the complete FIC for the failing execution. Observe
that the FIC computation first descends to the tem-
porally latest index common to both the failing and
passing executions, as computed by FindInitialFail-

ure() and stored in currentNode on line 1. The first
FIS at this point induces the original failure, as stored
in target on line 2. Then, in lines 4-7, for each par-

Algorithm 1 Hierarchical FIC computation.
Primitives:

· FindFailingChild()- Finds the last child of this node before the
failure common to the failing and passing runs.

· CommonChildTerminals()- Finds the leaf children of this node
common to the failing and passing runs.

· FIS()- Finds the FIS at the execution index represented by the
given node, inducing either failure or the successive FIS.

CalculateFIC()
1 currentNode ← FindInitialFailure()
2 target ← FIS(currentNode) inducing failure
3 defs ← {target}
4 while target 6= ∅ do

5 currentNode ← Parent(currentNode)
6 (sets,target) ← SetsInRegion(currentNode,target)
7 defs ← defs ∪(∪fis∈sets)
8 return TemporalSort(defs)

FindInitialFailure()
1 currentNode ← executionRoot
2 loop

3 nextNode ← FindFailingChild(currentNode)
4 if nextNode = ∅ then

5 return currentNode
6 currentNode ← nextNode

SetsInRegion(node, target)
1 kids ← CommonChildTerminals(node)
2 if kids = ∅ then

3 return ({},target)
4 (last,first) ← (LastIndex(kids),FirstIndex(kids))
5 sets ← ∅
6 if kids[last] precedes a shared nonterminal x then

7 sets ← SetsInRegion(x, target)
8 target ← FISTo(target, kids[last])
9 sets ← sets ∪ target

10 stack ← [first]
11 while stack is not empty do

12 seek ← pop the last element of stack
13 mid ← midpoint of (seek,last) truncated
14 if seek = mid then

15 if ∃ internal node x between seek and mid then

16 (subsets,target) = SetsInRegion(x, target)
17 sets ← sets ∪ subsets
18 end ← mid
19 target ← FIS(kids[mid]) inducing the old target
20 sets← sets ∪ target
21 else if FIS(kids[mid]) = FIS(kids[last]) inducing target then

22 last ← mid
23 push seek on stack
24 else if FIS(kids[mid]) = FIS(kids[seek]) inducing target then

25 push mid on stack
26 else

27 push seek on stack
28 push mid on stack
29 return (sets,target)

10

ent node, stored in currentNode, back along the path
from the failure up to the root of the indexing tree, we
perform the previously mentioned demand driven ap-
proach with SetsInRegion() to collect the FISs rele-
vant within each subtree of the indexing tree rooted at
currentNode that has not yet been visited. Note that
the bottom-up traversal in lines 4-7 is dictated by the
fact that FISs are computed backwards, i.e., an FIS
can not be properly computed if its successor is not
properly computed. That makes the algorithm slightly
more complicated than what was illustrated in the ex-
ample. The computation for a subtree yields the FISs
collected over that subtree along with the new target
FIS that must be induced. The relevant definitions
from the collected FISs are aggregated into defs on
line 7. Once all FISs have been aggregated, when the
next target to induce is empty, the definitions they
contain are sorted by their temporal position within
the failing execution and returned on line 8. This se-
quence of definitions comprises the complete FIC.

FindInitialFailure() uses a direct top-down
search of the indexing tree starting at executionRoot,
the common entry point of both programs. It uses
FindFailingChild() in line 3 to search all of the chil-
dren of an internal node, or the internal node following
a leaf node, common to the failing and passing runs
in order to find the last common leaf child before the
failure becomes observable. Lines 4-5 determine that
when there is no such child, the current node of the
search is returned as the last common index before the
failure.

The top-down search for most of the indexing tree
is performed by the recursive procedure SetsInRe-

gion(). This generates the FISs for the portion of the
indexing tree rooted at node such that the last analyzed
index of the tree induces the FIS target. On line 1, we
extract the ordered list of all the leaf nodes common
to both executions and store them in kids. If there
are no such leaves, then there are no shared indices
between the executions at this subtree, so we return
after no work on line 3. Note that in our grammar, a
subtree is led by a leaf, which is usually a predicate. If
the last child is an internal node, we must recurse and
receive a new target FIS in lines 6-7. Lines 10-28 per-
form incremental, reverse order binary searches of the
children, with the invariant that the last known and ag-
gregated FIS is stored in target. The variable stack

maintains a stack that holds approximate points in the
list of children where changes in FIS may occur. The
last element on the stack is the index of the next child
that should be compared in the binary search against
the target FIS, which pertains to the last child that
was traversed. As elements are added to and popped

off stack, the changes in FISs are refined by the search
in lines 21-28. When two neighboring child nodes have
different FISs, the procedure descends and aggregates
any new FISs in lines 14-20, traversing the last node on
the stack and receiving a new target FIS. Finally, the
aggregated FISs for the subtree at node and the FIS
applicable to the first in-order element of the subtree
are returned at line 29.

4.4 Indexing in the Presence of Various
Types of Faults

One of the major contributions of our work is to
propose the concept of ideal FIC that serves as an ob-
jective evaluation metric. The ideal FIC computation
requires two versions of the program: the faulty ver-
sion and the patched version. In the formal system
mentioned earlier, we assume the faulty statement is a
mutant of the correct statement so that the indexing
function can virtually treat them as the same state-
ment. In practice, we encounter many cases in which
faulty programs are much more complex transforma-
tions of their corrected versions. In some cases, a new
method has to be inserted to the faulty program to fix
a bug. To overcome this issue, we use diff to identify
the static common parts of the two programs. Only
the common parts are subject to execution indexing.
Under such a relaxation, the indexing function is still
order-preserving. Detailed discussion of this issue is
beyond this paper.

5 Evaluation

A prototype was developed to analyze C programs
using a combination of source to source transforma-
tion via CIL[19], Python, and the publicly available
Python and GDB infrastructure developed in [11]. SEI
and predicate switching are implemented using CIL.
The demand-driven algorithm is implemented using
Python. We used the programs in SIR [16] for our
evaluation. For each program, SIR provides the correct
version of the program, a set of mutants with faults in-
jected, and a test suite. For the first four programs,
we used all the available mutants, which are around
10. For programs replace and tcas, the first ten mu-
tants were selected as there are too many mutants for
in depth study. For each mutant, we selected the first
four failing runs. Note that an injected fault may fail
in multiple unit tests. Table 4 presents the results.
As both the faulty program and its corrected version
are available, we are able to compute the ideal FICs.
In contrast, approximate FICs are those computed by

11

comparing failing executions and their patched ver-
sions. For comparison, we also downloaded the sys-
tem presented in [11] and applied it to the same set
of failing runs. Recall that their system does not have
indexing support and uses a similar execution as the
reference. The results are presented in columns labeled
with DD. In the table, FIC length refers to the num-
ber of elements in the FIC sequence. Coverage refers
to the percentage of an ideal chain that is captured
by the approximate/DD chain. Relevance refers to the
percentage of an approximate/DD chain that is con-
tained in the ideal chain. Edit distance is the standard
Levenshtein distance metric between the ideal and ap-
proximate/DD chains, which represents the number of
changes required to turn one chain into the other. To
present a better view, each group of tests (failing runs)
are divided into two sub-groups, best and worst, by the
coverage values. Averages are computed for each sub-
group. The following observations can be made from
the results.

Observation One. The ideal FICs capture the root
causes as their starting points, except for code omis-
sion errors. They explain causality and thus serve per-
fectly as a metric. Let’s use one example to illustrate
this observation. The replace program in the Siemens
suite substitutes a pattern in an input string with an
alternative user provided pattern. In the tenth mutant,
the injected fault is that esc() returns ‘\0’ instead of
an escape pattern. This is propagated as seen in the
ideal FIC in Fig. 6 until it is assigned to a position
in a substitution string, truncating it and causing sev-
eral characters to be omitted from the output. Observe
that the root cause is perfectly captured at the start
of the ideal FIC, and each step causes or collaborates
with successive steps to create the failure.

Observation Two. The approximate FICs are consis-
tently much better than those computed by the algo-
rithm in [11] in terms of coverage and relevance. The
first main reason is the introduction of execution index-
ing. Without indexing, execution comparison does not
have a clear meaning, resulting in low quality chains.
The low coverage and relevance of the DD algorithm
are not contradictory to the results reported in [11],
in which the observation was that the computed chains
contain points close to root causes along dependence
edges. Our metric is more stringent, as we have the
ideal FICs. Furthermore, we studied four failing test
cases for each mutant whereas they studied one in [11].
The second main reason is that a different execution
is used as the reference in [11] so that the inherent
semantic difference of the two executions significantly
pollutes the resulting chains. We did another experi-
ment, in which we used the same algorithm from [11]

Code Snippet
esc(s, i):
1 result = ’\0’; //was ’@’
2 return result

addstr(c, outset, j, maxset):
3 outset[*j] = c;

makesub(arg, from, delim, sub):
4 escjunk = esc(arg, &i);
5 junk = addstr(escjunk, sub, &j, 100);

putsub(lin, s1, s2, sub):
6 while (sub[i] != ’\0’) {
7 fputc(lin[j],stdout);

main(argc, argv):
8 makeres = makesub(arg, 0, ’\0’, sub);*
9 putsub(lin, i, m, sub);*

Ideal FIC:
At 1, result is given ‘\0’
At 4, escjunk is given ‘\0’
At 5, arg c is given ‘\0’
At 3, sub/outset[59] is given ‘\0’
At 6, (sub[i] != ‘\0’) is false
Thus the output ... differs from ...

Figure 6. An ideal FIC for replace

but took the patched execution as the reference rather
than a different execution. The resulting chains have
better coverage and relevance than the DD results in
Table 4, but they are still not comparable to our chains.
These results are labeled DDp in Table 4.

Observation Three. The proposed technique is able
to compute high quality chains. For the best half of
test cases, the average coverage and relevance range
from 84%-100% and 68%-100%, respectively. The col-
umn Roots shows the number of cases in which the
root causes are captured by our technique. The results
imply that chains computed with our technique con-
tain substantial and highly relevant information that
(partially) explains the failures. An example can be
found in our later case study. Two cases are domi-
nant, one is that the approximate chains, i.e., chains
computed by the proposed technique, are subsequences
of ideal chains. It corresponds to the predicate to be
switched happening after the root cause. There are also
cases that the approximate chains are super-sequences
of ideal chains. It corresponds to the predicate happen-
ing before the root cause. For some of the benchmarks,
e.g. tcas, the technique was less effective for the worst
half. The main reason is that the predicate selection
strategy, i.e., selecting the first predicate patch, is less
effective. We plan to further study these cases.

Runtime. The prototype is expensive. The average
runtime over all test cases ranges from 7 - 9814 sec-
onds with the average of 752 seconds. Without the
demand-driven algorithm, a näıve linear algorithm that

12

computes FISs backwards at each aligned step is or-
ders of magnitude slower and does not terminate in 10
hours for many cases. Details can be found in Table 3.
The main hurdle is that memory graph construction
and causality testing, which are the most basic com-
putation units, require expensive communication with
GDB. We are working on replacing the GDB based
component with an instrumentation based component.
More specifically, the new implementation will be GDB
free and memory graphs will be built incrementally
on the fly by instrumentation rather than being con-
structed from scratch by querying GDB at each FIS
computation.

Program Min Max
print tokens 379 435
print tokens2 74 6134

replace 8 9814
schedule 7 899
schedule2 19 4564

tcas 27 138

Table 3. Execution times in seconds.

5.1 Case Studies

grep. Version 2.5.1 of the grep utility has a flaw
which causes grep to fail to find the strings that match
the provided patterns if both -F and -w options are
specified [15]. These options require that pattern be a
string and a word respectively, but those cases are not
mutually exclusive and should not preclude matching.
This is a design bug.

The switched predicate disables the -w option, so
the oracle execution behaves as if only the -F option
were passed in. The resulting FIC and relevant code is
reproduced in Fig. 7. Observe that the starting point
relates to the switched predicate. First, the FIC reveals
that the -w option is required for the error and that
it requires word patterns by setting the match words

flag. The third FIC element says this flag is checked in
Fexecute, which then returns -1 to match offset, sig-
nalling that the the buffer is done scanning. Finally, at
statement 5, match offset is checked and the program
ends.

From this case, we can see there is not a single
statement to be blamed for the failure. Understand-
ing the causal path of the failure becomes much more
important. In grep 2.5.3, the bug is fixed by placing a
multi-line patch in statement 2. The fact that the FIC
provides an explanation and points the programmer to
the places right before and after statement 2 clearly
demonstrates the power of our technique.

Code Snippet
Fexecute(buf, size, match size, exact):
1 if (match words) {
2 /*verify the match is a word*/
3 return -1;

grepbuf (char const *beg, char const *lim):
4 match offset = Fexecute(p, lim-p, &match size, 0);
5 while (match offset != -1) {
6 /*Print results & Keep scanning*/

main(argc, argv):
7 while (opt != -1) { ...
8 case ’F’: setmatcher (”fgrep”);
9 case ’w’: match words = 1;
10 n += grepbuf (beg, lim);*

Approximate FIC
At 7, opt is given 1
At 9, match words is given 1
At 1, (match words) is true
At 3, Fexecute returns -1
At 4, match offset is given -1
At 5, (match offset != -1) is false
Thus the output ... differs from ...

Figure 7. Approximate FIC for grep 2.5.1

gzip. Version 1.3.9 of gzip has a design flaw
wherein some files are not compressed when they
should be. By default, gzip may refuse to compress
files for various reasons. For example, it will reject files
with certain filename extensions, such as .gz, in or-
der to avoid recompressing files that have already been
compressed. In general, this behavior may be overrid-
den by using the -f option to force compression, how-
ever, in version 1.3.9, the forcing option erroneously
still does not allow the compression of already com-
pressed files.

Using our infrastructure, the switched predicate
causes an empty string to be copied into the buffer
used for detecting filename extensions of already com-
pressed files. The resulting FIC and relevant code is
reproduced in Fig. 8. The first several steps show the
causal behavior for detecting filename extensions that
denote already compressed files: first that the filename
must be examined, then that it is converted to lower-
case and compared against expected extensions. All of
this finally yields that an extension must be detected
by get suffix at line 15 and, finally, that this ulti-
mately causes the predicate on line 17 to irretrievably
lead to failure within make ofname. Because this is a
design flaw, there is not simply one faulty predicate,
but the code examining file extensions is shown to be-
have properly by the FIC, so the only appropriate place
to fix the bug is in line 17. At the time of writing, a
fix for the flaw is present only in the CVS repository
for gzip source code. Indeed, it changes line 17 to
additionally check if the force (-f) option is used.

13

Benchmark # Tests
FIC Length

Ideal / Approx
CoverageRelevance Edit

Distance
Roots

DD
Length

DD
Coverage

DD
Relevance

DDp
Length

DDp
Coverage

DDp
Relevance

schedule
best 14 2.5 3.5 100.00% 78.21% 1.0 14 2.44 43.45% 46.30% 2.00 50.00% 50.00%
worst 14 13.71 8.71 45.29% 48.59% 12.5 1 3.44 20.17% 30.56% 3.14 31.24% 33.33%

schedule2
best 14 4.64 6.36 98.21% 79.86% 0.38 13 3.50 25.00% 29.17% 4.60 23.94% 34.33%
worst 14 11.21 7.21 30.73% 60.73% 9.0 0 4.67 15.53% 22.22% 3.80 19.82% 32.00%

print tokens
best 12 4.42 4.42 100% 100% 0 12 2.00 46.30% 66.60% 2.00 80.00% 41.74%
worst 12 4 10 97.22% 93.66% 6.17 11 6.40 22.28% 50.0% 2.00 41.73% 100.0%

print tokens2
best 16 12.56 15.94 98.68% 72.59% 4.63 14 3.53 20.01% 36.56% 3.69 33.58% 91.28%
worst 16 12.19 13.44 62.80% 69.34% 8.5 0 4.26 6.77% 26.22% 2.71 11.21% 62.86%

replace
best 19 12.0 15.95 93.36% 68.56% 5.74 9 5.36 15.45% 61.54% 2.05 23.21% 100.00%
worst 19 102.26 8.73 33.43% 70.45% 95.52 0 5.21 14.98% 27.47% 2.17 12.08% 81.67%

tcas
best 20 6.8 7.0 84.64% 80.0% 1.6 12 3.00 20.00% 66.67% 2.00 29.76% 100.00%
worst 20 11.4 7.0 27.35% 42.86% 8.4 0 3.00 20.00% 66.67% 2.00 18.23% 100.00%

Table 4. Evaluation.

Code Snippet
get suffix(filename):
1 if (strlen(filename) <= MAX SUFFIX)
2 strcpy(suffix buffer, filename);
3 else
4 strcpy(suffix buffer, ””);
5 strlwr(suffix buffer);
6 slen = strlen(suffix buffer);
7 . . .

8 if (slen > strlen(”.gz”) && /*ends in suffix .gz*/)
9 return ”.gz”;
10 . . .

11 return NULL;

strlwr(s):
12 for (char *t = s; *t; t++)
13 *t = tolowercase(*t);
14 return s;

make ofname():
15 suff = get suffix(ofname);
16 . . .

17 } else if (suff != NULL) {
18 /* Print out recompressing error and abort */

Approximate FIC
At 1, (strlen(filename) <= MAX SUFFIX) is true
At 2, suffix buffer is given “IN.gz”
At 5, arg s is given “IN.gz”
At 12, *t is true
At 13, s/suffix buffer is given “iN.gz”
At 13, s/suffix buffer is given “in.gz”
. . . (over length of filename)
At 6, slen is given 5
At 8, (slen > strlen(”.gz”)) is true
At 9, get suffix returns “.gz”
At 15, suff is given “.gz”
At 17, (suff != NULL) is true
Thus the program aborts and the file was not com-
pressed

Figure 8. Approximate FIC for gzip 1.3.9

6 Related Work

The earliest attempts towards algorithmic and
partly automated debugging are [20] by Shapiro and
[21] by Fritzson et al. The basic idea is to allow de-
velopers to provide a partial specification of the pro-
gram by answering questions. The debugging algo-
rithm, guided by the specification, gradually isolates
the fault. While such a principle is still valid in gen-
eral, the specific techniques are out of date as they do
not allow side-effects or require too many user interac-
tions.
Delta Debugging. The work that is most relevant to
ours is the series of works by Zeller [14, 10, 11]. The
project in [10] is the first one to propose to compare
two similar executions using delta debugging [14, 22]
to compute cause effect chains, which are a concept
similar to FICs. Later in [11], the technique is further
extended to link cause transitions to a faulty state-
ment. Compared to these works, we make significant
progress on the following: we introduce a formal model,
propose an evaluation metric, identify the key enabling
technique – execution indexing, identify a set of im-
portant properties, develop an effective algorithm, use
a patched execution instead of a different execution to
reduce noise caused by inherent semantic differences.
As the origin of all these differences, our definition of
failure inducing chain differs from Zeller’s definition in
a number of aspects: our definition is tied with exe-
cution indexing that enables computability and clarity
whereas a rigid definition of Zeller’s chain is absent; our
definition dictates local causality where Zeller’s defini-
tion demands global causality, which loses some im-
portant properties; our definition is backward whereas
Zeller’s is not directional, and we believe debugging is
by its nature a backward problem.
Fault Localization. Fault localization computes fault
candidates by looking at many executions including

14

both passing and failing. Harrold et al. [23] com-
pared the spectra of passing and failing runs and found
that failing runs tend to have unusual coverage spectra.
Value spectra were further used in [24] to improve the
result. Jones et al. [25] ranked each statement accord-
ing to its ratio of failing tests to correct tests and used
this information to assist fault location. Renieris and
Reiss [4] focused on the difference between the failing
run and a single passing run with similar spectra as a
means to narrow down the search space for faulty code.
Liblit et al. [1] describe a sampling framework and
present an approach to guess and eliminate predicates
to isolate a deterministic bug. For isolating nondeter-
ministic bugs, they use statistical regression techniques
to identify predicates that are highly correlated with
the program failure. SOBER [2] is a similar technique
that makes use of predicate evaluation distributions in-
stead of predicate occurrences. Daikon [26] is a tech-
nique that detects dynamic program invariants that
can serve as partial specification for debugging pur-
poses. It is later used in fault localization by observing
program invariant violations in [27, 28]. Crisp [29] is
a technique that helps developers in regression testing,
allowing developers to selectively apply a set of code
edits and then observe the correlation between code ed-
its and regression failures. Compared to the proposed
work, fault localization techniques are in general lack of
or very limited in the capability of explaining failures.
They produce a ranked candidate set, usually contain-
ing static statements. Reasoning about the candidates
and the failure often falls onto the programmer.

Dynamic Slicing. Dynamic slicing was introduced as
an aid to debugging [5, 6]. Compared to fault localiza-
tion, slicing features the capability of capturing causal-
ity through program dependencies. Recent works such
as [30, 31] have greatly improved the efficacy of dy-
namic slicing. Experience shows that dynamic slicing
tends to produce very fat slices that contain all possible
causality chains that lead to the failure, starting from
program input. Although various techniques have been
proposed to prune dynamic slices [7, 8] or aid in their
navigation [32, 33], without using a reference execution
to exclude benign chains, inspecting slices still requires
non-trivial human effort. Dicing [9] is a technique
that aggregates slices from multiple executions. How-
ever, the simple set manipulations in dicing undermine
causality in slices and make the resulting dices hard
to understand. Furthermore, it does not handle cases
in which a faulty statement occurs in both the benign
and faulty slices. In comparison, the work proposed
here does not rely on program dependence, but rather
semantic causality, which is more rigid with respect to
debugging. The use of a reference execution effectively

excludes benign state from computed chains.

Others. Recently, researchers have made signifi-
cant progress on heap memory failure diagnosis using
anomaly detection [34] and statistical analysis [35].
Heap failures can even provably be probabilistically
prevented through memory randomization and dupli-
cation [36]. Compared to these works, the proposed
work is more general. The proposed work is also related
to execution selection and generation for debugging. In
[37], Wang et al. proposed a path generation technique
that generates a correct execution that is similar to
the failing execution by switching predicate outcomes
in the faulty run. The technique demands an oracle
to decide if the execution produces benign output and
relies upon constraint solving. Once such an execu-
tion is found, the switch points are returned as the
bug report. We use patched executions for comparison
whereas they used normal executions driven by inputs
generated by a constraint solver. It would be interest-
ing to see how to combine their technique with ours.
On the other hand, their bug report is lacking causality
information and not as helpful as ours.

7 Conclusions

We propose a highly effective technique to automati-
cally compute the failure inducing chain (FIC) of a fail-
ure. A formal model of FICs is proposed that suggests
FICs should ideally be computed by comparing the fail-
ing run with the run of the corrected program with the
same input. A technique called execution indexing is
proposed to align the two executions for precise com-
parison. For practical debugging, in which corrected
versions are not available, we propose an approximate
solution. The idea is to first patch the failing run by
switching a dynamic predicate. The patched run is
used as a reference to compare with the failing run.
Ideal FICs are used as a metric to evaluate the approx-
imate solution. Our experiment shows that ideal FICs
precisely represent failure causal paths. The approxi-
mate solution is able to deliver chains of high quality.

References

[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in PLDI, pp. 141–
154, 2003.

[2] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, “Sober:
statistical model-based bug localization,” in ESEC/FSE-
13, pp. 286–295, 2005.

[3] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in ASE,
pp. 273–282, 2005.

15

[4] M. Renieris and S. Reiss, “Fault localization with nearest
neighbor queries,” in ASE, pp. 30–39, 2003.

[5] B. Korel and J. Laski, “Dynamic program slicing,” Infor-
mation Processing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[6] H. Agrawal and J. R. Horgan, “Dynamic program slicing,”
in PLDI, 1990.

[7] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty
code using failure-inducing chops,” in ASE, pp. 263–272,
2005.

[8] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic
slices with confidence,” SIGPLAN Not., vol. 41, no. 6,
pp. 169–180, 2006.

[9] T. Y. Chen and Y. Y. Cheung, “Dynamic program dicing,”
in ICSM, pp. 378–385, 1993.

[10] A. Zeller, “Isolating cause-effect chains from computer pro-
grams,” in FSE, pp. 1–10, 2002.

[11] H. Cleve and A. Zeller, “Locating causes of program fail-
ures,” in ICSE, pp. 342–351, 2005.

[12] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards
locating execution omission errors,” in PLDI, 2007.

[13] B. Xin, N. Sumner, and X. Zhang, “Efficient program exe-
cution indexing,” in PLDI, 2008.

[14] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[15] X. Zhang, R. Gupta, and N. Gupta, “Locating faults
through automated predicate switching,” in ICSE, 2006.

[16] H. Do, S. Elbaum, and G. Rothermel, “Supporting con-
trolled experimentation with testing techniques: An infras-
tructure and its potential impact.,” Empirical Software En-
gineering: An International Journal, vol. 10, no. 4, pp. 405–
435, 2005.

[17] D. Jackson, M. Thomas, and L. I. Millett, Software for De-
pendable Systems:Sufficient Evidence? Washington D.C.:
Committee on Certifiably Dependable Software Systems,
National Research Council, 2007.

[18] T. Zimmermann and A. Zeller, “Visualizing memory
graphs,” in Revised Lectures on Software Visualization, In-
ternational Seminar, pp. 191–204, 2002.

[19] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “Cil:
Intermediate language and tools for analysis and transfor-
mation of c programs,” in CC ’02, 2002.

[20] E. Y. Shapiro, Algorithmic Program DeBugging. Cam-
bridge, MA, USA: MIT Press, 1983.

[21] P. Fritzson, T. Gyimothy, M. Kamkar, and N. Shahmehri,
“Generalized algorithmic debugging and testing,” in PLDI,
pp. 317–326, 1991.

[22] G. Misherghi and Z. Su, “HDD: Hierarchical delta debug-
ging,” in ICSE, 2006.

[23] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi,
“An empirical investigation of the relationship between
spectra differences and regression faults,” Software Test-
ing, Verification and Reliability, vol. 10, no. 3, pp. 171–194,
2000.

[24] T.-Y. Huang, P.-C. Chou, C.-H. Tsai, and H.-A. Chen, “Au-
tomated fault localization with statistically suspicious pro-
gram states,” in LCTES, pp. 11–20, 2007.

[25] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization
of test information to assist fault localization,” in ICSE,
pp. 467–477, 2002.

[26] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” TSE, vol. 27, no. 2, pp. 1–25, 2001.

[27] S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection,” in ICSE, pp. 291–301,
2002.

[28] Y. Brun and M. D. Ernst, “Finding latent code errors
via machine learning over program executions,” in ICSE,
pp. 480–490, 2004.

[29] O. C. Chesley, X. Ren, B. G. Ryder, and F. Tip, “Crisp–a
fault localization tool for java programs,” in ICSE, pp. 775–
779, 2007.

[30] X. Zhang and R. Gupta, “Cost effective dynamic slicing,”
in PLDI, pp. 94–106, 2004.

[31] T. Wang and A. Roychoudhury, “Using compressed byte-
code traces for slicing java programs.,” in ICSE, 2004.

[32] T. Wang and A. Roychoudhury, “Hierarchical dynamic slic-
ing,” in ISSTA, pp. 228–238, 2007.

[33] A. J. Ko and B. A. Myers, “Debugging reinvented: asking
and answering why and why not questions about program
behavior,” in ICSE, pp. 301–310, 2008.

[34] T. M. Chilimbi and V. Ganapathy, “Heapmd: identify-
ing heap-based bugs using anomaly detection,” in Proceed-
ings of the 12th international conference on Architectural
support for programming languages and operating systems,
pp. 219–228, 2006.

[35] G. Novark, E. D. Berger, and B. G. Zorn, “Exterminator:
Automatically correcting memory errors with high proba-
bility,” in PLDI, 2007.

[36] E. D. Berger and B. G. Zorn, “Diehard: probabilistic mem-
ory safety for unsafe languages,” in PLDI, pp. 158–168,
2006.

[37] T. Wang and A. Roychoudhury, “Automated path genera-
tion for software fault localization,” in ASE, pp. 347–351,
2005.

16

	Automatic Failure Inducing Chain Computation through Aligned Execution Comparison
	Report Number:
	

