
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Deriving Input Syntactic Structure From Execution and Its Deriving Input Syntactic Structure From Execution and Its

Applications Applications

Zhiqiang Lin

Xiangyu Zhang
Purdue University, xyzhang@cs.purdue.edu

Report Number:
08-006

Lin, Zhiqiang and Zhang, Xiangyu, "Deriving Input Syntactic Structure From Execution and Its Applications"
(2008). Department of Computer Science Technical Reports. Paper 1696.
https://docs.lib.purdue.edu/cstech/1696

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Deriving Input Syntactic

Structure From Execution and

Its Applications

Zhiqiang Lin

Xiangyu Zhang

CSD TR #08-006

March 2008

Deriving Input Syntactic Structure From Execution

Zhiqiang Lin Xiangyu Zhang

Department of Computer Science
Purdue University, West Lafayette, Indiana 47907

ABSTRACT
Program input syntactic structure is essential for a wide range of
applications such as test case generation, software debugging and
network security. However, such important information is often
not available (e.g., most malware programs make use of secret pro-
tocols to communicate) or not directly usable by machines (e.g.,
many programs specify their inputs in plain text or other random
formats). Furthermore, many programs claim they accept inputs
with a published format, but their implementations actually support
a subset or a variant. Based on the observations that input structure
is manifested by the way input symbols are used during execution
and most programs take input with top-down or bottom-up gram-
mars, we devise two dynamic analyses, one for each grammar cat-
egory. Our evaluation on a set of real-world programs shows that
our technique is able to precisely reverse engineer input syntactic
structure from execution.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Parsing; D.2.5
[Software Engineering]: Testing and Debugging—Tracing; D.2.7
[Distribution, Maintenance, and Enhancement]: [Restructuring,
reverse engineering, and reengineering]

General Terms
Algorithms, Verification

Keywords
reverse engineering, input structure

1. INTRODUCTION
Most software applications take structural inputs. Document

processing software such as XML, PDF and WORD processors
require input files in specific formats. Compilers consume inputs
written in programming languages. Network applications commu-
nicate through sessions in which messages have to follow certain
formats. Data processing programs such as audio/video codecs ac-
cept structural bit streams. As an integral component, the syntactic
structure of program inputs serve in a wide range of applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

Software Engineering – In software testing, automatically gen-
erating tests from input grammar is a technique originated in 1970’s
[14, 25], and then continuously studied ever since, e.g. in [8, 20,
27]. Most recently, it has been found that considering input gram-
mars can significantly scale up symbolic execution based test gen-
eration techniques [18, 13]. Delta Debugging [32] is a highly ef-
fective automatic debugging technique that reduces a large failure
inducing input to its minimal subset that still exposes the fault. The
reduction is done through a binary-search like procedure in which
the program is executed iteratively. Most recently, Hierarchical
Delta Debugging (HDD) [21] shows that the search procedure can
be greatly accelerated if the input hierarchical structure is provided.
Execution Fast Forwarding [35] treats event replay log as the pro-
gram input that drives program re-execution, and reduces a long
execution by reducing the replay log for the purpose of debugging.
Considering event hierarchy would avoid producing ill-structured
reduced logs.

Computer Security – Input structure, reflected as protocol for-
mats in network security, is critical in a number of scenarios. Pro-
tocol structure can be used in penetration testing that evaluate the
security of a system by simulating attacks. For instance, packet
vaccine [29] is a technique that randomizes the address fields in a
network packet in order to simulate control flow hijacking. The
information of packet format can actually better guide the vac-
cine generation as illustrated in ShieldGen [12]. Signature gen-
eration techniques construct signatures for exploits, and packet for-
mat information such as payload lengths, keywords, field types,
state transitions is essential to signature composition [28]. Intru-
sion detection systems such as snort [3] matches network traffic to
pre-defined protocols. Scanning unauthorized services provided at
non-standard ports requires understanding the communication pro-
tocol.

Despite the importance of input structure, acquiring such infor-
mation often demands a lot of efforts. First, input structure is often
specified in a machine unfriendly way (e.g. textual documents).
Hence, in applications such as HDD [21] and the recent work of
combining input grammar with symbolic execution based test gen-
eration [18, 13], the onus is on users to provide input grammars and
parsers, even for inputs such as C programs and XML files. Second,
various software applications that claim to accept inputs in a gram-
mar may indeed implement slight variants of the grammar. For
example, it is quite common that an implementation of a network
protocol does not support part of the specification. Third, input
structure is not even specified in many cases. A zombie computer
usually communicates with the remote attacker through secret pro-
tocols. Analyzing and understanding these protocols has imposed
great challenges. Even benign software such as Yahoo Messenger
makes use of a closed protocol. It took the open source community

years to understand the protocol and provide a usable open source
client [1]. Upon the happening of a failure, modern systems often
provide channels to turn in failure reports. As the failure induc-
ing input is the most critical part of a failure report, HDD may be
used on the user side to reduce the failure inducing input. However,
regular users often have no access to the source code, let alone the
input specification. Similarly, penetration testing is often carried
out by administrators or regular users after a software is deployed
and thus lack of input specification. Therefore, techniques that au-
tomatically reverse engineer input structure are highly desirable to
circumvent these difficulties.

Recently, research has been conducted on automatic input struc-
ture derivation in the context of network security, particularly for
protocol reverse engineering [9, 15, 30, 11]. The basic observation
is that the protocol implementation that handles incoming protocol
messages reveals a wealth of information about protocol format.
Therefore, protocol structure can be naturally discovered by ana-
lyzing program binary based on dynamic data flow analysis. In
particular, Polyglot [9], and [30] exploits the semantics of mes-
sage payload processing instructions such as loops and comparison
to identify keywords, delimiters and thus the fields in messages.
Along this way, Tupni [11] makes such analysis applicable to infer
record sequences, record types, and input constraints, and can even
generalize the format specification over multiple messages, facili-
tated by instruction semantics. AutoFormat [15] leverages execu-
tion contexts (i.e., call stacks and instruction addresses), in which
messages are processed, to identify input fields and hierarchical
structure.

These systems are able to derive input structure to some extent,
but fail to deliver an effective general solution as they catch only
part of the problem’s essence. First of all, these techniques as-
sume programs take inputs with top-down grammars, which often
implies input structure being reflected in program structure. How-
ever, we observe that many programs require inputs with bottom-
up grammars, which are parsed by automata. In such a scenario,
program structure does not reflect input structure. Our study on
SPEC95INT programs shows that 25% of the applications rely on
bottom-up grammars. Some network applications such as Wuftp
require protocol messages with bottom-up grammars as well. Ex-
isting reverse engineering techniques fail to derive input structure
for these applications. Second, even for inputs with top-down gram-
mars, these techniques do not catch the essence of the problem and
provide only partial solutions. For example, Polyglot[9] and [30]
rely on delimiter identification to identify network message fields;
and delimiter identification is based on a heuristic that a delimiter
is a byte that appears in a loop predicate and is compared against
multiple bytes in a message. Such heuristic may not work well
in many situations such as message fields are not divided by de-
limiters or delimiters are implicit (e.g., in the case that fields have
fixed lengths) so that they do not appear as constants in the code.
Similarly, our previous work AutoFormat [15] relies on execution
context, and thus if application implementation does not follow the
modular programming practice so that multiple message fields are
parsed in the same execution context, the identified structure would
be too coarse-grained.

In this paper, we propose two dynamic analyses that reverse en-
gineer syntactic structure for inputs with top-down grammars and
bottom-up grammars respectively. Given the program binary (with-
out source code) and a program input, our system executes the pro-
gram with the provided input, and at the end, emits the syntax tree
of the input without any user interference. Currently, our technique
only derives syntax trees for individual inputs. We leave input
grammar derivation to our future work. While handling bottom-

Doc −→ Head Body
Head −→ H Text /H
Body −→ B Tag /B
Tag −→ T Text /T Tag | ε
Text −→ [a-Z]∗

Figure 1: A Simple Language with Top-Down Grammar

up grammars is a feature that has not been supported by existing
techniques, our solution to top-down grammars supercedes existing
techniques as well because it better reflects the problem’s essence
and thus is more systematic. The unique observation we obtain (re-
garding inputs with top-down grammars) is that dynamic control
dependence is the most prominent evidence of input structure, re-
flecting input syntactic structure at the finest level. Delimiters in [9,
30] and execution contexts in [15] only catch part of the exercised
dynamic control dependence, and thus cannot construct the precise
syntactic input structure. Programs that accept inputs with bottom-
up grammars manifest completely different runtime characteristics,
rendering the control dependence based approach not applicable.
We observe bottom-up parsing is mostly associated with a pars-
ing stack, and operations on the stack serve as a strong indicator
of the input structure. We devise an analysis to extract the stack
related sub-execution and build the input syntax tree from the sub-
execution. Our evaluation on a set of real-world applications show
that the proposed techniques produce input syntax trees with high
quality.

The contributions of our paper are highlighted as follows.
• We devise a dynamic analysis to reverse engineer the struc-

ture of input with top-down grammars. The analysis heavily
depends on dynamic program control dependence.

• We have the insight that programs that consume input with
bottom-up grammar behave differently at runtime and thus
make existing approaches and the proposed dynamic control
dependence based approch ineffective.

• We propose a dynamic analysis to handle inputs with bottom-
up grammars. It relies on identifying and monitoring the
parsing stack.

• We evaluate our technique on a set of benchmarks that em-
ploy top-down and bottom-up parsing. Our results show that
the proposed analyses are highly effective in producing pre-
cise input syntax trees. Particularly, the derived trees for the
set of benchmark applications with bottom-up input gram-
mars are identical to the real trees.

2. HANDLING INPUTS WITH TOP-DOWN
GRAMMARS

Most programs take inputs with top-down grammars or bottom-
up grammars. In this section, we first discuss how to handle inputs
with top-down grammars.

A grammar that can be parsed by a top-down parser is called
a top-down grammar. A top-down parser parses an input string
from the root of the syntax tree (ST) to the leaves. The input of
a wide range of applications can be described by top-down gram-
mars. Examples include html/xml pages, http/sip packages, and
binary inputs such as audio/video files. Due to its implementation
simplicity, many hand written parsers are a top-down parser.

Example. Fig. 1 shows a simple language with a top-down gram-
mar, which accepts strings that have structure similar to html pages.

Input: Haa/HBTbb/TTccc/T/B

Doc

Head Body

H /HText B /BTag

Tag

T /T

aa

c

Text

c c

T

b

Text

b

/T

Tag

ε

Figure 2: A Sample ST.

A document consists of two parts, a header and a body. A header
is delimited by “H” and “/H”. A body consists of a series of tags
that are confined by symbols “T” and “/T”. Fig. 2 presents a string
that belongs to the grammar and its corresponding derivation. The
derivation is also called the syntax tree (ST). In order to parse the
string into its ST, the parser first takes the top rule, i.e., the Doc
rule. As the Doc rule is composed of the Head and Body rules, it
next takes the Head rule to parse the string. The Head rule accepts
the first symbol ”H” and continues with the Text rule, and so on.
The whole procedure is like walking from the top of the derivation
tree to the bottom.

A unique characteristic of top-down grammars is that a top-down
parser can precisely predict the next rule to parse the remaining in-
put at any particular time based on the current parsing rule and the
incoming element. For instance in Fig. 1, if a character “T” is seen
and the parser is not in the middle of parsing rule Text. Rule Tag is
taken to parse the character. Fig. 3 shows a top-down parser of our
sample grammar, which is a highly simplified version of the html
parser in tidy. In the implementation, each function corresponds
to one nonterminal in the grammar. The parser starts parsing by
calling function PDoc on the input, which in turn calls PHead and
PBody. PBody verifies if the next character is ‘B’. If not, an er-
ror is reported because it violates the parser’s expectation at current
state. Otherwise, it calls PTag and then verifies the remaining end-
ing delimiter symbol. PTag parses all Tag expressions through a
loop.

Doc * PDoc (FStream * f)

{

 Doc * d = new Doc ();

 d→head = PHead (f);

 d→body = PBody (f);

 return d;

}

Body * PBody (FStream * f)

{

 char c = f→getchar();

 Body * b = new Body ();

 if (c == ’B’) {

 PTag (f, b);

 c = f→getchar();

if (c != ’/’) error (…);

c = f→getchar();

if (c != ’B’) error (…);

 } else error (…);

 return b;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Head * PHead (FStream * f)

{

 …

 }

void PTag (FStream * f, Body * b)

{

 char c = f→getchar();

 while (c == ’T’) {

Tag * t = new Tag ();

 t→text=PText (f);

 b→tags→add (t);

 c = f→getchar();

if (c != ’/’) error (…);

c = f→getchar();

if (c != ’T’) error (…);

c = f→getchar();

 }

 f→ungetchar(c);

}

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Figure 3: An Implementation of The Top-Down Grammar In
Fig. 1

2.1 Runtime Analysis

Recall the objective of our technique is to derive the structure
of an input, given the application binary. The parser is an integral
part of the binary, statically indistinguishable from other functional
components. The key observation is that dynamic control depen-
dences disclose the syntactic structure of inputs with a top-down
grammar. Intuitively, a top-down parser decides if a grammar rule
is taken by comparing the incoming input symbol with the leading
symbol of the rule. The parsing of all the constituent symbols of
the rule, either terminals or nonterminals, is guarded by the com-
parison. In other words, the dynamic control dependence caused
by the comparison discloses the hierarchical relation between child
symbols and their parent. Therefore, our technique traces the dy-
namic control dependences that are exercised during execution and
constructs the dynamic control dependence graph (DCDG). By ob-
serving how input elements are used in the DCDG, the syntactic
structure can be derived.

To describe our analyses, we first formally define the problem.

PROBLEM STATEMENT 1. Given a pair < P, I >, in which
P is a program binary and I is an m-tuple input for P with the
format of i1i2...im1, construct the syntactic structure of I with the
representation of an ST.

The idea is to derive input structure through dynamic control
dependence. Informally, an executed statement xi, denoting the
ith instance of statement x, is dynamically control dependent on
another executed statement yj , represented by yj

dcd−−→ xi, if and
only if y is a predicate or a function call site and yj directly decides
the execution of xi. For example in the execution shown on the left
hand side of Fig. 4, produced by applying the input in Fig. 2 to the
implementation in Fig. 3, 111

dcd−−→ 121 since the branch outcome
of 111 directly decides the execution of 121. Similarly, 31

dcd−−→
101. More formal definition is elided for brevity, interested readers
are referred to [31]. If each executed statement is considered as a
node and each exercised dynamic control dependence is considered
as an edge, a DCDG is constructed. The right hand side of Fig. 4
shows a DCD subgraph for the trace on the left.

To derive input structure from the execution structure revealed
by the DCDG, we label the nodes that use an input value. For
example in Fig. 4, node 111 uses the first ‘B’ in the input string
(stored in variable c) and thus it is labeled with ‘B’1. The labels of
other nodes, if any, are also displayed in the figure. Through these
labels, the hierarchy of the DCDG is translated to the hierarchy of
input elements.

A number of issues need to be addressed to make the runtime
analysis work. First, constructing the DCDG for the whole execu-
tion entails tremendous space overhead [34], and is not necessary
as only the labeled subgraph is needed, which is often a tiny part of
the whole DCDG. Second, we need to handle propagation of input
values to assign correct labels to DCDG nodes as an input value
can be propagated through variable assignments. Third, an online
algorithm is highly desirable as post-mortem analyses require col-
lecting and storing traces.

We devise a cost-effective online algorithm to address these is-
sues. It was observed dynamic control dependence has the LIFO
characteristic and thus can be maintained by a stack called con-
trol dependence stack (CDS) [31, 19]. In particular, an entry is
pushed onto CDS when a predicate pi is executed, and the same
entry is popped if the immediate post-dominator of pi is executed,
indicating the end of the execution region that is directly or indi-
rectly dynamic control dependent on pi. For instance in the execu-
1The overline indicates it is a sequence.

d = new Doc ();

d→head = PHead ();

…

d→body = PBody ();

c = f→getchar();

b = new Body ();

if (c == ’B’) {

PTag (f, b);

c = f→getchar();

while (c == ‘T’)

t = new Tag ();

t→text=PText (f);

…

while (c == ‘T’)

t = new Tag ();

t→text=PText (f);

…

f→ungetchar (c);

c = f→getchar();

if (c != ’/’) ...

c = f→getchar();

if (c != ’B’) ...

return b;

11

21

31

91

101

111

121

241

251

261

271

252

262

272

351

131

141

151

161

181

START

21 PHead () 31 PBody ()

101 b=... 111 if (c==’B’)

121 PTag()

251 while (c==’T’)

141 if (c!=’/’)

251 while (c==’T’)271 PText ()

351 ungetchar(c)

…

… …

…

‘B’1

‘T’1

‘/’4

‘T’2

‘/’4

‘b’1 ‘c’3‘b’2

Figure 4: Execution Trace and Control Dependence Graph.

tion trace in Fig. 4, the execution of 111 pushes an entry to CDS.
The entry is later popped at the execution of 181, the immediate
post-dominator of 111. This implies the executions in between are
directly/indirectly dynamically control dependent on 111. This is
true because if the branch outcome of 111 had taken its opposite,
the execution in between 111 and 181 would not have occurred.
Furthermore, the dynamic control dependence transitive closure of
a statement instance is captured by the CDS state at the moment of
its execution. For instance, the execution of 251 after 111 pushes
another entry to the stack. Upon the execution of 261, its dynamic
control dependence transitive is disclosed by the current CDS, i.e.,
...111

dcd−−→ 251...
dcd−−→ 261. Efficient online algorithms have been

designed to detect dynamic control dependence based on this ob-
servation [31, 19].

DEFINITION 1. Given a statement execution si, CDS(si) =<
p1, p2, ..., pn > refers to the control dependence stack (CDS) state
when si is executed, representing the dynamic control dependence
transitive closure of si.

Algorithm 1 presents the instrumentation that produces the input
ST on the fly. The algorithm first updates the CDS at line 3. If
sm is a predicate instance, updateCDS performs a push; if sm is a
post-dominator instance, it performs pop(s) 2. More details about
updateCDS such as the proof of the LIFO property and handling ir-
regular control flow can be found in our prior work [31]. At line 4,
the algorithm tests if sm uses a variable that has been labeled with
an input value. If yes, it retrieves the current CDS, and creates a
node in the ST for each CDS entry if the node has not been created
before. Two nodes that are consecutive in the CDS are connected
with an edge. At line 10, a leaf node is introduced denoting the
input label. Lines 11-12 handle label propagation, it propagates the
label from the source variable v to the destination d. Note that we
only propagate labels for assignment type of instructions. In other
words, we do not propagate labels for binary operations. Our ex-
perience shows that most top-down parsers do not perform binary
operations on two input related variables. Line 14 turns off the in-
strumentation after all inputs have entered the execution, implying
the parsing phase is over. In our implementation, we initiate input

2Since sm could be the post-dominator for multiple consecutive
predicates, we use a loop here.

labeling by intercepting input system calls like SYS READ, through
which we also identify the last input symbol in.

Algorithm 1 Online Analysis
constructTree updates the ST upon each instruction execution.
updateCDS maintains the control dependence stack.
addNode adds a node to the resulting ST.
addEdge adds an edge to the resulting ST.
instrumentationOff turns off the instrumentation.

1: constructTree (sm)
2: {
3: updateCDS (sm);
4: if (variable v is used in sm and v is labeled with input ix)
5: addNode(ix);
6: foreach pt in CDS(sm) in the bottom-up order {
7: addNode(pt);
8: addEdge(pt−1 → pt);
9: }

10: addEdge (CDS(sm).top() → ix)
11: if (sm has the form of d = f(v))
12: label variable d with ix; /*for label propagation*/
13: }
14: if (the last input in has been used) instrumentationOff();
15: }
16: updateCDS (sm)
17: {
18: while (s is the immediate post dominator
19: of CDS(sm).top())
20: CDS(sm).pop();
21: if (s is a predicate or a method call)
22: CDS(sm).push(sm);
23: }

Example. The left hand side of Fig. 5 shows part of the resulting
ST. Statement instance 111 uses a variable labeled with ‘B’1 (note
that although c is defined with input ‘B’1 at 91, it is not used till
111, and thus 91 does not lead to a node creation). CDS(111) =<
START, 31, 111 >, and thus the online algorithm generates three
corresponding nodes and a leaf node ‘B’1. Similarly, 141 has the
CDS of < START, 31, 111, 141 > and it uses a variable labeled
with ‘/’4, resulting in a node whose parent is a sibling of node ‘B’1.

2.2 Offline Transformations
The ST constructed by the online analysis does not precisely mir-

ror the real input structure. The comparison between the left hand
side of Fig. 5 and the real derivation in Fig. 2 suggests that further
transformations are needed.

Duplicated Leaf Nodes Elimination. On the left hand side of
Fig. 5, we can see the same leaf node ‘/’4 appears in three places.
Two are the children of nodes 141 and 121, and the third one is a
descendants of 252. They correspond to the executions of 141, 351

and 253, respectively3. Such situation arises if the same input value
is used in multiple places to control the parser execution. These in-
put values having multiple use points are often delimiters. As a ST
has one leaf node for one use of an input symbol, we need to iden-
tify the one that reveals the true structure and remove the rest from
3Note that we only create internal nodes for predicates or call sites
according to the definition of dynamic control dependence. Since
121

dcd−−→ 351, 121 is created as the node although the symbol is
used at 351.

the resulting tree. Two observations can be exploited to achieve
this goal. The first one is that most parsers parse input symbols in
order, i.e., one symbol is not parsed until its predecessor is parsed.
Second, if a symbol is used in multiple points during execution,
like delimiters, the last use point before its successor being parsed
is the parsing point of the symbol. The observation behind this is
that a delimitor is permanently removed from the input buffer, and
thus parsed, right before the next symbol is processed. Note that
a symbol may be used beyond its successor’s parsing point, e.g.,
a printf that prints all input symbols at the end of the program
execution. Therefore, we cannot simply consider the last use point
as the parsing point.

DEFINITION 2. A statement instance sm is the anchor point of
an input value ix, denoted by AP (ix) = sm, if and only if sm uses
a variable labeled with ix and there is NO other instance tn that
uses a variable with the same label during the parsing phase.

In other words, if an input element is used at only one place
during the parsing phase, the use point is its anchor point. For
instance, AP (‘B’2) = 161. Based on anchor points, we define the
parsing points of an input symbol.

DEFINITION 3. The parsing point of an input element ix is de-
fined as:

PP (ix) =

8>>>>>>><>>>>>>>:

AP (ix) if AP (ix)! = ⊥;
sm if sm uses a variable labeled with ix ∩

∀y > x s.t. AP (iy)! = ⊥,
sm occurs beforeAP (iy) ∩
sm is the latest point that satisfies

the previous two conditions.
⊥ otherwise.

The symbol ⊥ stands for undefined. If an input symbol has mul-
tiple use points, the above definition identifies the parsing point of
the symbol as the one that happens before the next anchor point and
has the largest timestamp. Other use points are removed from the
tree. In our example, input ‘/’4 has three use points, 141, 253, and
351, resulting in the three labels in the left graph of Fig. 5. The next
anchor point of ‘/’4 is AP (‘B’2) = 161. Since all three uses hap-
pen before 161 and 141 has the largest timestamp, 141 is identified
as PP (‘/’4) and the other two points are pruned from the tree.

Redundant Intermediate Nodes Elimination. The approxima-
tion produced by the online analysis often contains redundant in-
termediate nodes, which do not provide useful information. An
intermediate node is redundant if and only if it has only one child.
The redundancy can be removed by replacing the intermediate node
with its child. This process continues until no further reduction can
be conducted. For instance, nodes 31, 141, 161, and 321 on the left
hand side of Fig. 5 are redundant. Node 121 is also redundant after
its leaf labeled with ‘/’4 is pruned according to the aforementioned
transformation, and hence it is replaced with node 251.

After applying the transformations, the final ST produced for our
sample is presented on the right hand side of Fig. 5, which precisely
reflects the desired hierarchical structure of the input.

3. HANDLING INPUTS WITH BOTTOM-
UP GRAMMARS

We observe that many applications consume inputs with bottom-
up grammars, e.g., most programming languages have a bottom-up
grammar. Due to the different runtime characteristics of top-down

‘B’1

‘/’4 ‘B’2

‘T’1

‘/’4

‘b’1 ‘b’2 ‘T’3 ‘T’4

…

‘B’1 ‘/’4 ‘B’2

‘T’1 ‘/’2 ‘T’2

‘b’1 ‘b’2

‘T’3 ‘T’4

…

S

…

…

‘/’4

…

S
31

111

141 161121

251

… 252

…

‘T’2

321

111

251

Figure 5: Transformation.

and bottom-up parsers, reverse engineering syntactic structure for
inputs with bottom-up grammars requires a different solution.

A grammar that can be parsed by a bottom-up parser is called
a bottom-up grammar. A bottom-up parser parses a string by con-
structing the derivation in a bottom-up manner, namely, it starts at
the leaf level and works up towards the root by reducing a set of
low level nodes to a higher level intermediate node at each step
[6]. A large body of applications make use of bottom-up gram-
mars due to their expressiveness. The class of languages that can
be expressed by bottom-up grammars is a proper superset of those
expressed by top-down grammars. The intuitive explanation is that
top-down grammars require parsers to predict a grammar rule by
looking at the first (a few) symbol(s), whereas bottom-up parsers
delay making this decision till all the symbols of a grammar rule
are in sight, which is far less stringent. Although bottom-up gram-
mars feature higher complexity in implementation, there exist tools
such as yacc or bison that can automatically generate parsers for
bottom-up grammars.

state=0;

stack.push($state);

c=getchar();

while (action[state, c].first !=accept) {

 if (action[state, c].first== shift) {

 state=action[state, c].second;

 stack.push(cstate);

 c=getchar();

 } else if (action[state, c].first == reduce) {

 A→ β = action[state, c].second;

 stack.pop (|β|);

 state=goto[stack.top(), A];

 stack.push (Astate);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Figure 6: A General Bottom-Up Parsing Algorithm

Deriving input structure for bottom-up parsers is intriguing due
to the way they are implemented. Figure 6 presents a general pars-
ing algorithm used by most bottom-up parsers [6]. The algorithm
is facilitated by a stack and a DFA, encoded by the action and
goto tables. Given the current state of the DFA, which is stored in
the stack, and an incoming input symbol, i.e., the leftmost symbol
of the input string, there are two possible actions. If the top sym-
bols on the stack do not constitute the righthand side of a grammar
rule, indicated by the action table entry indexed by the current
state and the incoming input symbol c having the value of shift,

as shown at line 5 of the algorithm, the input symbol c is removed
from the input string and pushed to the stack, being labeled with the
updated state. If the top symbols are indeed the righthand side of a
grammar rule A → β, encoded by the action table entry having
the value of reduce as shown at line 9, the top n = |β| elements are
popped from the stack and the lefthand side symbol A is resulted
at lines 10-11. At line 12, the current state is updated based on the
state on the top of the stack and A according to the goto table. The
symbol A labeled with the new state is pushed to the stack at line
13. The process terminates when the start symbol meets with an
exhausted input string, encoded by an accept action. The DFA en-
coded by tables action and goto can be constructed in various
ways, giving rise to different subclasses of bottom-up grammars.
Our analysis described later is independent of the way the DFA is
constructed and thus is general for bottom-up grammars.

(1) Body −→ B Tag /B
(2) Tag −→ Tag T Text /T
(3) Tag −→ T Text /T
(4) Text −→ Text a
(5) Text −→ a

Figure 7: A Sample Bottom-Up Rule

Table 1: Parsing string “BTa/TTaa/T/B”.
Stack Input Stack operation trace

(1) $0 BTa/TTaa/T/B$ push(B1,1)
(2) $0B1 Ta/TTaa/T/B$ push(T3,2)
(3) $0B1T3 a/TTaa/T/B$ push(a7,3)

(4) $0B1T 3 a7 /TTaa/T/B$ pop(1); push (Text6,3)
rule: Text −→ a

(5) $0B1T3Text6 /TTaa/T/B$ push(/T9,4)

(6) $0B1 T3Text6/T9 Taa/T/B$ pop(3); push (Tag2,2)
rule: Tag −→ T Text /T

(7) $0B1Tag2 Taa/T/B$ push(T5,3)
(8) $0B1Tag2T5 aa/T/B$ push(a7,4)

(9) $0B1Tag2T5 a7 a/T/B$ pop(1); push (Text6,4)
rule: Text −→ a

(10) $0B1Tag2T5Text8 a/T/B$ push(a10,5)

(11) $0B1Tag2T5 Text8a10 /T/B$ pop(2); push(Text8,4)
rule:Text −→ Text a

(12) $0B1Tag2T5Text8 /T/B$ push(/T11,5)

(13) $0B1 Tag2T5Text8/T11 /B$ pop(4); push(Tag2,2)
Tag −→ Tag T Text /T

(14) $0B1Tag2 /B$ push(/B4,3)

(15) $0 B1Tag2/B4 $ pop(3); push(Body12,1)
Body −→ B Tag /B

(16) $0Body12 $ exit the while loop
The superscripts of stack entries are the states associated with symbols.
push(st,p) means pushing symbol s to the pth position of the stack, and the state is t.
pop(n) means popping the top n stack entries.

Example. Fig. 7 shows a sample bottom-up grammar. It is not a
top-down grammar because of the left-recursions in rules (2) and
(4), which make a top-down parser fail to predict which rule to fol-
low upon seeing a symbol a or T. Table 1 illustrates how an input in
the sample grammar is parsed according to the algorithm in Fig. 6.
The grammar is translated to action and goto tables in Table 2.
Note tools are available to automate the translation, and interested
readers are referred to [6]. At step (1), the next input symbol B is
pushed to the stack and the current state is updated to 1, which is
decided by action[0, B]= <shift, 1> in Table 2. At step (4),
the top element on the stack is popped and reduced to Text, which

Table 2: Parsing Table For The Grammar in Fig. 7.
action goto

state B /B T /T a $ Body Tag Text
0 s1 g10
1 s3 g2
2 s4 s5
3 s7 g6
4 r1
5 s7 g8
6 s9 s10
7 r5 r5
8 s11 s10
9 r3 r3

10 r4 r4
11 r2 r2
12 acc

sn denotes shifting in one input and updating the current state to n;
rn denotes reducing according to rule n;
gn denotes updating the current state to n.

is decided by action[7, /T]= <reduce, Text −→ a >, which
is pushed to the stack with the new state 6 (goto[3, Text]=
6 in Table 2). The process terminates at step (16) where the stack
contains the start symbol Body and the input string becomes empty.

The analysis described in previous section does not work well for
bottom-up parsers. The execution structure, illustrated by the exer-
cised control dependences, no longer approximates the input syn-
tactic structure. According to the algorithm in Fig. 6, input symbols
are consumed in different iterations of the while loop at runtime.
As one iteration is dynamically control dependent on its preceding
iteration, a node labeled with an input symbol is dynamically con-
trol dependent on the node labeled with its preceding symbol. The
resulting AST approximation has a close-to-linear structure.

Fortunately, the execution of a bottom-up parser exposes the in-
put structure nonetheless through a different channel. Consider the
stack column in Table 1, the reductions at steps (4), (6), (9),
etc., highlighted by boxes, introduce hierarchical relations between
symbols. For instance, the reduction at step (6) indicates that the
resulting Tag symbol is derived from the T, Text and /T symbols
on the stack, which constitute the child nodes of Tag in the ST. The
key observation is that reductions reveal the input structure and a
reduction can be identified from the behavior of the parsing stack.

DEFINITION 4. Given a bottom-up parser P and an input I,
the stack operation trace of the execution P(I) is defined as the
sequence of push and pop operations of the parsing stack.

• A push operation is represented as push(st, p), meaning push-
ing the symbol s with the new state t to the top position p.

• A pop operation is represented as pop(n), meaning popping
the top n entries.

For instance, the stack operation trace column of Ta-
ble 1 lists the sequence of stack operations. We can observe from
Table 1 that reductions are always associated with pop operations.
Unfortunately, pop operations are hard to identify from execution
trace, assuming no knowledge of the source code, because they
are often translated to pointer arithmetic operations on the stack
variable, which are indistinguishable from numerous other pointer
arithmetic operations during the execution. Furthermore, as point-
ers are often stored in registers, tracing operations on registers is
very expensive. In comparison, push operations are much more
visible as they are always associated with memory writes on a spe-
cific region (the stack) with certain patterns. Therefore, we decide

to identify reduction steps from push operations. We define a subset
of push operations as backward operations as follows.

DEFINITION 5. Given a stack operation trace, assume a push
operation x = push(st, p), and its preceding push operation xpred =
push(s’t’, p’), x is a backward operation if and only if p <= p’.

Intuitively, a push operation that pushes to a position that is
smaller than its predecessor is a backward push. In Table 1, the
push operation at step (4) is a backward operation because it pushes
to position 3 and its preceding push operation at step (3) pushes to
the same location 3. Similarly, the pushes at steps (6), (9), (11),
(13), and (15) are also backward operations. A backward opera-
tion implies a step of reduction. This property can be exploited
to discover input structure. The algorithm is presented in Algo-
rithm 2. Given a stack operation trace T , the algorithm scans each
push operation x in the time order. Line 5 decides if x is a back-
ward operation. If so, edges are introduced between the stack entry
of the backward operation, denoting the lefthand side symbol of a
grammar rule, and the entries that are in between p and p’, which
constitute the righthand side of the rule.

Algorithm 2 Construct a ST from a stack operation trace T .
1: STFromTrace (T)
2: {
3: foreach operation in T with the form of x = push(st, p) {
4: x’s preceding push operation xpred = push(s’t’, p’);
5: if (p <= p’) {
6: addNode(x);
7: foreach t ∈ [p, p’] {
8: y = push(..., t) precedes x and is closest to x;
9: addNode(y);

10: addEdge(x → y);
11: }
12: }
13: }

push (Body
12
, 1)

push (B1, 1) push (Tag
2
, 2) push (B4, 3)

push (Tag
2
, 2) push (T5, 3) push (Text

8
, 4)

push (/T9, 4) push (Text
8
, 4) push (a10, 5)

push (a7, 4)

push (T3, 2) push (Text
6
, 3)

push (/T11, 5)

push (a7, 3)

Figure 8: The Derived ST For the Sample Trace in Table 1.

Consider our example trace in Table 1, the push operation at (6)
is a backward operation, which pushes to position 2, and its pre-
ceding push operates at position 4. According to lines 7-11 in Al-
gorithm 2, edges are introduced between the push at (6) and those
that most recently push to stack positions of 2, 3, and 3, namely,
pushes at steps (2), (4) and (5), which push exactly the righthand
side of rule (3) to the stack. The resulting ST is shown in Fig. 8,
which faithfully mirrors the true derivation tree.

Extract The Stack Operation Trace. One issue remains unsolved
is to extract the stack operation trace. Recall that we only assume
the program binary. It is challenging to identify which part of the
binary contributes to operating the parsing stack. Fortunately, this

part of execution often demonstrates unique runtime characteris-
tics. To explain the idea, we first define the concept of data lineage.

DEFINITION 6. The data lineage of variable v at an executed
statement instance si, denoted by DL(v@si), refers to the set of
input values that affect the value of v at si through direct/indirect
dynamic data dependence.

A dynamic data dependence exists between two statement in-
stances xi and yj if and only if a variable is defined at xi and then
used at yj . In the below code snippet, the execution instances of
statement 3, 4 and 5 are data dependent on that of 1. According to
the above definition, DL(x@11) = DL(a@31) = DL(c@51) =
{INPUT [1]}, DL(y@21) = {INPUT [2]}, DL(b@41) = DL(
x@11) ∪ DL(y@21) = {INPUT [1], INPUT [2]}. Efficient
computation of data lineage can be found in [33].

1: x=INPUT[1];
2: y=INPUT[2];
3: a=x;
4: b=x+y;
5: c=A[x];
6: ...

Data lineage is crucial to distinguish parsing stack operations.
Specifically, multiple instances of instructions for a parsing stack
push operation have increasing lineage sets, and the lineage set
of each instance contains all the input symbols seen so far. Con-
sider the general algorithm in Fig. 6, this property can be proved
by showing DL(state) ⊇ (DL(statelast) ∪ DL(c)) at lines
7 and 13, where statelast stands for the value of state in the
previous iteration. It is true for line 7 because for any instance i,
DL(state@7i) = DL(state @6i)⊇ (DL(statelast@6i)∪
DL(c@6i)) as the value of state at 6 is a function of the state
in the last iteration and c. As for line 13, DL(state@13i) =
DL(state@12i) ⊇ DL(A@10i) ⊇ (DL (statelast@10i) ∪
DL(c@10i)) Given the input string shown in the caption of Ta-
ble 1, after the first iteration of the while loop, the lineage of the
state variable has the lineage of {‘B′}, after the second itera-
tion, it becomes {‘B′, ‘T ′}, and so on.

Increasing lineage is not unique to push operations. Other opera-
tions that perform accumulative computation on input, such as sum,
may manifest the same lineage pattern. Those operations mostly
access a single variable while push operations access a set of mem-
ory locations. In the bottom-up parsers we have studied, we suc-
cessfully extract stack push operation trace by searching for write
instructions that access a set of memory locations in a fluctuating
pattern and have increasing data lineage.

Deciding The Grammar Category. As the different natures of
top-down and bottom-up grammars lead to two different solutions,
it becomes an issue to decide which one to apply given that we
have no knowledge about the input grammar category of a program
(recall we assume no source code access). In practice, if that hap-
pens, we apply both analyses. Our study in the evaluation section
shows that by inspecting the two generated trees, one can easily
tell which generated tree is the right one because applying the top-
down approach to inputs with a bottom-up grammar generates a
meaningless tree and vice versa.

4. EVALUATION
Our analyses are implemented using Diablo [26] and Valgrind

[23]. Diablo is used to perform post-dominance analysis on bina-
ries, to facilitate Valgrind, which is used to instrument the binary
and catch the data as well as control dependency, and build the ST

Table 3: Experimental Result for Top-Down Grammars
Benchmark Description Input size #Derived #Real Edit

(LOC) (bytes) Node Node Dist.
An HTML file 126 32 14 18

Tidy checking & cleaning 2891 183 76 107
up tool (34k) 8044 954 412 542

414 53 13 40
Apache An HTTP server 459 48 13 35
-2.0.59 (230K) 557 68 16 52

551 128 29 99
Asterisk A voice over IP 556 128 30 98
-1.4.4 platform (324K) 534 124 29 95

48 14 17 4
Zebra A GNU routing 80 30 36 8
-0.95a software (49.2K) 100 23 27 9

An SMB/CIFS pro- 133 33 35 3
Samba-3.0.8 tool implementation 330 64 63 11

software(420K) 236 44 43 10

online using the algorithm presented in previous sections. All our
experiments were performed on a machine with two 2.13Ghz Pen-
tium processors and 2G RAM running the Linux kernel 2.6.15.

4.1 The Quality of the Derived STs
To measure the effectiveness of our approach, we apply it to an-

alyzing input structure for a set of real world applications. We col-
lect two sets of benchmark programs for top-down and bottom-up
grammars as shown in Table 3 and Table 4, respectively. Bottom-
up parsers are mostly generated by automatic tools. In order to
evaluate the robustness of our analysis in the presence of various
parser generation tools, for each program in the bottom-up cat-
egory, we used two most popular open-source parser generators,
bison-2.1 and byacc-1.9, to generate two different bottom-
up parsers. Each program (version) is tested on a number of inputs.
For each input, we compare the derived input tree with the real tree,
which is acquired from the input specification.

We compare the derived tree and the real tree by caculating their
tree edit distance [7]. Tree edit distance is a technique to compare
labeled trees based on simple local operations of deleting, inserting,
and relabeling nodes. A labeled tree is a tree in which each node is
assigned a label. Recall that the internal nodes of our syntax trees
are not labeled. In order to perform the comparison, we label an
internal node n by the sequence of input symbols that is the union
of all the children’s labels. One can consider that the label of an
internal node n represents the input subsequence whose derivation
is the tree rooted at n. Three primitive operations are defined which
can be applied to transform a labeled tree. They are: (a) relabel-
change the label of a node; (b) delete - remove a non-root node in
the tree by connecting its children to its parent; (c) insert - insert a
node as a child of an existing node. The tree edit distance of trees
t1 and t2 is defined as the number of primitive operations required
in order to transform t1 to t2, assuming each primitive operation
has a unit cost.
Top-Down Grammars. We first evaluate our analysis for top-
down grammars. The results are shown in Table 3. In order to
evaluate the derived trees, we used Wireshark [4] to generate the
real syntax trees for most programs except tidy. Wireshark is a
very popular network trouble shooting tool, which contains man-
ually crafted information about network protocol formats. It was
widely used in other projects such as [10, 9, 15] to evaluate the
quality of reverse engineered network protocol formats. For tidy,
which was not documented by Wireshark, the corresponding real
tree is generated under the guidance of HTML grammar [5].

Lets look at the data for tidy (the version released in Nov.
2003). We used three html files with different sizes (range from
a small size of 126 bytes to a large size of 8k) to test the quality

Host: 192.168.10.44\r\n Connection: Keep-Alive\r\n

Host:

Host: 192.168.10.44\r\n

192.168.10.44 \r\n

\r\n

Connection: Keep-Alive\r\n

Connection: ...

Figure 9: Tree Comparison Between Wireshark and Ours for
apache.

of the generated trees for tidy. Observe that the derived trees
are much larger than the Wireshark trees and the tree edit distance
is identical to the difference between the node numbers of the de-
rived tree and the real tree, which implies the real tree is included
in the derived tree 4. This is further validated by our manual in-
spection. The results for apache and asterisk are similar. Our
inspection reveals that the additonal nodes in the derived trees are
mainly due to Wireshark being too coarse-grained. For instance,
for benchmark apache, we observe that Wireshark only formats
inputs to a certain level and treats nonterminals as terminals. For
example, as shown in Fig. 9, Wireshark treats the MIME type data
(e.g., Host: 192.168.10.44\r\n) as terminals whereas our tech-
nique further breaks the sequence into smaller pieces. One can
clearly tell that our derived tree is more informative than the Wire-
shark tre. This could be explained by Wireshark being actually a
network trouble shooting tool that only requires high level protocol
formats, especially for text based protocols. In some cases, our de-
rived trees seem to provide more-than-necessary break-downs. For
instance in tidy, our analysis divides the tag node “<html>” in
Wireshark to ‘<’, ”html”, and ‘>’. This is because the function
CheckAttribute () parses tags in a more detailed way. We
argue this is necessary as a tag may contain attributes.

The first three applications accept text inputs, whereas the re-
maining two, namely zebra and samba, accept binary inputs.
The evaluation results for these two display different character-
istics. First, we observe that the derived trees and the real trees
are not much different at their sizes. The edit distances are much
smaller compared to the three text-based programs. Our inspection
shows that Wireshark has much more fine-grained definitions on bi-
nary input formats. We speculate that the contributors of Wireshark
may think binary formats are opaque and thus require detailed spec-
ifications. Second, the Wireshark trees are no longer included in
our derived trees, implied by edit distances not equal to the dif-
ferences of the two node numbers. It suggests that transforming a
Wireshark tree to the corresponding derived tree entails both insert
and delete operations, and the derived tree has some nodes that are
missing in the wireshark tree and vice versa.
Bottom-Up Grammars. Most applications with bottom-up input
grammars use parsers that are automatically generated by tools due
4According to [7], a tree t1 is included in a tree t2 if and only if t1
can be obtained by deleting nodes from t2.

to the implementation complexity. These applications typically
contain a standard grammar file which can be used by the parser
generation tool. Such grammar files can be used to provide the
real trees for our evaluation. In particular, we instrument the gram-
mar files so that if multiple symbols are going to be reduced to a
higher level symbol, edges are added between the reduced symbols
and the resulting symbol. For instance, we add new actions to the
grammar file so that upon a reduction based on the grammar rule
input_item: semicolon_list ENDOF_LINE, two edges
will be added between a node representing input_item and the
two nodes representing semicolon_list and ENDOF_LINE.
Eventually, a syntax tree is explicitly constructed during parsing.
Since this tree is stringently created accrording to the input gram-
mar, it can be considered as a real tree.

The results for bottom-up grammars are presented in Table 4.
Each row of bc corresponds to parsing a single file while each row
of wuftpd is for parsing a series of ftp commands in a session.
Note that byacc failed to generate a parser for the grammar file of
gcc, and hence we used only bison. For these applications, we
are able to acquire STs that are identical to the real ones despite dif-
ferent benchmarks considered and different parser generators used.
A possible explanation is that the bottom-up parsers considered are
all automatically generated by tools and thus their runtime behav-
ior is well regulated, which makes them highly amenable to our
analysis. In contrast, top-down parsers, due to their implementa-
tion simplicity, are often hand-coded and thus display significant
variety. Potentially, bottom-up parsers in a different paradigm may
degrade the effectiveness of our analysis. We plan to study more
parsers and parser generators to further validate our technique in
the future.

Table 4: Experimental Result for Bottom-Up Grammars
Bench- Description Input Size #Derived #“Real” Edit
mark (LOC) Tool (bytes) Node Node Dist.

Arbitrary pre- 372 253 253 0
Bc-1.0.6 cision numeric Bison 891 612 612 0

processing lan- 1325 954 954 0
guage (14.4K) Byacc 434 329 329 0

56 24 24 0
Wuftpd An FTP Bison 241 97 97 0
-2.6.2 server (27.1K) 132 78 78 0

Byacc 285 113 113 0
GNU 60 25 25 0

gcc-3.4.6 Compiler 241 151 151 0
Collection Bison 623 453 453 0

(212K) 9430 5649 5649 0

4.2 Deciding the Grammar Category
As we discussed earlier, if an input grammar can not be decided

beforehand to be one of the two options, our strategy is to apply
both analyses. In this experiment, we applied the top-down analy-
sis to the set of bottom-up applications and applied the bottom-up
analysis to the set of top-down programs and observe if we can
easily tell which of the two trees is the desired one. Applying
the bottom-up analysis to top-down programs failed to produce any
trees as the analysis failed to identify the parsing stack. Applying
the top-down analysis to bottom-up programs was able to produce
trees. However, these trees are mostly meaningless and thus the
winner becomes clear when compared to the trees generated by the
bottom-up analysis. Due to the space limit, we show the two trees
for the benchmark bc in Fig. 10 and Fig. 11. The input is a program
shown below.

i=0;
for (i=0;i<3;i++) {

b+=i;
}

We can clearly see in Fig. 11, the tree generated by the top-down
algorithm does not make sense as the labels on the second layer
nodes are meaningless. In comparison, the tree in Fig. 10 clearly
depicts the input structure.

0

2

4

6

8

10

x=Log10
1000600 1000030002000 40000

No Instrumentation

Input Length (bytes)

Ti
m

e
Ta

ke
n

(s
)

W/ Execution Tracing Module

20000

(a) tidy (Top-down Parsing)

50 100 150 200 250 300 350 400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
No Instrumentation

Input Length (bytes)

Ti
m

e
Ta

ke
n

(s
)

W/ Execution Tracing Module

(b) bc (Bottom-up Parsing)

Figure 12: Performance Overhead of Execution Tracing

4.3 Performance Overhead
The next experiment is to evaluate performance. Due to the space

limit, we use tidy and bc (the parser is generated by bison) to
evaluate the performance of our system and its sensitivity to input
size. We feed the two programs with inputs of different sizes to
observe the overhead imposed by our analyses. The overhead is
measured by comparing the execution times against those of the
corresponding base line runs on Valgrind without instrumentation.

The execution times of tidy for inputs with different sizes (var-
ied from 800 to 40k bytes) are shown in Fig. 12(a). The perfor-
mance overhead varies from 5X to 45X. This is due to the fact that
larger inputs entail more operations. Thus, the control dependence
stack becomes deeper and the number of labeled operations be-
comes larger, and thus the online maintenance induces more over-
head. For bc, we use inputs with different sizes but with similar
structure. This is because inputs with different structure will lead to
significantly varied execution times as bc is an interpreter, whose
execution time heavily depends on the structure of the input pro-
gram. The execution times of bc are shown in Fig. 12(b). The
overhead ranges from 6X to 8X for the given experiment inputs.

4.4 A Client Study on HDD
Delta debugging [32] is an automatic debugging technique that

looks for a valid and minimal subset of a failure inducing input that
produces the same failure through an iterative algorithm. Hierarchi-
cal Delta Debugging [21] improves the algorithm by considering
the hierarchical structure of the input so that invalid input subsets
can be avoided. However, HDD requires the programmer to pro-
vide the input grammar and the corresponding parser. We have
built a completely automated HDD system by integrating our in-
put derivation system with the HDD algorithm. The independence
of a priori knowledge of input structure enables new applications
such as failure report composition, which often targets on deployed
software without source code. More details can be found in our
technical report [16].

5. RELATED WORK
In the area of network security, research has been conducted to

extract protocol formats from a large pool of network traces [10,
2], and from dynamic binary analysis [9, 15, 30, 11]. The net-
work trace based techniques do not look at execution of network

i

i=0;

0 =

i=0;’\n’

;

i=0;’\n’

’\n’

i=0;’\n’for(i=0;i<3;i++){’\n’	b+=i;’\n’}’\n’

i

i=0;

0=

for(i=0;i<3;i++){’\n’	b+=i;’\n’}

...

i<3;

i<3;

i <i

i+

i++

+

+

...

’\n’	b+=i;

’\n’

’\n’	b+=i;’\n’

’\n’	b+=i;’\n’}

’\n’

’\n’	b+=i;’\n’}

}

{) (for

for(i=0;i<3;i++){’\n’	b+=i;’\n’}’\n’

’\n’

Figure 10: The Tree Derived Using the Bottom-up Analysis for bc.

3{b+i;\n}\n

+i ... ;}\n {}\n } 3+

i=0;\nf(i=0;i<3;i+){\n b3+i;\n}\n

i=0;\nf(i=0;i<3;i+){\n	b+ b

i=0;\nf(i=0;i<3;i+){\n	b + i=0;\nf(i=0;i<3;i+){\n	b

= i ... b i =0 i=0;\nf(i=0;i<3;i+){\n	b

= 0 i =0; 0 ... b

= 0 ;

+ i ; } \n \n } { 3 +

Figure 11: The Tree Derived Using the Top-Down Analysis for bc.

applications. The accuracy of these approaches relies on the size
of the trace pool and the heuristics used. In contrast, as demon-
strated in [9, 15, 30, 11], by analyzing how the program processes
the input data, dynamic binary analysis could be used to reveal the
input structure. The difference of our technique compared with
these binary analysis approaches is (1) they only handle top-down
grammars, whereas we also handle bottom-up grammars, which are
the other very important input categroty; (2) regarding top-down
grammars, our system is superior for being more general, robust,
and accurate since it captures the essence of the problem - the dy-
namic control dependence. Indeed, the heuristics used in all the
other projects, such as loops and comparisons in [9, 30, 11] and
execution contexts in [15], are a subset of control depenedence in-
formation.

In [17], Lim et al. propose using static analysis to derive output
structure. They observe that the structure of a program contains a
wealth information of the output format. They use interprocedural
control flow graphs, call graphs, and value set analysis to extract
output format step by step. Their technique is a static analysis that
analyzes output structure instead of input structure. Our technique
is dynamic analysis based and is more appropriate for deriving the
structure for a single input.

Our technique is also related to grammar inference (GI) in the

language research area. Grammar inference concerns the acquisi-
tion of the syntax or the grammar of a target language. It is defined
as the process of learning a grammar from a set of grammatically
correct and, if available, incorrect sentences. More information can
be found in [24], a survey by Parekh et al. on computational ap-
proaches for learning different classes of formal languages. Com-
pared to our work, which derives input structure from program exe-
cution, GI techniques try to tackle the problem from a much harder
way, i.e., by only looking at inputs. As reported in [10], GI ap-
proaches are too complex to apply and have very limited success.

6. LIMITATIONS AND FUTURE WORK
There are a number of issues that affect the effectiveness of our

technique. First, the robustness of our technique needs to be further
tested. Although most programs we have seen so far take inputs of
top-down or bottom-up grammars, there may exist other grammars.
Even with the two types of grammars, individual parser implemen-
tations may not fall into the specific paradigms. In a worst scenario,
one might write a top-down parser so that the control dependence
structure is totally independent of the parsing structure. In the fu-
ture, we plan to study more parser implementations and evaluate
the performance of our technique on obfuscated binaries such as
malware and viruses. Second, our technique derives the structure

for individual inputs. It is more desirable to be able to infer the
input grammar especially for applications like testing. While com-
bining the syntax trees of multiple inputs into a grammar is our
ongoing work, we believe at the end, in order to acquire a complete
grammar, we need to address the coverage problem, meaning we
need enough inputs to exercise all parts of a grammar. Third, our
technique currently only derives the syntactical structure. Many se-
curity applications desire semantic information as well, such as the
keywords of a protocol, constraints across multiple fields (e.g., the
length of field B is confined by the value of field A). We plan to
extend our technique to solve this problem in our future work.

7. CONCLUSION
Deriving input syntactic structure is very important for a wide va-

riety of applications such as test generation, delta debugging, fail-
ure reporting and protocol reverse engineering. We propose two
dynamic analyses that construct input structure from program exe-
cution. Our technique does not require source code or any symbolic
information. Our evaluation shows that the proposed techniques are
highly effective and produce input syntax trees with high quality.

8. REFERENCES
[1] Libyahoo2: A c library for yahoo! messenger.

http://libyahoo2.sourceforge.net/.
[2] The Protocol Informatics Project.

http://www.baselineresearch.net/PI/.
[3] The SNORT network intrusion detection system.

http://www.snort.org.
[4] Wireshark: The World’s Most Popular Network Protocol Analyzer.

http://www.wireshark.org/.
[5] Grammar of HTML Document.

http://www.unix.org.ua/orelly/web/html/appa 02.html.
[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[7] Philip Bille, A survey on tree edit distance and related problems. In

Theoretical Computer Science. 337(1-3), 2005.
[8] D. Coppit and J. Lian. Yagg: an easy-to-use generator for stuctured

test inputs. In ASE, 2005.
[9] J. Caballero and D. Song. Polyglot: Automatic extraction of protocol

format using dynamic binary analysis. In Proceedings of the 14th
ACM Conference on Computer and and Communications Security
(CCS’07), 2007.

[10] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol
reverse engineering from network traces. In Proceedings of the 16th
USENIX Security Symposium, Boston, MA, 2007.

[11] W. Cui, M. Peinado, K. Chen, H. Wang, L. Irun-Briz. Tupni:
Automatic Reverse Engineering of Input Formats. In Proceedings of
the 15th ACM Conference on Computer and Communications
Security (CCS’08), 2008.

[12] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen:
Automatic data patch generation for unknown vulnerabilities with
informed probing. In In Proceedings of 2007 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2007.

[13] P. Godefroid, A. Kiezun, and M. Y. Levin Grammar-based whitebox
fuzzing. In PLDI, 2008.

[14] K. Hanford. Automatic Generation of Test Cases. In IBM Systems
Journal, 9(4), 1970.

[15] Z. Lin, X. Jiang, D. Xu and X. Zhang. Automatic Protocol Format
Reverse Engineering through Context-Aware Monitored Execution.
In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), 2008.

[16] Z. Lin and X. Zhang. Deriving Input Syntactic Structure from
Execution and Its Applications. Purdue Technical Report CSD TR
#08-006, 2008.

[17] J. Lim, T. Reps, and B. Liblit. Extracting file formats from
executables. In Proceedings of the 13th Working Conference on
Reverse Engineering, 2006.

[18] R. Majumdar and R. Xu. Directed test generation using symbolic
grammars. In ASE, 2007

[19] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging
insecure information flows. In Proceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE’04), 2004.

[20] P. Maurer. Generating test data with enhanced context-free
grammars. In IEEE Software, 7(4), 1990.

[21] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In
Proceedings of the 28th International Conference on Software
Engineering (ICSE’06), Shanghai, China, 2006.

[22] V. Nagarajan, R. Gupta, X. Zhang, M. Madou, B. De Sutter, and
K. De Bosschere. Matching control flow of program versions. In
International Conference on Software Maintenance (ICSM’07),
Paris, October 2007.

[23] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
ACM SIGPLAN 2007 conference on Programming Language design
and Implementation (PLDI’07), San Diego, CA, 2007.

[24] R. Parekh and V. Honavar. Grammar Inference, Automata Induction,
and Language Acquisition. 2000.

[25] P. Purdom. A sentence generator for testing parsers. In BIT
Numerical Mathematics, 12(3), 1972

[26] L. V. Put, D. Chanet, B. De Bus, B. De Sutter, and K. D. Bosschere.
Diablo: a reliable, retargetable and extensible link-time rewriting
framework. In Proceedings of IEEE International Symposium On
Signal Processing And Information Technology, 2005.

[27] E. Sirer and B. Bershad. Using production grammars in software
testing. In Proceedings of the 2nd conference on Domain-specific
languages, 1999.

[28] H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known
vulnerability exploits. In Proceedings of ACM SIGCOMM ’04, 2004.

[29] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet
vaccine: Black-box exploit detection and signature generation. In
Proceedings of the 13th ACM CCS, 2006.

[30] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda.
Automatic Network Protocol Analysis. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium
(NDSS’08), 2008.

[31] B. Xin and X. Zhang. Efficient online detection of dynamic control
dependence. In International Symposium on Software Testing and
Analysis (ISSTA’07), 2007.

[32] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transaction on Software Engineering,
28(2):183–200, 2002.

[33] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar. Tracing lineage
beyond relational operators. In Proceedings of the International
Conference on Very Large Data Bases (VLDB’07), Autria, 2007.

[34] X. Zhang and R. Gupta. Cost effective dynamic slicing. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’04), 2004.

[35] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long running
programs through execution fast forwarding. In FSE, 2006.

	Deriving Input Syntactic Structure From Execution and Its Applications
	Report Number:
	

	tmp.1307986960.pdf.rdglS

