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On the Accuracy of Decentralized Virtual Coordinate 
Systems in Adversarial Networks 

ABSTRACT 
Virtual coordinate systems provide an accurate and efficient 
service that allows hosts on the Internet to determine the 
latency to arbitrary hosts without actively monitoring all 
nodes in the network. Many of the proposed virtual co- 
ordinate systems were designed with the assumption that 
all of the nodes in the system are altruistic. However, this 
assumption may be violated by compromised nodes acting 
maliciously to degrade the accuracy of the coordinate sys- 
tem. As numerous peer-to-peer applications rely on virtual 
coordinate systems to achieve good performance, it is criti- 
cal to address the security of such systems. 

In this work, we demonstrate the vulnerability of decen- 
tralized virtual coordinate systems to insider (or Byzantine) 
attacks. We propose techniques to make the coordinate as- 
signment robust to malicious attackers without increasing 
the communication cost. We demonstrate the attacks and 
mitigation techniques in the context of a well-known dis- 
tributed virtual coordinate system using simulations based 
on three representative, real-life Internet topologies of hosts 
and corresponding round trip times (RTT). 

1. INTRODUCTION 
A wide range of applications taking advantage of peer- 

to-peer systems have emerged in recent years, including file 
download and distribution (e.g. BitTorrent [I], Emule [2]), 
voice over IP (e.g. Skype [3]), and video broadcasting (e.g. 
ESM [4], Coolstreaming [5]). Many of these applications 
optimize their performance based on network topology. For 
example, the construction of multicast trees or the selection 
of a replica for file sharing applications can be greatly im- 
proved by taking advantage of network locality. One basic 
approach to learn network locality is to probe all hosts in 
the network to determine attributes such as latency. The 
cost associated with active monitoring to estimate such at- 
tributes is non-negligible [4, 61, being exacerbated by the 
presence of multiple applications performing this task on a 
common network infrastructure. 
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Virtual coordinate systems [7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 1.71 have been proposed as a low communication cost ser- 
vice to accurately predict latencies between arbitrary hosts 
in a network. These systems allow a node to map itself 
to a virtual coordinate based on a small number of actual 
network distance estimates to a subset of reference nodes. 
By comparing the virtual coordinates, nodes can trivially 
estimate the latency between them. 

Two main architectures for virtual coordinate systems 
have emerged: landmark-based and decentralized. Landmark- 
based systems rely on infrastructure components (such as a 
set of landmark servers) to predict distance between any 
two hosts. The set of landmarks can be pre-determined [7, 
11, 161 or randomly selected [9, 171. Decentralized virtual 
coordinate systems do not rely on explicitly designated in- 
frastructure components, requiring any node in the system 
to act as a reference node. Examples of decentralized vir- 
tual coordinate systems include PIC [12], Vivaldi [lo], and 
PCoord [15, 181. 

The accuracy and stability of virtual coordinate systems 
rely on the assumption that the reference set nodes on which 
the virtual coordinate computation relies on are altruistic 
[19] and correctly participate in the system. Under this as- 
sumption, many of the proposed systems have been shown 
to be accurate, often achieving an overall latency prediction 
error of less than ten percent [lo, 151. While this assumption 
may be ensured for landmark-based virtual coordinate sys- 
tems by securing the small set of infrastructure nodes, it is 
not easily achieved for decentralized systems where any node 
can act as a reference node for other nodes in the system. As 
a result, decentralized virtual coordinate systems are vulner- 
able to insider attacks [20, 211 conducted by attackers that 
infiltrate such systems or compromise some of their nodes. 
Since virtual coordinate systems are network services pro- 
viding support for a wide variety of peer-to-peer applications 
and more recently routing [22], they would likely be a prime 
candidate for attack. It is critical that such systems are de- 
signed to be robust to attackers that influence the accuracy 
of the coordinates. 

Previous work focused very little on mitigating vulnerabil- 
ities of virtual coordinate systems with the notable exception 
of [12], which uses the triangle inequality to detect malicious 
nodes. The results based on synthetic networks presented in 
[12] show that the method does improve the accuracy of the 
PIC coordinate system in adversarial networks. However, 
as shown in 123, 24, 251 violations of the triangle equality 
are very frequent for real networks, resulting in the inaccu- 
racy and fragility of virtual coordinate systems even when 
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ABSTRACT
Virtual coordinate systems provide an accurate and efficient
service that allows hosts on the Internet to determine the
latency to arbitrary hosts without actively monitoring all
nodes in the network. Many of the proposed virtual co
ordinate systems were designed with the assumption that
all of the nodes in the system are altruistic. However, this
assumption may be violated by compromised nodes acting
maliciously to degrade the accuracy of the coordinate sys
tem. As numerous peer-to-peer applications rely on virtual
coordinate systems to achieve good performance, it is criti
cal to address the security of such systems.

In this work, we demonstrate the vulnerability of decen
tralized virtual coordinate systems to insider (or Byzantine)
attacks. We propose techniques to make the coordinate as
signment robust to malicious attackers without increasing
the communication cost. We demonstrate the attacks and
mitigation techniques in the context of a well-known dis
tributed virtual coordinate system using simulations based
on three representative, real-life Internet topologies of hosts
and corresponding round trip times (RTT).

1. INTRODUCTION
A wide range of applications taking advantage of peer

to-peer systems have emerged in recent years, including file
download and distribution (e.g. BitTorrent [1], Emule [2]),
voice over IP (e.g. Skype [3]), and video broadcasting (e.g.
ESM [4], Coolstreaming [5]). Many of these applications
optimize their performance based on network topology. For
example, the construction of multicast trees or the selection
of a replica for file sharing applications can be greatly im
proved by taking advantage of network locality. One basic
approach to learn network locality is to probe all hosts in
the network to determine attributes such as latency. The
cost associated with active monitoring to estimate such at
tributes is non-negligible [4, 6], being exacerbated by the
presence of multiple applications performing this task on a
common network infrastructure.
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Virtual coordinate systems [7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17] have been proposed as a low communication cost ser
vice to accurately predict latencies between arbitrary hosts
in a network. These systems allow a node to map itself
to a virtual coordinate based on a small number of actual
network distance estimates to a subset of reference nodes.
By comparing the virtual coordinates, nodes can trivially
estimate the latency between them.

Two main architectures for virtual coordinate systems
have emerged: landmark-based and decentralized. Landmark
based systems rely on infrastructure components (such as a
set of landmark servers) to predict distance between any
two hosts. The set of landmarks can be pre-determined [7,
11, 16] or randomly selected [9, 17]. Decentralized virtual
coordinate systems do not rely on explicitly designated in
frastructure components, requiring any node in the system
to act as a reference node. Examples of decentralized vir
tual coordinate systems include PIC [12], Vivaldi [10], and
PCoord [15, 18].

The accuracy and stability of virtual coordinate systems
rely on the assumption that the reference set nodes on which
the virtual coordinate computation relies on are altruistic
[19] and correctly participate in the system. Under this as
sumption, many of the proposed systems have been shown
to be accurate, often achieving an overall latency prediction
error ofless than ten percent [10, 15]. While this assumption
may be ensured for landmark-based virtual coordinate sys
tems by securing the small set of infrastructure nodes, it is
not easily achieved for decentralized systems where any node
can act as a reference node for other nodes in the system. As
a result, decentralized virtual coordinate systems are vulner
able to insider attacks [20, 21] conducted by attackers that
infiltrate such systems or compromise some of their nodes.
Since virtual coordinate systems are network services pro
viding support for a wide variety of peer-to-peer applications
and more recently routing [22], they would likely be a prime
candidate for attack. It is critical that such systems are de
signed to be robust to attackers that influence the accuracy
of the coordinates.

Previous work focused very little on mitigating vulnerabil
ities of virtual coordinate systems with the notable exception
of [12], which uses the triangle inequality to detect malicious
nodes. The results based on synthetic networks presented in
[12] show that the method does improve the accuracy of the
PIC coordinate system in adversarial networks. However,
as shown in [23, 24, 25] violations of the triangle equality
are very frequent for real networks, resulting in the inaccu
racy and fragility of virtual coordinate systems even when



deployed in non-adversarial networks. Previous work (20, 
211 also pointed out the susceptibility of Vivaldi to  attacks, 
without proposing any solution. 

In this paper, we study the vulnerability of decentralized 
virtual coordinate systems to insider attacks and propose 
mechanisms to make the accuracy of such systems resilient 
to  attacks. To the best of our knowledge, we provide the 
first solution for mitigating attacks against virtual coordi- 
nate systems that is based on realistic assumptions about 
network topology and demonstrate its effectiveness using 
real-life Internet data sets. Our solution does not increase 
the communication in the system, complying with the vir- 
tual coordinate system design goal of maintaining a low com- 
munication cost. We summarize our key contributions: 
a We classify attacks against virtual coordinate systems, 
based on the impact on the coordinates, as coordinate infla- 
tion, deflation, and oscillation. The attacks are conducted 
by insiders that infiltrated the virtual coordinate system or 
compromised some of the nodes. The low-rate nature of the 
attacks (i.e. they do not require the attacker to generate a 
noticeable amount of traffic) makes them difficult to detect, 
while their epidemic nature makes them very dangerous as 
a small number of attackers can significantly influence the 
accuracy of the system. 
a We propose techniques to reduce incorrect coordinate map- 
pings by using spatial and temporal correlations to perform 
context-sensitive outlier analysis. A key component of our 
solution is based on the observation that the behavior of 
the attacker can be constrained by correlating dependent 
metrics. 
a We demonstrate the impact of the attacks and the ef- 
fectiveness of our defense mechanisms through p2psim (261 
simulations, in the context of the well-studied Vivaldi vir- 
tual coordinate system[lO] using three representative real- 
world topologies of hosts and corresponding RTTs: King 
[13], Meridian [27], and AMP [28]. We found through ana- 
lytical and empirical studies that a spatial threshold of 1.5 
and a temporal threshold of 4.0 provided a low system error 
under attack while maintaining an acceptable false positive 
rate. Our experiments also show that the method starts to  
degrade when the coalition size of malicious nodes in the 
reference set of a node increases over 30% of the reference 
set size. 

The rest of the paper is organized as follows: We provide 
an overview of decentralized virtual coordinate systems and 
attacks against them in Section 2. We propose mitigation 
mechanisms in Section 3. We present experimental results 
demonstrating the impact of the attacks and the effective- 
ness of our solutions in Section 4. We discuss related work 
in Section 5 and conclude our work in Section 6. 

2. ATTACKS AGAINST VIRTUAL COOR- 
DINATE SYSTEMS 

In this section, we give an overview of the main compo- 
nents of decentralized virtual coordinate systems and d e  
scribe how they can be exploited by attackers to influence 
their accuracy. 

2.1 Decentralized Virtual Coordinate Systems 
The design goal of decentralized virtual coordinate sys- 

tems is to  efficiently create and maintain a stable set of vir- 
tual coordinates that accurately predict the latency between 

nodes without using fixed infrastructure nodes. Although 
each specific virtual coordinate system differs in some de- 
tails, most of them follow a common design. The most 
important characteristics that define a decentralized coor- 
dinate systems are (1) the reference or  neighbor set, (2) the 
distance prediction mechanism, and (3) the error minimiza- 
tion technique. 

In a decentralized virtual coordinate system, each node 
calculates its coordinates based on the information obtained 
from a small set of nodes in the network, which we refer to  
as the reference set. There are several methods used to se- 
lect the reference set, with identifying a set of close and set 
of distant network nodes and selecting a random subset of 
each being one of the most promising [lo, 121. Nodes may 
have different reference sets. Different systems use differ- 
ent sizes of the reference set due to the frequency of ac- 
tual network measurements, the number of nodes queried 
per measurement interval, and the error minimization tech- 
nique utilized. For example, Vivaldi uses a reference set size 
of 64 nodes [20], PCoord uses 10 nodes [18], and PIC uses 
32 nodes [12]. 

Once a reference set has been selected, a node deter- 
mines its coordinate based on a predefined distance pre- 
diction mechanism, such as the Euclidean distance. Each 
system typically maintains coordinates in either low dimen- 
sional (usually 2 to 8 dimensions) Euclidean space [12], an 
augmented Euclidean space [lo], or non-Euclidean (e.g. hy- 
perbolic) space [29]. In general, it has been shown that 
none of the embedding spaces dominates the others in per- 
formance [30] and lower dimensionality Euclidean spaces are 
often sufficient [lo]. A node determines its position and then 
successively refines it by periodically querying nodes in its 
reference set. Queried nodes respond with metrics that can 
include local error, perceived system error, local coordinates, 
and RTT. 

Virtual coordinate systems provide accurate latency pre- 
diction, achieved through error minimization techniques of 
a chosen distance error function. Examples include: 
a Generic multi-dimensional minimization designed t o  min- 
imize a relative system error measure (such as logarithmic 
transformed error) using techniques such as the downhill 
simplex method (121. 
a Minimizing coordinates by simulating Newtonian mechan- 
ics. Each node in the system is simulated as a particle influ- 
enced by the field force induced between nodes. Each pair of 
particles (nodes) either pulls or repulses each other, thereby 
reducing the total system error [29]. 
a Minimizing coordinates by simulating spring relaxation, 
where the state of the springs a t  rest is the optimal embed- 
ding. The system minimizes the squared system error by 
iteratively finding the low-energy point of the spring-based 
system [lo]. 

While each technique has benefits, systems based on multi- 
dimensional minimization are often slow to  converge, sensi- 
tive to initial system conditions, and sensitive t o  high error 
measurements. Simulation techniques such as spring relax- 
ation are computationally inexpensive, less sensitive t o  high 
error nodes, and more amenable t o  general decentralized 
system design. 

In general, virtual coordinate systems achieve the over- 
all goals of accuracy and stability while reducing traffic by 
as much as two orders of magnitude when compared with 
active monitoring to estimate RTT [12]. Systems such as 

deployed in non-adversarial networks. Previous work [20,
21] also pointed out the susceptibility of Vivaldi to attacks,
without proposing any solution.

In this paper, we study the vulnerability of decentralized
virtual coordinate systems to insider attacks and propose
mechanisms to make the accuracy of such systems resilient
to attacks. To the best of our knowledge, we provide the
first solution for mitigating attacks against virtual coordi
nate systems that is based on realistic assumptions about
network topology and demonstrate its effectiveness using
real-life Internet data sets. Our solution does not increase
the communication in the system, complying with the vir
tual coordinate system design goal of maintaining a low com
munication cost. We summarize our key contributions:
• We classify attacks against virtual coordinate systems,
based on the impact on the coordinates, as coordinate infla
tion, deflation, and oscillation. The attacks are conducted
by insiders that infiltrated the virtual coordinate system or
compromised some of the nodes. The low-rate nature of the
attacks (I.e. they do not require the attacker to generate a
noticeable amount of traffic) makes them difficult to detect,
while their epidemic nature makes them very dangerous as
a small number of attackers can significantly influence the
accuracy of the system.
• We propose techniques to reduce incorrect coordinate map
pings by using spatial and temporal correlations to perform
context-sensitive outlier analysis. A key component of our
solution is based on the observation that the behavior of
the attacker can be constrained by correlating dependent
metrics.
• We demonstrate the impact of the attacks and the ef
fectiveness of our defense mechanisms through p2psim [26J
simulations, in the context of the well-studied Vivaldi vir
tual coordinate system[10] using three representative real
world topologies of hosts and corresponding RTTs: King
[13], Meridian [27], and AMP [28]. We found through ana
lytical and empirical studies that a spatial threshold of 1.5
and a temporal threshold of 4.0 provided a low system error
under attack while maintaining an acceptable false positive
rate. Our experiments also show that the method starts to
degrade when the coalition size of malicious nodes in the
reference set of a node increases over 30% of the reference
set size.

The rest of the paper is organized as follows: We provide
an overview of decentralized virtual coordinate systems and
attacks against them in Section 2. We propose mitigation
mechanisms in Section 3. We present experimental results
demonstrating the impact of the attacks and the effective
ness of our solutions in Section 4. We discuss related work
in Section 5 and conclude our work in Section 6.

2. ATTACKS AGAINST VIRTUAL COOR
DINATE SYSTEMS

In this section, we give an overview of the main compo
nents of decentralized virtual coordinate systems and de
scribe how they can be exploited by attackers to influence
their accuracy.

2.1 Decentralized Virtual Coordinate Systems
The design goal of decentralized virtual coordinate sys

tems is to efficiently create and maintain a stable set of vir
tual coordinates that accurately predict the latency between
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nodes without using fixed infrastructure nodes. Although
each specific virtual coordinate system differs in some de
tails, most of them follow a common design. The most
important characteristics that define a decentralized coor
dinate systems are (1) the reference or neighbor set, (2) the
distance prediction mechanism, and (3) the error minimiza
tion technique.

In a decentralized virtual coordinate system, each node
calculates its coordinates based on the information obtained
from a small set of nodes in the network, which we refer to
as the reference set. There are several methods used to se
lect the reference set, with identifying a set of close and set
of distant network nodes and selecting a random subset of
each being one of the most promising [10, 12]. Nodes may
have different reference sets. Different systems use differ
ent sizes of the reference set due to the frequency of ac
tual network measurements, the number of nodes queried
per measurement interval, and the error minimization tech
nique utilized. For example, Vivaldi uses a reference set size
of 64 nodes [20], PCoord uses 10 nodes [18], and PIC uses
32 nodes [12].

Once a reference set has been selected, a node deter
mines its coordinate based on a predefined distance pre
diction mechanism, such as the Euclidean distance. Each
system typically maintains coordinates in either low dimen
sional (usually 2 to 8 dimensions) Euclidean space [12], an
augmented Euclidean space [10], or non-Euclidean (e.g. hy
perbolic) space [29]. In general, it has been shown that
none of the embedding spaces dominates the others in per
formance [30] and lower dimensionality Euclidean spaces are
often sufficient [10]. A node determines its position and then
successively refines it by periodically querying nodes in its
reference set. Queried nodes respond with metrics that can
include local error, perceived system error, local coordinates,
and RTT.

Virtual coordinate systems provide accurate latency pre
diction, achieved through error minimization techniques of
a chosen distance error function. Examples include:
• Generic multi-dimensional minimization designed to min
imize a relative system error measure (such as logarithmic
transformed error) using techniques such as the downhill
simplex method [12].
• Minimizing coordinates by simulating Newtonian mechan
ics. Each node in the system is simulated as a particle influ
enced by the field force induced between nodes. Each pair of
particles (nodes) either pulls or repulses each other, thereby
reducing the total system error [29].
• Minimizing coordinates by simulating spring relaxation,
where the state of the springs at rest is the optimal embed
ding. The system minimizes the squared system error by
iteratively finding the low-energy point of the spring-based
system [10].

While each technique has benefits, systems based on multi
dimensional minimization are often slow to converge, sensi
tive to initial system conditions, and sensitive to high error
measurements. Simulation techniques such as spring relax
ation are computationally inexpensive, less sensitive to high
error nodes, and more amenable to general decentralized
system design.

In general, virtual coordinate systems achieve the over
all goals of accuracy and stability while reducing traffic by
as much as two orders of magnitude when compared with
active monitoring to estimate RTT [12]. Systems such as



Vivaldi [lo], PCoord [15], and PIC [12] stabilize at an aver- 
age system latency estimation error of ten milliseconds for 
large scale simulations and deployments. 

2.2 Attacker Model 
We consider a constrained-collusion Byzantine adversary 

model similar to that proposed in [31], with a system size of 
N and a bounded percentage of malicious nodes f (0 5 f < 1) 
behaving arbitrarily. The set of malicious nodes may col- 
lude. We assume a malicious adversary has access to all 
data at a node as any legitimate user would (insider access), 
including cryptographic keys stored at a node. This access 
can be the result of the adversary bypassing the authenti- 
cation mechanisms or compromising a node through other 
means. Nodes cannot be completely trusted although they 
are authenticated. We assume that data authentication and 
integrity mechanisms are deployed and we focus only on at- 
tacks directed at  the accuracy of the virtual coordinates. 

2.3 Attacks Description 
The correct operation of virtual coordinate systems is d e  

pendent on the assumption that the reference set nodes are 
altruistic and respond with correct metrics to any query 
from any node computing its corresponding coordinates. An 
attacker controlling reference set nodes has the ability to in- 
fluence the coordinate maintenance process by manipulating - 
the information, such as remote node error and coordinates, 
returned in response to a query. By blindly accepting this 
malicious information, a correct node computes incorrect 
coordinates. 

A malicious node is able to indirectly take advantage of 
the error minimization techniques and chosen error function 
by manipulating the metrics it reports as a reference set 
node. In doing so, an attacker is able to make a victim node 
move away from its correct position by either pushing the 
node away from or pulling it closer to the malicious node's 
reported coordinates. For example, a malicious node can 
attract a victim node towards a random position and away 
from the victim's correct position by reporting false virtual 
coordinates and a low error. Also, since many of the min- 
imization techniques rely on the measured RTT of queries, 
a malicious node can push a victim node away from itself 
by delaying its query responses. The larger the induced 
delay, the farther the victim node will re-calculate its posi- 

system can include isolating subsets of nodes from the net- 
work, creating general disorder in the system, and rendering 
the coordinate system unusable due to high estimation error. 
We refer to attacks which result in nodes not converging to a 
virtual coordinate and continuously changing their positions 
as coordinate oscillation. 

While all of the attacks have different goals, in the end, 
they all distort the coordinate space and can make using the 
computed coordinates worse than using randomly assigned 
coordinates. Even short-lived, localized attacks have a long- 
lasting effect on the overall system. For example, even when 
a single victim node is displaced from its correct position, 
this has an epidemic, detrimental effect on many of the nodes 
in the system as the victim node will push/pull nodes away 
from their correct coordinates by reporting its now incorrect 
coordinates. That is because a correct node that computed 
its coordinates based on incorrect information may serve as 
a reference set for other nodes in the system, thus negatively 
influencing their coordinate com~utation. Besides denad- - - 
ing the accuracy of the coordinate system, the attacks will 
also adversely impact any application using the coordinate 
system to estimate network measurements. In addition, as 
the attacks exploit the semantics of the information con- 
tained on the packet, they do not add a noticeable change 
in traffic load and thus are difficult to detect by traditional 
mechanisms. 

3. LEVERAGING OUTLIER DETECTION 
TO ADD ROBUSTNESS TO VIRTUAL CO- 
ORDINATE SYSTEMS 

In this section, we discuss how techniques used in net- 
work security can be used in the context of virtual coor- 
dinate systems to make them more robust to attacks from 
compromised nodes. As such systems were proposed with 
the intention to decrease the communication cost involved 
in active monitoring, our goal is to propose mitigation tech- 
niques that do not add any communication to the system. 
We propose to prevent incorrect coordinate updates by de- 
tecting and filtering out outliers in the metrics reported by 
queried nodes. Our method evaluates temporal and spatial 
correlations among data in the system. Below, we provide 
an overview of outlier detection and describe how we apply 
it to virtual coordinate systems. 

tions away from the malicious node's reported coordinates 
to possibly more erroneous locations. An attacker may also 3.1 Overview of Outlier 
take advantage of the error minimization techniques to re- The usability of a data set and the quality of statistical 
pel a victim node away from specific virtual coordinates by measures derived from it are integrally related to the number 
making its queried responses appear worse than actuality of outliers present. Outliers are data points which deviate 
by advertising coordinates with high error. We refer to such so much from the rest of the data set as to arouse suspicion 
attacks that result in coordinate mappings farther from the that they were generated by a different mechanism [32, 331. 
correct location as coordinate inflation. The identification of outliers can lead to discovering impor- 

An attacker may cause a victim node to remain immo- tant trends and information, such as the presence of mali- 
bile by reporting positions similar to the current position of 
that  victim node. A malicious node may also report false 
coordinates where the distance between the victim and the 
attacker reflects the RRT between the nodes, once again 
rendering the victim immobile. We refer to such attacks in 
which the victim nodes are prevented from performing nec- 
essary, correct coordinate changes as coordinate deflation. 

Any attack against the coordinate system may target a 
particular node, subset of nodes, or region of the coordi- 
nate space. The final goal of manipulating the coordinate 

cious activities. Outlier detection, also known as anomaly 
or deviation detection, has been used in a variety of different 
fields including intrusion detection [34, 351, fraud detection 
[36], medical analysis [37], and business trend analysis [38]. 

Many of the techniques for outlier detection utilize a sta- 
tistical based or distance-based approach in which an outlier 
is any point which lies beyond a sbkcified distance threshold. 
The Euclidean. Manhattan. Minkowski, and Mahalanobis 
distance functions are the most commonly used functions in 
determining distance [37, 391, each having its own benefits 

Vivaldi [10], PCoord [15], and PIC [12] stabilize at an aver
age system latency estimation error of ten milliseconds for
large scale simulations and deployments.

2.2 Attacker Model
We consider a constrained-collusion Byzantine adversary

model similar to that proposed in [31], with a system size of
N and a bounded percentage of malicious nodes f (0::::: f < 1)
behaving arbitrarily. The set of malicious nodes may col
lude. We assume a malicious adversary has access to all
data at a node as any legitimate user would (insider access),
including cryptographic keys stored at a node. This access
can be the result of the adversary bypassing the authenti
cation mechanisms or compromising a node through other
means. Nodes cannot be completely trusted although they
are authenticated. We assume that data authentication and
integrity mechanisms are deployed and we focus only on at
tacks directed at the accuracy of the virtual coordinates.

2.3 Attacks Description
The correct operation of virtual coordinate systems is de

pendent on the assumption that the reference set nodes are
altruistic and respond with correct metrics to any query
from any node computing its corresponding coordinates. An
attacker controlling reference set nodes has the ability to in
fluence the coordinate maintenance process by manipulating
the information, such as remote node error and coordinates,
returned in response to a quely. By blindly accepting this
malicious information, a correct node computes incorrect
coordinates.

A malicious node is able to indirectly take advantage of
the error minimization techniques and chosen error function
by manipulating the metrics it reports as a reference set
node. In doing so, an attacker is able to make a victim node
move away from its correct position by either pushing the
node away from or pulling it closer to the malicious node's
reported coordinates. For example, a malicious node can
attract a victim node towards a random position and away
from the victim's correct position by reporting false virtual
coordinates and a low error. Also, since many of the min
imization techniques rely on the measured RTT of queries,
a malicious node can push a victim node away from itself
by delaying its query responses. The larger the induced
delay, the farther the victim node will re-calculate its posi
tions away from the malicious node's reported coordinates
to possibly more erroneous locations. An attacker may also
take advantage of the error minimization techniques to re
pel a victim node away from specific virtual coordinates by
making its queried responses appear worse than actuality
by advertising coordinates with high error. We refer to such
attacks that result in coordinate mappings farther from the
correct location as coordinate inflation.

An attacker may cause a victim node to remain immo
bile by reporting positions similar to the current position of
that victim node. A malicious node may also report false
coordinates where the distance between the victim and the
attacker reflects the RRT between the nodes, once again
rendering the victim immobile. We refer to such attacks in
which the victim nodes are prevented from performing nec
essary, correct coordinate changes as coordinate deflation.

Any attack against the coordinate system may target a
particular node, subset of nodes, or region of the coordi
nate space. The final goal of manipulating the coordinate
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system can include isolating subsets of nodes from the net
work, creating general disorder in the system, and rendering
the coordinate system unusable due to high estimation error.
We refer to attacks which result in nodes not converging to a
virtual coordinate and continuously changing their positions
as coordinate oscillation.

While all of the attacks have different goals, in the end,
they all distort the coordinate space and can make using the
computed coordinates worse than using randomly assigned
coordinates. Even short-lived, localized attacks have a long
lasting effect on the overall system. For example, even when
a single victim node is displaced from its correct position,
this has an epidemic, detrimental effect on many of the nodes
in the system as the victim node will push/pull nodes away
from their correct coordinates by reporting its now incorrect
coordinates. That is because a correct node that computed
its coordinates based on incorrect information may serve as
a reference set for other nodes in the system, thus negatively
influencing their coordinate computation. Besides degrad
ing the accuracy of the coordinate system, the attacks will
also adversely impact any application using the coordinate
system to estimate network measurements. In addition, as
the attacks exploit the semantics of the information con
tained on the packet, they do not add a noticeable change
in traffic load and thus are difficult to detect by traditional
mechanisms.

3. LEVERAGING OUTLIER DETECTION
TO ADD ROBUSTNESS TO VIRTUAL CO
ORDINATE SYSTEMS

In this section, we discuss how techniques used in net
work security can be used in the context of virtual coor
dinate systems to make them more robust to attacks from
compromised nodes. As such systems were proposed with
the intention to decrease the communication cost involved
in active monitoring, our goal is to propose mitigation tech
niques that do not add any communication to the system.
We propose to prevent incorrect coordinate updates by de
tecting and filtering out outliers in the metrics reported by
queried nodes. Our method evaluates temporal and spatial
correlations among data in the system. Below, we provide
an overview of outlier detection and describe how we apply
it to virtual coordinate systems.

3.1 Overview of Outlier Detection
The usability of a data set and the quality of statistical

measures derived from it are integrally related to the number
of outliers present. Outliers are data points which deviate
so much from the rest of the data set as to arouse suspicion
that they were generated by a different mechanism [32, 33].
The identification of outliers can lead to discovering impor
tant trends and information, such as the presence of mali
cious activities. Outlier detection, also known as anomaly
or deviation detection, has been used in a variety of different
fields including intrusion detection [34, 35], fraud detection
[36], medical analysis [37], and business trend analysis [38].

Many of the techniques for outlier detection utilize a sta
tistical based or distance-based approach in which an outlier
is any point which lies beyond a specified distance threshold.
The Euclidean, Manhattan, Minkowski, and Mahalanobis
distance functions are the most commonly used functions in
determining distance [37, 39], each having its own benefits



given the type of analysis being performed. 
Malicious activity can lead to spatial and temporal incon- 

sistencies. Spatial outlier detection identifies observations 
which are inconsistent with their surrounding neighbors, 
while temporal outlier detection identifies inconsistencies in 
the metrics of the observation space of a system over time. 
The use of both temporal and spatial outlier detection al- 
lows for the identification of multiple types of attacks with 
better accuracy than either alone. 

3.2 Applying Outlier Detection in Virtual Co- 
ordinate Systems 

We leverage techniques from outlier detection to identify 
malicious behavior and take defensive actions to mitigate its 
effects. Instead of allowing malicious coordinate mappings 
to occur and then trying to detect them, we focus on reduc- 
ing the likelihood of a node computing incorrect coordinates 
through the use of statistical outlier detection. Since the ev- 
idence of malicious activity is distributed across space and 
time, we propose to detect them using both temporal and 
spatial correlations among metrics in the system. 

Each node independently performs outlier detection be- 
fore changing its coordinate in order to identify and filter 
out outliers in the received metrics. Spatial outlier detec- 
tion compares the recently received metrics from each of the 
queried nodes in a node's reference set and forces a node 
to report metrics consistent with what other reference peers 
are currently reporting. Temporal outlier detection exam- 
ines the consistency of the metrics received from an indi- 
vidual queried node over time and forces a node to report 
metrics consistent with what it has reported in the past. 

To avoid adding communication cost, we use metrics al- 
ready reported by the nodes in the reference set. We use 
the 3-tuple of <remote error, change in remote coordinates, 
latency> to generate the spatial outlier statistics and the 
5-tuple of <remote error, local error, latency, change in re- 
mote coordinates, change in local coordinates> to generate 
the temporal outlier statistics. The metrics were chosen 
on the basis that while each of them represents a different 
measure of system performance, changes in one measure will 
result in a correlated change in other metrics. For example, 
as the system stabilizes to low overall error, the local er- 
ror reported by each node and correlated magnitude of the 
change in coordinates will both change less. An attacker 
must therefore report a high error with greatly changing co- 
ordinates in order to not be identified as malicious. Our 
solution also forces an attacker to lie consistently with other 
peers. This is difficult to achieve as an attacker does not 
have perfect knowledge of the observation space, must ac- 
curately predict the random subset of reference nodes that 
will be queried, and only has a finite amount of time to 
coordinate with other attackers. 

Our approach uses the Mahalanobis [40] distance to de- 
tect outliers. We selected this distance function because it 
has been shown effective at  detecting outliers with multiple 
attributes [41], scales each variable based on its standard 
deviation and covariance, and takes into account how the 
measured attributes change in relation to each other [42]. 

3.2.1 Spatial outlier detection 
We use spatial outlier detection to examine the consis- 

tency of recently received metrics from queried nodes. A 
node queries a random node from its reference set and re- 

ceives an observation tuple which consists of <remote error, 
change in remote coordinates, latency>. The node records 
this response and tracks the most recent u updates in a 
queue-like fashion, where the oldest responses are replaced 
by newer ones and u is equal to the size of the reference set. 
Unlike more message-intensive distributed systems where a 
new set of responses from all nodes queried (in this case 
nodes in the reference set) are collected in response to one 
query (41, virtual coordinate systems collect these responses 
sequentially. Our approach requires a node to perform out- 
lier detection every time it receives a new tuple, considering 
the most recent u updates. We highlight that this technique 
is an instance of spatial outlier detection since we examine 
metrics across various system nodes and not time. 

Once a node receives an observation tuple, the node first 
computes the centroid of the data set consisting of obser- 
vation tuples from the stored u updates. The node then 
computes the Mahalanobis distance between the received 
observation tuple and the centroid as follows [40]: 

where 5 and y' are the feature vectors consisting of error, 
latency, and distance from the last virtual coordinate. Z is 
the value from the query response and y' is the average value 
that was calculated. C-' is the inverse covariance matrix 
computed from the stored observation tuples. Finally, this 
distance is compared against a spatial threshold. We discuss 
spatial threshold selection in Sec. 4.3. 

3.2.2 Temporal outlier detection 
We use temporal correlations to detect inconsistencies in 

the metrics reported over time by a reference set node. We 
use the tuple consisting of <remote error, local error, la- 
tency, change in remote coordinates, change in local coord- 
inates>. Using incremental learning, we compute a tempo- 
ral centroid for each of the members of a node's reference set. 
We assume each of the reported metrics is statistically in- 
dependent, necessitating the storage of just the mean, stan- 
dard deviation, and sample count computed from the re- 
ceived query responses over time. The stored values for a 
reference set member are incrementally updated with the 
metrics received from that member's query response, simi- 
lar to 1401, using the technique described in [43]. In order to 
compare newly received values with the temporal centroid, 
we use the "simplified Mahalanobis distance" presented in 
[40]: n-1 

d ( ~ , y )  = E ( l x i  - &I/(& + a ) )  
i=o 

(2) 

where n is the number of metrics, five in our case (remote 
error, local error, latency, change in remote coordinates, and 
change in local coordinates), fi is the standard deviation, 
and a is a smoothing factor empirically set to .001 to help 
to avoid over-fitting and reduce false positives [40]. Once 
a query response is received, the latest observation tuple is 
compared with the corresponding temporal centroid using 
the simplified Mahalanobis distance, based on a temporal 
threshold that decides if the tuple is an outlier or not. We 
discuss temporal threshold selection in Sec. 4.3. 

3.2.3 Spatio-temporal outlier detection 
We combine the two outlier detection mechanisms de- 

scribed above by using a codebook technique similar to [44]. 
Each reference set node response that is not a spatial or 

where x and if are the feature vectors consisting of error,
latency, and distance from the last virtual coordinate. x is
the value from the query response and if is the average value
that was calculated. C- I is the inverse covariance matrix
computed from the stored observation tuples. Finally, this
distance is compared against a spatial threshold. We discuss
spatial threshold selection in Sec. 4.3.

(1)

(2)

d(x, if) = J((x - if)TC-I(X - if))

3.2.2 Temporal outlier detection
We use temporal correlations to detect inconsistencies in

the metrics reported over time by a reference set node. We
use the tuple consisting of <remote error, local error, la
tency, change in remote coordinates, change in local coord
inates>. Using incremental learning, we compute a tempo
ral centroid for each of the members of a node's reference set.
We assume each of the reported metrics is statistically in
dependent, necessitating the storage of just the mean, stan
dard deviation, and sample count computed from the re
ceived query responses over time. The stored values for a
reference set member are incrementally updated with the
metrics received from that member's query response, simi
lar to [40], using the technique described in [43]. In order to
compare newly received values with the temporal centroid,
we use the "simplified Mahalanobis distance" presented in
[40]:

ceives an observation tuple which consists of <remote error,
change in remote coordinates, latency>. The node records
this response and tracks the most recent u updates in a
queue-like fashion, where the oldest responses are replaced
by newer ones and u is equal to the size of the reference set.
Unlike more message-intensive distributed systems where a
new set of responses from all nodes queried (in this case
nodes in the reference set) are collected in response to one
query 14]' virtual coordinate systems collect these responses
sequentially. Our approach requires a node to perform out
lier detection every time it receives a new tuple, considering
the most recent u updates. We highlight that this technique
is an instance of spatial outlier detection since we examine
metrics across various system nodes and not time.

Once a node receives an observation tuple, the node first
computes the centroid of the data set consisting of obser
vation tuples from the stored u updates. The node then
computes the Mahalanobis distance between the received
observation tuple and the centroid as follows [40]:

n-I

d(x,y) = l)lxi - Yil/(cJi + a))
i=O

where n is the number of metrics, five in our case (remote
error, local error, latency, change in remote coordinates, and
change in local coordinates), cJi is the standard deviation,
and a is a smoothing factor empirically set to .001 to help
to avoid over-fitting and reduce false positives [40]. Once
a query response is received, the latest observation tuple is
compared with the corresponding temporal centroid using
the simplified Mahalanobis distance, based on a temporal
threshold that decides if the tuple is an outlier or not. We
discuss temporal threshold selection in Sec. 4.3.

given the type of analysis being performed.
Malicious activity can lead to spatial and temporal incon

sistencies. Spatial outlier detection identifies observations
which are inconsistent with their surrounding neighbors,
while temporal outlier detection identifies inconsistencies in
the metrics of the observation space of a system over time.
The use of both temporal and spatial outlier detection al
lows for the identification of multiple types of attacks with
better accuracy than either alone.

3.2 Applying Outlier Detection in Virtual Co
ordinate Systems

We leverage techniques from outlier detection to identify
malicious behavior and take defensive actions to mitigate its
effects. Instead of allowing malicious coordinate mappings
to occur and then trying to detect them, we focus on reduc
ing the likelihood of a node computing incorrect coordinates
through the use of statistical outlier detection. Since the ev
idence of malicious activity is distributed across space and
time, we propose to detect them using both temporal and
spatial correlations among metrics in the system.

Each node independently performs outlier detection be
fore changing its coordinate in order to identify and filter
out outliers in the received metrics. Spatial outlier detec
tion compares the recently received metrics from each of the
queried nodes in a node's reference set and forces a node
to report metrics consistent with what other reference peers
are currently reporting. Temporal outlier detection exam
ines the consistency of the metrics received from an indi
vidual queried node over time and forces a node to report
metrics consistent with what it has reported in the past.

To avoid adding communication cost, we use metrics al
ready reported by the nodes in the reference set. We use
the 3-tuple of <remote error, change in remote coordinates,
latency> to generate the spatial outlier statistics and the
5-tuple of <remote error, local error, latency, change in re
mote coordinates, change in local coordinates> to generate
the temporal outlier statistics. The metrics were chosen
on the basis that while each of them represents a different
measure of system performance, changes in one measure will
result in a correlated change in other metrics. For example,
as the system stabilizes to low overall error, the local er
ror reported by each node and correlated magnitude of the
change in coordinates will both change less. An attacker
must therefore report a high error with greatly changing co
ordinates in order to not be identified as malicious. Our
solution also forces an attacker to lie consistently with other
peers. This is difficult to achieve as an attacker does not
have perfect knowledge of the observation space, must ac
curately predict the random subset of reference nodes that
will be queried, and only has a finite amount of time to
coordinate with other attackers.

Our approach uses the Mahalanobis [40] distance to de
tect outliers. We selected this distance function because it
has been shown effective at detecting outliers with multiple
attributes [41]' scales each variable based on its standard
deviation and covariance, and takes into account how the
measured attributes change in relation to each other [42].

3.2.1 Spatial outlier detection
We use spatial outlier detection to examine the consis

tency of recently received metrics from queried nodes. A
node queries a random node from its reference set and re-

3.2.3 Spatio-temporal outlier detection
We combine the two outlier detection mechanisms de

scribed above by using a codebook technique similar to [44].
Each reference set node response that is not a spatial or
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temporal outlier is utilized in updating the receiver node's 
coordinates. If the reference node is found to be an out- 
lier, the query response will not be used in future temporal 
centroid calculations since it will not be incorporated into 
the temporal mean, temporal standard deviation, or sample 
count. Also, it will not be used in future spatial centroid 
calculations since it will be dropped from the most recent u 
updates. 

4. EXPERIMENTAL RESULTS 
In this section we demonstrate the impact of attacks against 

virtual coordinate systems through simulations based on 
real-life Internet topologies. In addition, we demonstrate 
that our proposed mechanisms enhance the robustness of de- 
centralized virtual coordinate systems to such attacks. We 
examine their effect on a representative decentralized vir- 
tual coordinate system, Vivaldi [lo],  which is simulated in 
the p2psim simulator 1261. We selected Vivaldi to demon- 
strate the attacks and defense mechanisms because it is a 
mature system, conceptually easy to understand and visu- 
alize, and has been shown to produce low error embeddings 
1101. 

4.1 Evaluation Methodology 
We use three different RTT data sets collected from real- 

life Internet topologies. Table 1 and Fig.1 summarize the 
characteristics of each data set. The data sets are: 

King: The King data set contains the pair-wise RTT 
of 1740 nodes measured using the King method [13]. 

Meridian: The Meridian data set, obtained from the 
Cornell Meridian project [27], contains the pair-wise 
RTT of 2500 nodes measured using the King method 
[131. 

AMP: The AMP data set, collected from the NLANR 
Active Measurement Project 1281 on March 1, 2007, 
contains complete information for 90 high-speed nodes 
contained mostly in North America. 

Table 1: Data  Sets Characteristics 

Meridian 
AMP 

(a) King (b) Meridian (c) AMP 

Figure 1: Node placement chosen by Vivaldi for var- 
ious d a t a  sets  

We selected the King and Meridian data sets because they 
are representative of larger scale peer-to-peer systems, and 
were used in validating many virtual coordinate systems. 
They have very different data characteristics. The King 
data set contains a variety of link latencies, allowing nodes in 

the virtual coordinate system to form a structure in which 
nodes with small RTTs between them converge into clus- 
ters, as seen in Fig. l(a). The average RTT of Meridian 
is approximately half that of King since it contains many 
nodes a short distance from one another, as seen in Fig. l (b)  
where the system forms fewer, but larger clusters. The fi- 
nal data set, AMP, was used since it represents a smaller, 
high speed system, such as a corporate network. In AMP, 
looms or less links account for nearly 90% of all links, re- 
sulting in one main cluster, as seen in Fig. l(c). We do not 
consider synthetic topologies since they do not capture im- 
portant network properties such as violations of the triangle 
inequality. 

In order to quantitatively compare the effect of attacks on 
the accuracy of the system, we evaluate two error metrics: 
System prediction error is defined as 

Error,,,d = ~ A C ~ R T T  - ES~RTTI (3) 
where the AC~RTT is the actual measured RTT and ES~RTT 
is the predicted RTT by the virtual coordinate system. This 
metric provides an intuition of how the overall system is 
performing. The lower the system prediction error is, the 
more accurate the predicted RTTs are. 
Relative error is defined as 

where Errorattack is the system prediction error measured 
in the presence of malicious nodes and Err0rn0_,ttack is the 
system prediction error without malicious nodes. This met- 
ric captures the impact an attacker has on the coordinate 
system. A relative error greater than one indicates a degra- 
dation in accuracv and a value less than one indicates a 
better estimation accuracy than the baseline. 

For each of the error measures, the 5th, 50~'" and 95t'" 
percentile error are analyzed. These values are obtained 
by selecting the corresponding entries from a sorted array 
of prediction error and are averaged over multiple simula- 
tion runs. Intuitively, the 5th percentile represents low error 
nodes, the 5oth percentile corresponds to average or median 
error nodes, and the 95th percentile represents high error 
nodes. 

We ran one million tick long simulations, using the King 
data set as our default topology unless otherwise noted. The 
nodes join in a flash-crowd scenario in which all nodes join 
simultaneously and are each initially placed at the origin of 
the logical coordinate space. Each node proceeds indepen- 
dently of other nodes in the network and chooses a refer- 
ence set of 64 nodes using the Vivaldi method where half 
of the nodes are selected as the closest nodes based on net- 
work latencv and the rest are selected at random. All other 
Vivaldi parameters such as the adaptive timestep were ini- 
tialized to the optimal values discussed in [lo]. Each of 
the experiments utilizes a two-dimensional coordinate space 
{(x, y) lx, y E [-300000,300000]). Every simulation was run 
ten times with the reported metrics average over all of the 
simulation. 

4.2 Attacks Against Distributed Virtual Coor- 
dinate Systems 

In this section we demonstrate several attacks against the 
Vivaldi coordinate system. Vivaldi was designed to tolerate 
high-error, benign nodes, but it has no built-in mechanisms 
to defend against malicious nodes. 

Inflation a n d  deflation attacks. We first demonstrate 

Table l' Data Sets Characteristics

4. EXPERIMENTAL RESULTS

Figure 1: Node placement chosen by Vivaldi for var
ious data sets

(4)
E Errorattack

rrOrrel = Errorno_attack

the virtual coordinate system to form a structure in which
nodes with small RTTs between them converge into clus
ters, as seen in Fig. l(a). The average RTT of Meridian
is approximately half that of King since it contains many
nodes a short distance from one another, as seen in Fig. 1(b )
where the system forms fewer, but larger clusters. The fi
nal data set, AMP, was used since it represents a smaller,
high speed system, such as a corporate network. In AMP,
lOOms or less links account for nearly 90% of all links, re
sulting in one main cluster, as seen in Fig. l(c). We do not
consider synthetic topologies since they do not capture im
portant network properties such as violations of the triangle
inequality.

In order to quantitatively compare the effect of attacks on
the accuracy of the system, we evaluate two error metrics:
System prediction error is defined as

Errorpred = IActRTT - EstRTTI (3)

where the ActRTT is the actual measured RTT and EstRTT
is the predicted RTT by the virtual coordinate system. This
metric provides an intuition of how the overall system is
performing. The lower the system prediction error is, the
more accurate the predicted RTTs are.
Relative error is defined as

4.2 Attacks Against Distributed Virtual Coor
dinate Systems

In this section we demonstrate several attacks against the
Vivaldi coordinate system. Vivaldi was designed to tolerate
high-error, benign nodes, but it has no built-in mechanisms
to defend against malicious nodes.

Inflation and deflation attacks. We first demonstrate

where ErrOrattack is the system prediction error measured
in the presence of malicious nodes and Errorno_attack is the
system prediction error without malicious nodes. This met
ric captures the impact an attacker has on the coordinate
system. A relative error greater than one indicates a degra
dation in accuracy and a value less than one indicates a
better estimation accuracy than the baseline.

For each of the error measures, the 5th
, 50th

, and 95t/'
percentile error are analyzed. These values are obtained
by selecting the corresponding entries from a sorted array
of prediction error and are averaged over multiple simula
tion runs. Intuitively, the 5th percentile represents low error
nodes, the 50th percentile corresponds to average or median
error nodes, and the 95th percentile represents high error
nodes.

We ran one million tick long simulations, using the King
data set as our default topology unless otherwise noted. The
nodes join in a flash-crowd scenario in which all nodes join
simultaneously and are each initially placed at the origin of
the logical coordinate space. Each node proceeds indepen
dently of other nodes in the network and chooses a refer
ence set of 64 nodes using the Vivaldi method where half
of the nodes are selected as the closest nodes based on net
work latency and the rest are selected at random. All other
Vivaldi parameters such as the adaptive timestep were ini
tialized to the optimal values discussed in [10]. Each of
the experiments utilizes a two-dimensional coordinate space
{(x, y )Ix, y E [-300000,300000]}. Every simulation was run
ten times with the reported metrics average over all of the
simulation.

(c) AMP(b) Meridian(a) King

Data Set # Nodes Avg. Max. Std. Dev.
RTT RTT RTT

King 1740 180ms 800ms 66ms
Meridian 2500 80ms 1000ms 69ms

AMP 90 70ms 453ms 51ms

• AMP: The AMP data set, collected from the NLANR
Active Measurement Project [28] on March 1, 2007,
contains complete information for 90 high-speed nodes
contained mostly in North America.

• Meridian: The Meridian data set, obtained from the
Cornell Meridian project [27], contains the pair-wise
RTT of 2500 nodes measured using the King method
[13].

• King: The King data set contains the pair-wise RTT
of 1740 nodes measured using the King method [13].

temporal outlier is utilized in updating the receiver node's
coordinates. If the reference node is found to be an out
lier, the query response will not be used in future temporal
centroid calculations since it will not be incorporated into
the temporal mean, temporal standard deviation, or sample
count. Also, it will not be used in future spatial centroid
calculations since it will be dropped from the most recent u
updates.

In this section we demonstrate the impact of attacks against
virtual coordinate systems through simulations based on
real-life Internet topologies. In addition, we demonstrate
that our proposed mechanisms enhance the robustness of de
centralized virtual coordinate systems to such attacks. We
examine their effect on a representative decentralized vir
tual coordinate system, Vivaldi [10], which is simulated in
the p2psim simulator [26]. We selected Vivaldi to demon
strate the attacks and defense mechanisms because it is a
mature system, conceptually easy to understand and visu
alize, and has been shown to produce low error embeddings
[10].

4.1 Evaluation Methodology
We use three different RTT data sets collected from real

life Internet topologies. Table 1 and Fig.l summarize the
characteristics of each data set. The data sets are:

We selected the King and Meridian data sets because they
are representative of larger scale peer-to-peer systems, and
were used in validating many virtual coordinate systems.
They have very different data characteristics. The King
data set contains a variety of link latencies, allowing nodes in
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Figure 2: System prediction er ror  under  different percentages of at tackers (King) 
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how a coalition of f=30% malicious nodes can target one par- 
ticular victim node and conduct an inflation or a deflation 
attack. Note that the actual number of attackers which di- 
rectly influence the victim is the number of malicious nodes 
that are selected to be in the reference set of the victim 
node. Using the hypergeometric distribution, we can deter- 
mine the probability of having a given number of malicious 

0 

reference set members. If we let k represents the number of 
malicious nodes in a reference set, N be number of nodes in 
the system, D is the total number of malicious nodes, and n 
is the size of the reference set, then the probability of having 
exactly k malicious nodes in a reference set is given by 

f (k; N,  D ,  n)  = 
(3 (:I:) 
(3 (5) 

By summing the discrete probability distributions for given 
values of k, we can determine the probability of having a cer- 
tain percentage of malicious nodes in reference set. In the 
King data set, given that 30% of the total nodes are ma- 
licious, the probability that at least 30% of the nodes in 
a reference set (about 20 nodes) are also malicious is only 
about 35%. 

Fig. 4 presents the location and associated prediction er- 
ror of a victim node under non-attack conditions and under 
the two attacks. The correct location of the victim node is 
in the upper left quadrant. For the deflation attack, note 
the circle at the origin representing a victim node which 
did not move to its correct position. In this scenario, the 
attackers send the victim node coordinates that minimize 
the difference between the actual RTT and estimated RTT 
(the Euclidean distance between the attacker and victim). 
As a result, the victim stays at its current coordinate while 
believing it has a very low estimation error. Fig. 4(b) also 

depicts an inflation attack, where the attackers send the vic- 
tim node chosen coordinates along with an artificially high 
RTT by delaying query responses. Note the square in the 
upper right quadrant representing the victim node forced to 
move away from the origin and towards a location chosen by 
the attacker. As it can be seen in the Table 4(a), the attacks 
greatly increase the prediction error of the victim node from 
lOms to 60ms for the deflation attack and to 70ms for the 
inflation attack. 

Inflation 
w/defense I 11 ms 

(a) Prediction Error 
\ 1 * 

(b) Node Placement 

Figure 4: Vict im node er ror  a n d  placement for a 
deflation a n d  inflation at tack.  

Oscillation attacks. We demonstrate an oscillation at- 
tack in Fig. 5. In this scenario, the attacker sends the victim 
nodes erroneous random positions selected over the coordi- 
nate space with a low error value, causing the victim nodes 
to make multiple incorrect coordinate changes. As it can be 
seen in Fig. 5(a), the system under non-attack conditions 
has an easily identifiable structure in which nodes with small 
RTTs between them converge into clusters in the coordinate 
space. When the system is under attack as seen in Fig. 5(b), 
the virtual coordinate system looses its structure and hence 
also looses its ability to yield a low error embedding. This 
attack also exemplifies the epidemic nature of such attacks. 
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Figure 3: Relative error under different percentages of attackers (King)

how a coalition of f=30% malicious nodes can target one par
ticular victim node and conduct an inflation or a deflation
attack. Note that the actual number of attackers which di
rectly influence the victim is the number of malicious nodes
that are selected to be in the reference set of the victim
node. Using the hypergeometric distribution, we can deter
mine the probability of having a given number of malicious
reference set members. If we let k represents the number of
malicious nodes in a reference set, N be number of nodes in
the system, D is the total number of malicious nodes, and n
is the size of the reference set, then the probability of having
exactly k malicious nodes in a reference set is given by

f( k' N D ) = (f) C~=f) (5)
, "n (~)

By summing the discrete probability distributions for given
values of k, we can determine the probability of having a cer
tain percentage of malicious nodes in reference set. In the
King data set, given that 30% of the total nodes are ma
licious, the probability that at least 30% of the nodes in
a reference set (about 20 nodes) are also malicious is only
about 35%.

Fig. 4 presents the location and associated prediction er
ror of a victim node under non-attack conditions and under
the two attacks, The correct location of the victim node is
in the upper left quadrant. For the deflation attack, note
the circle at the origin representing a victim node which
did not move to its correct position, In this scenario, the
attackers send the victim node coordinates that minimize
the difference between the actual RTT and estimated RTT
(the Euclidean distance between the attacker and victim).
As a result, the victim stays at its current coordinate while
believing it has a very low estimation error. Fig. 4(b) also

depicts an inflation attack, where the attackers send the vic
tim node chosen coordinates along with an artificially high
RTT by delaying query responses. Note the square in the
upper right quadrant representing the victim node forced to
move away from the origin and towards a location chosen by
the attacker. As it can be seen in the Table 4(a), the attacks
greatly increase the prediction error of the victim node from
10ms to 60ms for the deflation attack and to 70ms for the
inflation attack.

Attack Pred. Error
None 10 ms

Deflation 60 ms
Inflation 70 ms

wjdefense 11 ms
(a) PredIctIOn Error

(b) Node Placement

Figure 4: Victim node error and placement for a
deflation and inflation attack.

Oscillation attacks. We demonstrate an oscillation at
tack in Fig. 5. In this scenario, the attacker sends the victim
nodes erroneous random positions selected over the coordi
nate space with a low error value, causing the victim nodes
to make multiple incorrect coordinate changes. As it can be
seen in Fig. 5(a), the system under non-attack conditions
has an easily identifiable structure in which nodes with small
RTTs between them converge into clusters in the coordinate
space. When the system is under attack as seen in Fig. 5(b),
the virtual coordinate system looses its structure and hence
also looses its ability to yield a low error embedding. This
attack also exemplifies the epidemic nature of such attacks.
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As correct nodes computing incorrect coordinates are later 
used as reference nodes for other nodes, the entire system 
destabilizes. 

(a) No attack (b) Oscillation attack 

Figure 5: Vir tua l  coordinate system node placement 
under a n  oscillation attack. 

Impact  of percentage of malicious nodes. We in- 
vestigate the effect of the number of malicious nodes on 
the accuracy of the system, by varying the percentage of 
malicious nodes. Each queried malicious node returns er- 
roneous metrics in the form of a random position selected 
over the coordinates {(x, y)lx, y E [-100000,100000]) and a 
low, non-zero error value. A malicious node also randomly 
delays its response between looms and lOOOms in order to 
induce greater variability in its responses in an attempt to 
expand the coordinate space. 

Fig. 2 presents the prediction error for the King data set 
for several percentages of malicious nodes. Under non-attack 
conditions, a node joining the coordinate system is initially 
placed at the origin of the logical coordinate space. As time 
passes, each node receives query responses from its reference 
set and is able to refine its position, allowing the system as 
a whole to achieve lower prediction error. Once the system 
stabilizes about halfway through the simulation, the sys- 
tem prediction error remains roughly constant. After this 
point, each of the nodes continues to refine its position, but 
the overall sum of these movements yields little change in 
the prediction error. While the system under attack may 
initially start with similar prediction errors since nodes are 
initially placed at the origin, it is never able to effectively 
refine its coordinates and achieve the desired low estimation 
error found in the non-attack scenario. As the percentage of 
attackers increases, the ability of the system to accurately 
estimate latency significantly degrades. 

Similar trends are also evident in Fig. 3, where the sys- 
tem can be seen to stabilize at a much higher relative error 
than the baseline of one. Having even a small percentage of 
attackers incurs double or triple the estimation error when 
compared with the non-malicious scenario. Malicious nodes 
have a greater negative impact on the lower error nodes, as 
can been seen from the higher relative errors in Fig. 3(a) and 
Fig. 3(b) than in Fig. 3(c). When a low error node moves 
in response to malicious data, it is prone to make large, er- 
roneous changes to its own position and experience a higher 
estimation error. 

Impact  of a t tacks  o n  different network topologies. 
We examine the impact of the attacks on different network 
topologies with different sizes and variabilities by using three 
representative data sets. Fig. 6 shows the relative error for 
these data sets when f=30% of the nodes are malicious. Each 
of the topologies is adversely effected, with the King data 
set (Fig. 6(a)) showing the greatest degradation in accuracy 
due to the fact its has more variation in RTT and is prone to 
excessive over and under estimation in response to an attack. 

Meridian (Fig. 6(b)) shows less degradation due to the fact 
it has less variation in its link latencies. AMP (Fig. 6(c)) 
shows more variability in the relative error due to its small 
size and frequent, large-scale node coordinate changes. 

4.3 Threshold Selection for Spatial-Temporal 
Outlier Detection 

An important aspect of our approach is selecting the tem- 
poral and spatial thresholds that allow to identify the poten- 
tially malicious query responses and eliminate them from the 
coordinate computation process. We consider the same at- 
tack scenario with a percentage of attackers as in Section 4.2 
to experimentally determine our outlier detection thresholds 
since it is one of the most difficult in which to identify mali- 
cious responses. When a malicious node selects a coordinate 
to respond with, the selected coordinate is from a range in 
which many altruistic nodes reside as well as the majority of 
malicious nodes actual coordinates lie within. The malicious 
nodes also report low but variable error inline with low-error 
altruistic nodes. These factors help disguise the malicious 
nodes actions and make them much harder to detect. 

We use a slightly modified version of the method proposed 
in Section 3.2. Specifically, we do not use latency in the out- 
lier detection due to the fact the latencies are predetermined 
in the simulator and thus show little variability. 

Temporal  threshold selection. We used a threshold 
of 4.0 for our temporal outlier detection to allow for the 
four features: remote error, local error, change in remote 
coordinates, and change in local coordinates to vary by at 
most one standard deviation over each feature from their 
temporally developed mean. The value was chosen based 
on the formula of the simplified Mahalanobis distance as in 
1401. 

Spatial threshold selection. The threshold for our out- 
lier detection can be mathematically derived as in [45, 461, 
assuming a multivariate Gaussian distribution for the met- 
r i c ~  vector. The contours of equal probability of this distrib- 
ution create a 2-dimensional ellipse and the outlier threshold 
reflects the probability of a vector being within the ellipse 
whose semi-axes are determined by k. The probability that 
a random vector lies within the ellipse increases with the 
size of k. Thus, for a given value of k the probability that a 
probed tuple lies within the ellipse can b; computed as: 

1 P = - + 2 ( 1  I k e Y f d y )  - E k e +  (6) 
JZr JZ;; 0 

We initially analytically selected a k of 1.5, in theory cre- 
ating a threshold through which 53% of the coordinate up- 
dates would successfully pass. Through empirical testing of 
over 200,000 coordinate updates over multiple simulations, 
we found an ellipse determined by this threshold will allow 
approximately 79% of the updates to pass. This variation 
from the mathematically derived value can be attributed to 
the fact that the used metrics do not form a perfect normal- 
ized distribution and have a smaller variance than assumed 
in Equation 6. A node may select smaller spatial threshold 
values for stronger security guarantees, with the drawback 
that it may find its coordinate less accurate to discarding 
valid u dates. 

Fig. 7 presents the relative error for the King data set in 
which the temporal outlier threshold was set to 4.0 and var- 
ious spatial outlier detection threshold were tested. Table 2 
presents corresponding false positive rate and median sys- 
tem prediction error for the different thresholds. Although 

As correct nodes computing incorrect coordinates are later
used as reference nodes for other nodes, the entire system
destabilizes.

(a) No attack (b) Oscillation attack

Figure 5: Virtual coordinate system node placement
under an oscillation attack.

Impact of percentage of malicious nodes. We in
vestigate the effect of the number of malicious nodes on
the accuracy of the system, by varying the percentage of
malicious nodes. Each queried malicious node returns er
roneous metrics in the form of a random position selected
over the coordinates {(x,Y)lx,y E [-100000, 100000]) and a
low, non-zero error value. A malicious node also randomly
delays its response between lOOms and 1000ms in order to
induce greater variability in its responses in an attempt to
expand the coordinate space.

Fig. 2 presents the prediction error for the King data set
for several percentages of malicious nodes. Under non-attack
conditions, a node joining the coordinate system is initially
placed at the origin of the logical coordinate space. As time
passes, each node receives query responses from its reference
set and is able to refine its position, allowing the system as
a whole to achieve lower prediction error. Once the system
stabilizes about halfway through the simulation, the sys
tem prediction error remains roughly constant. After this
point, each of the nodes continues to refine its position, but
the overall sum of these movements yields little change in
the prediction error. While the system under attack may
initially start with similar prediction errors since nodes are
initially placed at the origin, it is never able to effectively
refine its coordinates and achieve the desired low estimation
error found in the non-attack scenario. As the percentage of
attackers increases, the ability of the system to accurately
estimate latency significantly degrades.

Similar trends are also evident in Fig. 3, where the sys
tem can be seen to stabilize at a much higher relative error
than the baseline of one. Having even a small percentage of
attackers incurs double or triple the estimation error when
compared with the non-malicious scenario. Malicious nodes
have a greater negative impact on the lower error nodes, as
can been seen from the higher relative errors in Fig. 3(a) and
Fig. 3(b) than in Fig. 3(c). When a low error node moves
in response to malicious data, it is prone to make large, er
roneous changes to its own position and experience a higher
estimation error.

Impact of attacks on different network topologies.
We examine the impact of the attacks on different network
topologies with different sizes and variabilities by using three
representative data sets. Fig. 6 shows the relative error for
these data sets when f=30% of the nodes are malicious. Each
of the topologies is adversely effected, with the King data
set (Fig. 6(a)) showing the greatest degradation in accuracy
due to the fact its has more variation in RTT and is prone to
excessive over and under estimation in response to an attack.
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Meridian (Fig. 6(b)) shows less degradation due to the fact
it has less variation in its link latencies. AMP (Fig. 6(c))
shows more variability in the relative error due to its small
size and frequent, large-scale node coordinate changes.

4.3 Threshold Selection for Spatial-Temporal
Outlier Detection

An important aspect of our approach is selecting the tem
poral and spatial thresholds that allow to identify the poten
tially malicious query responses and eliminate them from the
coordinate computation process. We consider the same at
tack scenario with a percentage of attackers as in Section 4.2
to experimentally determine our outlier detection thresholds
since it is one of the most difficult in which to identify mali
cious responses. When a malicious node selects a coordinate
to respond with, the selected coordinate is from a range in
which many altruistic nodes reside as well as the majority of
malicious nodes actual coordinates lie within. The malicious
nodes also report low but variable error inline with low-error
altruistic nodes. These factors help disguise the malicious
nodes actions and make them much harder to detect.

We use a slightly modified version of the method proposed
in Section 3.2. Specifically, we do not use latency in the out
lier detection due to the fact the latencies are predetermined
in the simulator and thus show little variability.

Temporal threshold selection. We used a threshold
of 4.0 for our temporal outlier detection to allow for the
four features: remote error, local error, change in remote
coordinates, and change in local coordinates to vary by at
most one standard deviation over each feature from their
temporally developed mean. The value was chosen based
on the formula of the simplified Mahalanobis distance as in
[40].

Spatial threshold selection. The threshold for our out
lier detection can be mathematically derived as in [45, 46],
assuming a multivariate Gaussian distribution for the met
rics vector. The contours of equal probability of this distrib
ution create a 2-dimensional ellipse and the outlier threshold
reflects the probability of a vector being within the ellipse
whose semi-axes are determined by k. The probability that
a random vector lies within the ellipse increases with the
size of k. Thus, for a given value of k the probability that a
probed tuple lies within the ellipse can be computed as:

p = - ~7r +2(~ l\~dY) -j!ke _~2 (6)

We initially analytically selected a k of 1.5, in theory cre
ating a threshold through which 53% of the coordinate up
dates would successfully pass. Through empirical testing of
over 200,000 coordinate updates over multiple simulations,
we found an ellipse determined by this threshold will allow
approximately 79% of the updates to pass. This variation
from the mathematically derived value can be attributed to
the fact that the used metrics do not form a perfect normal
ized distribution and have a smaller variance than assumed
in Equation 6. A node may select smaller spatial threshold
values for stronger security guarantees, with the drawback
that it may find its coordinate less accurate to discarding
valid updates.

Fig. 7 presents the relative error for the King data set in
which the temporal outlier threshold was set to 4.0 and var
ious spatial outlier detection threshold were tested. Table 2
presents corresponding false positive rate and median sys
tem prediction error for the different thresholds. Although
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Table 2: False Positive Ra te  (Percentage) and  Me- 
dian Prediction Error  for Different Spatial Outlier 
Thresholds (King da ta  set)  
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higher thresholds provide a smaller false positive rate, they 
do induce a higher error rate. For example, as malicious 
nodes are introduced into the system, a threshold of 2.00 
maintains a low false positive rate with the trade-offs that 
the prediction error raises to 36ms, with 14ms more than 
the threshold of 1.5 which maintains a prediction error of 
22ms, when 30% of the nodes are malicious. We note that 
virtual coordinate systems are designed to be long-running 
service and hence the presence of a small percentage of false 
positive will not hinder the system. Based on the results in 
Fig. 7 and Table 2 we conclude that a spatial threshold of 
1.5 worked well for different percentages of attackers while 
having an acceptable false positive rate. 

--- 
-- , a 

4.4 Mitigating Attacks Against Virtual Coor- 
dinate Systems 

% Mal. 
Nodes 

0 

In this section we demonstrate the effectiveness of our 
defense mechanisms at mitigating the effects of malicious 
nodes and sustaining the usability of the system. 

Inflation a n d  deflation attacks. We begin by re-examining 
the inflation and deflation attacks against a victim node, this 

Spatial Outlier Threshold 
1.25 1 1.50 1 1.75 1 2.00 

28. 16ms 1 21. 16ms 1 17. 16ms 1 13. 16ms 

" 
time with a system using our defense mechanisms. The vic- 
tim node is able to identify and mitigate the effect of the 
malicious nodes, achieving a prediction error of llms, as 
shown in Fig. 4. The error is similar to a system under non- 
attack conditions ( lorn),  and nearly six times less than the 
unprotected system. 

Different percentage of malicious nodes. Fig. 7 
presents the relative error for the King data set for differ- 
ent percentages of malicious nodes. Note that for a spatial 
threshold of 1.5, our solution mitigates the system instabil- 
ity caused by the malicious nodes and even helps the sys- 
tem to stabilize at a more accurate local minimum than the 
initial protocol design to tolerate benign errors. While each 
node may occasionally accept erroneous data from malicious 
nodes due to a short temporal history or a skewed spatial 
history with updates from only a few nodes (as can be seen 

by the brief rise in error before coming back down), over 
time the system is able to avoid many malicious updates. 

Table 3: False Positive Ra te  (Percentage) a n d  Me- 
dian Prediction Error for Different D a t a  Sets Using 
A Spatial Outlier Threshold of 1.5 

Topology 

Different network topologies. Fig. 8 and Table 3 show 
the results for the King, Meridian and AMP topologies with 
and without outlier detection, where the attack scenario is 
the same as the one in Section 4.2. Applying the spatial 
threshold of 1.5 which was tested on the King data set, we 
find our solution is able to mitigate the system instability in 
all three data sets. The King data set (Fig. 8(a)) maintains 
a low relative error for various percentages of the attackers. 
We also note it is able to maintain a low system predic- 
tion error and low number of false positives (Table 3). In 
Table 3, the less the system prediction error increased with 
the number of attackers, the more resiliently the system per- 
formed under attack. Similar trends can also be observed 
for the Meridian data set (Fig. 8(b)). While our solution 
is able to offer protection to the smaller scale AMP data 
set from malicious nodes, it can be seen from Fig. 8(c) that 
larger percentages of malicious begin to overwhelm the sys- 
tem. This occurs since the percentage of malicious nodes is 
high (2 30%), each benign node will have many malicious 
reference set members. For example, given that 30% of the 
total nodes are malicious, the probability that at least 30% 
of the nodes in a reference set of AMP are also malicious is 
about 67%. This is nearly double the probability for King 
or Meridian under the same conditions due to AMP'S much 
smaller size (see Table 1). 

Malicious coalition size tolerated by outlier detec- 
tion. All defense mechanisms and protocols resilient to in- 
siders have limitations regarding the number of attackers 
they can tolerate. We analyze the number of malicious col- 
luding nodes that can be tolerated by our outlier detection 
mechanism. Table 4 presents the number of malicious nodes 
in a reference set which by colluding can influence the spa- 
tial centroid calculation enough to allow the attack types 
discussed in Section 2.3 to bypass the detection mechanism. 
Nearly twenty malicious nodes (or 30% of the reference set 
size) are required for nearly all of the identified attack types 
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% Mal Topology
Nodes Meridian AMP King

0 23,30ms 21, 18ms 21, 16ms
10 13,30ms 15,20ms 13, 18ms
20 12,32ms 14,25ms 15,21ms
30 11,40ms 12,36ms 11,22ms

by the brief rise in error before coming back down), over
time the system is able to avoid many malicious updates.

Table 3: False Positive Rate (Percentage) and Me
dian Prediction Error for Different Data Sets Using
A Spatial Outlier Threshold of 1.5

Different network topologies. Fig. 8 and Table 3 show
the results for the King, Meridian and AMP topologies with
and without outlier detection, where the attack scenario is
the same as the one in Section 4.2. Applying the spatial
threshold of 1.5 which was tested on the King data set, we
find our solution is able to mitigate the system instability in
all three data sets. The King data set (Fig. 8(a)) maintains
a low relative error for various percentages of the attackers.
We also note it is able to maintain a low system predic
tion error and low number of false positives (Table 3). In
Table 3, the less the system prediction error increased with
the number of attackers, the more resiliently the system per
formed under attack. Similar trends can also be observed
for the Meridian data set (Fig. 8(b)). While our solution
is able to offer protection to the smaller scale AMP data
set from malicious nodes, it can be seen from Fig. 8(c) that
larger percentages of malicious begin to overwhelm the sys
tem. This occurs since the percentage of malicious nodes is
high (?: 30%), each benign node will have many malicious
reference set members. For example, given that 30% of the
total nodes are malicious, the probability that at least 30%
of the nodes in a reference set of AMP are also malicious is
about 67%. This is nearly double the probability for King
or Meridian under the same conditions due to AMP's much
smaller size (see Table 1).

Malicious coalition size tolerated by outlier detec
tion. All defense mechanisms and protocols resilient to in
siders have limitations regarding the number of attackers
they can tolerate. We analyze the number of malicious col
luding nodes that can be tolerated by our outlier detection
mechanism. Table 4 presents the number of malicious nodes
in a reference set which by colluding can influence the spa
tial centroid calculation enough to allow the attack types
discussed in Section 2.3 to bypass the detection mechanism.
Nearly twenty malicious nodes (or 30% of the reference set
size) are required for nearly all of the identified attack types

hresholds (King data set)
% Mal Spatial Outlier Threshold
Nodes 1.25 1.50 1.75 2.00

0 28, 16ms 21, 16ms 17,16ms 13, 16ms
10 17,17ms 13, 18ms 10, 19ms 5,20ms
20 21, 18ms 15,21ms 7,23ms 6,26ms
30 27,20ms 11,22ms 1O,33ms 9,36ms

Table 2: False Positive Rate (Percentage) and Me
dian Prediction Error for Different Spatial Outlier
T

higher thresholds provide a smaller false positive rate, they
do induce a higher error rate. For example, as malicious
nodes are introduced into the system, a threshold of 2.00
maintains a low false positive rate with the trade-offs that
the prediction error raises to 36ms, with 14ms more than
the threshold of 1.5 which maintains a prediction error of
22ms, when 30% of the nodes are malicious. We note that
virtual coordinate systems are designed to be long-running
service and hence the presence of a small percentage of false
positive will not hinder the system. Based on the results in
Fig. 7 and Table 2 we conclude that a spatial threshold of
1.5 worked well for different percentages of attackers while
having an acceptable false positive rate.

4.4 Mitigating Attacks Against Virtual Coor
dinate Systems

In this section we demonstrate the effectiveness of our
defense mechanisms at mitigating the effects of malicious
nodes and sustaining the usability of the system.

Inflation and deflation attacks. We begin by re-examining
the inflation and deflation attacks against a victim node, this
time with a system using our defense mechanisms. The vic
tim node is able to identify and mitigate the effect of the
malicious nodes, achieving a prediction error of 11ms, as
shown in Fig. 4. The error is similar to a system under non
attack conditions (lOms), and nearly six times less than the
unprotected system.

Different percentage of malicious nodes. Fig. 7
presents the relative error for the King data set for differ
ent percentages of malicious nodes. Note that for a spatial
threshold of 1.5, our solution mitigates the system instabil
ity caused by the malicious nodes and even helps the sys
tem to stabilize at a more accurate local minimum than the
initial protocol design to tolerate benign errors. While each
node may occasionally accept erroneous data from malicious
nodes due to a short temporal history or a skewed spatial
history with updates from only a few nodes (as can be seen
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Table 4: Number  of Colluding Nodes Tolerated by 
Spatial Outlier Detection for Different Da ta  Sets Us- 
ing  A Spatial Outlier Threshold of 1.5 (Reference set 

third of the total number of nodes in the reference set. This 
bound is in line with the requirements of other methods that 
tolerate malicious insiders. 

System overhead. Our defense mechanisms do not in- 
troduce any extra link stress since they utilize information 
that is already being exchanged between nodes. The mem- 
ory utilization for spatial correlation requires maintaining 
the most recent u updates. In the case of the temporal 
outlier detection, the memory usage consists of maintain- 
ing the temporal centroid. By incrementally updating the 
centroid, we do not need to maintain the entire history for 
each probed node but only need to store the mean, standard 
deviation, and count for each of the metrics. The additional 
computational complexity is bound by the number of nodes 
in the reference set which is constant. The computation 
of the temporal outliers is a constant time calculation per- 
formed for each of the nodes when deciding to update its 
coordinate. The calculation of the spatial correlation is also 
computed in constant time. 
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across the three data sets. The deflation attack is more suc- 
cessful for AMP since the RTTs are less variable and the vir- 
tual coordinate system creates one main cluster (Fig. l(c)) 
that contains all of the nodes. This also explains why high 
percentages of malicious nodes (2 30%) were able to over- 
whelm our solution in the AMP scenarios. In these cases, 
the benign nodes were likely to have twenty or more mali- 
cious nodes in their reference set, which can cause the spatial 
centroid to shift and allow malicious updates to pass unde- 
tected. We conclude that our defense method works well 
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In this section, we review previous work in three areas:
Attacks in virtual coordinate systems. One of the

third of the total number of nodes in the reference set. This
bound is in line with the requirements of other methods that
tolerate malicious insiders.

System overhead. Our defense mechanisms do not in
troduce any extra link stress since they utilize information
that is already being exchanged between nodes. The mem
ory utilization for spatial correlation requires maintaining
the most recent u updates. In the case of the temporal
outlier detection, the memory usage consists of maintain
ing the temporal centroid. By incrementally updating the
centroid, we do not need to maintain the entire history for
each probed node but only need to store the mean, standard
deviation, and count for each of the metrics. The additional
computational complexity is bound by the number of nodes
in the reference set which is constant. The computation
of the temporal outliers is a constant time calculation per
formed for each of the nodes when deciding to update its
coordinate. The calculation of the spatial correlation is also
computed in constant time.

5. RELATED WORK

64)
Data Set

Attack Type King Meridian AMP
Inflation 19.7 21.6 19.8
Deflation 20.2 19.8 12.6

Oscillation 19.6 20.3 19.3

Table 4: Number of Colluding Nodes Tolerated by
Spatial Outlier Detection for Different Data Sets Us
ing A Spatial Outlier Threshold of 1.5 (Reference set
size is

across the three data sets. The deflation attack is more suc
cessful for AMP since the RTTs are less variable and the vir
tual coordinate system creates one main cluster (Fig. 1(c))
that contains all of the nodes. This also explains why high
percentages of malicious nodes G:: 30%) were able to over
whelm our solution in the AMP scenarios. In these cases,
the benign nodes were likely to have twenty or more mali
cious nodes in their reference set, which can cause the spatial
centroid to shift and allow malicious updates to pass unde
tected. We conclude that our defense method works well
when the size of the malicious coalition is smaller than one
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few systems to consider actual malicious behavior is the PIC 
[12] virtual coordinate system which uses a security test 
based on the triangle inequality. Any node which violates 
the triangle inequality above some margin of error is ignored 
and designated as malicious. However, it has been shown in 
[23, 24, 251 that RTT measurements often violate this in- 
equality and thus solutions based solely on such inequalities 
may degrade system performance when no attack is occur- 
ring. In 120, 211 the authors demonstrate the susceptibility 
of the Vivaldi to  attacks. However, no solution is proposed. 
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Coord ina te  s y s t e m  e r r o r  a n d  l a n d m a r k  selection. 
An important area of research orthogonal to  the security of 
the system is the minimization of error in the system. The 
accuracy of such systems is greatly effected by landmark 
placement for centralized schemes and neighbor selection in 
decentralized schemes. In [47], it is shown that a hierar- 
chical approach can lead to better performance over non- 
hierarchical solutions. Work such as [25] and [48] demon- 
strate shortcomings of current systems and propose possible 
new metrics and measurements t o  more accurately embed 
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the distance in the coordinate system. These areas provide 
interesting opportunities for further research since our work 
could possibly leverage these new metrics to  place further 
constraints on the attackers and create a more robust, ac- 
curate, and fault-tolerant system. 

Use  of  spa t ia l  a n d  t e m p o r a l  correlations. Recently 
the benefits of the Mahalanobis distance for statistical anom- 
aly detection have been demonstrated in the context of net- 
work intrusion detection [40,49]. In [49], the authors present 

- 
- 

- 20% MBIICIOUS NO Detecllon . 
20% Mallclous W/ Detectlon 

- 30% MaIrIouIs NO Detectlon - . 
30% Mal~clous w/  Detectlon * 

0- 

a comparative study of~detection schemes based on data 
mining techniques for network based intrusion detection. In 
[40] the authors discuss an unsupervised, payload-based net- 
work anomalv detector based on the Mahalanobis distance 
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Figure  8: Rela t ive  e r r o r  u n d e r  different percentage of a t t ackers  using a spa t ia l  ou t l i e r  th reshold  of 1.5 w i t h  
t h r e e  real-life I n t e r n e t  l a tency  d a t a  se t s  

which was used to detect attacks like worms. 
Spatial and temporal correlations were previously used 

in the context of network security. A notable work in this 
aspect is [44] where authors use temporal and spatial cor- 
relations to  trace back attacks and detect attack scenarios, 
using a large amount of information from intrusion detec- 
tion systems, firewalls, and different software logs. Unlike 
the  approach in [44], which was more general, our work fo- 
cuses on virtual coordinate systems. 

Correlations have also been used in wireless networks for 
the  detection of attacks [50, 511. The work in [50] uses corre- 
lations between different features to  identify attacks against 
wireless ad hoc routing protocols while the work in [51] 
shows how to augment sensor networks with spatio-temporal 

correlation t o  detect misinformation being injected into the 
sensor streams. In our work, the correlation is incorporated 
in-line with the coordinate computation and analysis is per- 
formed on real Internet data sets. 

6. CONCLUSION 
In this paper we studied attacks against the accuracy of 

virtual coordinate systems. We classified the attacks as c e  
ordinate inflation, deflation and oscillation and showed that 
even a small number of attackers can severely degrade c e  
ordinate accuracy due do the epidemic nature of the at- 
tacks. We proposed to use spatial-temporal correlation to  
perform outlier detection on metrics received from malicious 
nodes and eliminate them from the coordinate computa- 
tion process. By using analytical and empirical methods we 
found that a spatial temporal of 1.5 and a temporal thresh- 
old of 4 produced a low system error and maintained an 
acceptable false positive rate. Finally, we examined the lim- 
itations of outlier detection when a significant percentage of 
nodes are malicious and found that  the method starts de- 
grading when more than 30% of the nodes in a reference set 
form a malicious coalition. 

Future work includes analyzing the relation between ref- 
erence set size and the system size and the effect of our 
mechanisms on upper level applications using virtual coor- 
dinate systems to estimate network measurements. 
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few systems to consider actual malicious behavior is the PIC
[12] virtual coordinate system which uses a security test
based on the triangle inequality. Any node which violates
the triangle inequality above some margin of error is ignored
and designated as malicious. However, it has been shown in
[23, 24, 25] that RTT measurements often violate this in
equality and thus solutions based solely on such inequalities
may degrade system performance when no attack is occur
ring. In [20, 21] the authors demonstrate the susceptibility
of the Vivaldi to attacks. However, no solution is proposed.

Coordinate system error and landmark selection.
An important area of research orthogonal to the security of
the system is the minimization of error in the system. The
accuracy of such systems is greatly effected by landmark
placement for centralized schemes and neighbor selection in
decentralized schemes. In [47], it is shown that a hierar
chical approach can lead to better performance over non
hierarchical solutions. Work such as [25] and [48] demon
strate shortcomings of current systems and propose possible
new metrics and measurements to more accurately embed
the distance in the coordinate system. These areas provide
interesting opportunities for further research since our work
could possibly leverage these new metrics to place further
constraints on the attackers and create a more robust, ac
curate, and fault-tolerant system.

Use of spatial and temporal correlations. Recently
the benefits of the Mahalanobis distance for statistical anom
aly detection have been demonstrated in the context of net
work intrusion detection [40, 49]. In [49], the authors present
a comparative study of detection schemes based on data
mining techniques for network based intrusion detection. In
[40] the authors discuss an unsupervised, payload-based net
work anomaly detector based on the Mahalanobis distance
which was used to detect attacks like worms.

Spatial and temporal correlations were previously used
in the context of network security. A notable work in this
aspect is [44] where authors use temporal and spatial cor
relations to trace back attacks and detect attack scenarios,
using a large amount of information from intrusion detec
tion systems, firewalls, and different software logs. Unlike
the approach in [44], which was more general, our work fo
cuses on virtual coordinate systems.

Correlations have also been used in wireless networks for
the detection of attacks [50, 51]. The work in [50] uses corre
lations between different features to identify attacks against
wireless ad hoc routing protocols while the work in [51]
shows how to augment sensor networks with spatio-temporal

correlation to detect misinformation being injected into the
sensor streams. In our work, the correlation is incorporated
in-line with the coordinate computation and analysis is per
formed on real Internet data sets.

6. CONCLUSION
In this paper we studied attacks against the accuracy of

virtual coordinate systems. We classified the attacks as co
ordinate inflation, deflation and oscillation and showed that
even a small number of attackers can severely degrade co
ordinate accuracy due do the epidemic nature of the at
tacks. We proposed to use spatial-temporal correlation to
perform outlier detection on metrics received from malicious
nodes and eliminate them from the coordinate computa
tion process. By using analytical and empirical methods we
found that a spatial temporal of 1.5 and a temporal thresh
old of 4 produced a low system error and maintained an
acceptable false positive rate. Finally, we examined the lim
itations of outlier detection when a significant percentage of
nodes are malicious and found that the method starts de
grading when more than 30% of the nodes in a reference set
form a malicious coalition.

Future work includes analyzing the relation between ref
erence set size and the system size and the effect of our
mechanisms on upper level applications using virtual coor
dinate systems to estimate network measurements.
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