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Abstract 

Preserving privacy has become a crucial requirement for operating a business that manages personal data. 
Hippocratic databases have been proposed to answer this requirement through a database design that includes 
responsibility for the privacy of data as a founding tenet. We identzfy, study, and implement several privacy- preserving 
features that extend the previous work on Limiting Disclosure in Hippocratic databases. These features include the 
support of multiple policy versions, retention time, generalization hierarchies, and multiple SQL operations. The 
proposed features facilitate in making Hippocratic databases one step closer to fitting real-world scenarios. We present 
the design and implementation guidelines of each of the proposed features. The evaluation of the effect in performance 
shows that the cost of these extensions is small and scales well to large databases. 

1. Introduction 

Privacy preservation is an important requirement when personal data is collected, stored and published. One of the 
main challenges is to share information while complying with the data-owner privacy preferences. In recent years, several 
research directions have received substantial attention including Hippocratic databases, anonymization and generalization, 
privacy-preserving data mining, privacy rules languages, e.g., P3P and EPAL and fine-grained access control techniques in 
discretionary and mandatory access control. 

The notion of Hippocratic databases was introduced to incorporate privacy protection as a founding tenet in relational 
database systems [I] [2] [3] [9]. Ten guiding principles of Hippocratic databases and initial designs to provide limited 
disclosure and compliance audition were introduced. One key element of the Hippocratic database architecture is that it 
makes use of a centralized and standardized definition of privacy rules via a privacy policy. A privacy policy usually is 
born outside the database system and is expressed using natural language. In order to process this policy more effectively it 
is expressed using a standard privacy specification language, e.g., P3P [lo] or EPAL [I].]. The resulting version is 
translated into its Hippocratic database equivalent, i.e., the policy rules tables inside the database. The great value of this 
policy-driven approach is that companies that use the Hippocratic database have at their disposal an important tool to 
comply with privacy laws and guidelines, e.g., the Health Insurance Portability and Accountability Act (HIPAA), or the 
EOCD Guidelines in Europe. 

Even though the previous work in the area of limiting disclosure in Hippocratic databases has discussed the main 
guidelines and proposed an initial architecture, there are still several problems that need to be addressed before a 
Hippocratic database can support efficiently the requirements in real-world systems. Among these problems are the 
inadequate support of policy retention time, the lack of support of policy versions that could allow a company to use 
several versions of a policy simultaneously, the lack of an effective arid flexible way to ensure that users only use purposes 
and recipients that they are supposed to use, and a way to restrict the access not only for the SELECT operation but also 
for all the DML operations. 

Along with Hippocratic databases, there has been a significant amount of research in the area of anonymization and 
generalization [4] [5] [6] [7]. The main goal is to transform a database table into its anonymized form that allows users to 
get useful information that does not single out data about individuals (owners of the data) who want their data to remain 
private. Two main notions of anonymization that have been proposed are: k-anonymity [4] [5] and 1-diversity [6]. 
Although, both Hippocratic databases and anonymization are important areas in the effort to achieve effective mechanisms 
to ensure privacy in database systems, to the best of our knowledge, no much work has been done to integrate their results. 
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1. Introduction

Privacy preservation is an important requirement when personal data is collected, stored and published. One of the
main challenges is to share information while complying with the data-owner privacy preferences. In recent years, several
research directions have received substantial attention including Hippocratic databases, anonymization and generalization,
privacy-preserving data mining, privacy rules languages, e.g., P3P and EPAL and fine-grained access control techniques in
discretionary and mandatory access control.

The notion of Hippocratic databases was introduced to incorporate privacy protection as a founding tenet in relational
database systems [1] [2] [3] [9]. Ten guiding principles of Hippocratic databases and initial designs to provide limited
disclosure and compliance audition were introduced. One key element of the Hippocratic database architecture is that it
makes use of a centralized and standardized definition of privacy rules via a privacy policy. A privacy policy usually is
born outside the database system and is expressed using natural language. In order to process this policy more effectively it
is expressed using a standard privacy specification language, e.g., P3P [10] or EPAL [11]. The resulting version is
translated into its Hippocratic database equivalent, i.e., the policy rules tables inside the database. The great value of this
policy-driven approach is that companies that use the Hippocratic database have at their disposal an important tool to
comply with privacy laws and guidelines, e.g., the Health Insurance Portability and Accountability Act (HIPAA), or the
EOCD Guidelines in Europe.

Even though the previous work in the area of limiting disclosure in Hippocratic databases has discussed the main
guidelines and proposed an initial architecture, there are still several problems that need to be addressed before a
Hippocratic database can support efficiently the requirements in real-world systems. Among these problems are the
inadequate support of policy retention time, the lack of support of policy versions that could allow a company to use
several versions of a policy simultaneously, the lack of an effective and flexible way to ensure that users only use purposes
and recipients that they are supposed to use, and a way to restrict the access not only for the SELECT operation but also
for all the DML operations.

Along with Hippocratic databases, there has been a significant amount of research in the area of anonymization and
generalization [4] [5] [6] [7]. The main goal is to transform a database table into its anonymized form that allows users to
get useful information that does not single out data about individuals (owners of the data) who want their data to remain
private. Two main notions of anonymization that have been proposed are: k-anonymity [4] [5] and I-diversity [6].
Although, both Hippocratic databases and anonymization are important areas in the effort to achieve effective mechanisms
to ensure privacy in database systems, to the best of our knowledge, no much work has been done to integrate their results.
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Figure 1: Unified original architecture for limiting disclosure 

1.1. Contributions 

We integrate the different design features related to limiting disclosure in Hippocratic databases proposed in previous 
work, and present a unified architecture to support limited disclosure. We take this unified architecture as our starting 
point to study various extensions. These extensions solve problems that are faced while implementing Hippocratic 
databases that support real-world privacy requirements. 

The extensions covered are: 

Mapping purpose, recipient, and data type of a policy with database roles 
Support of multiple DML operations 
Support of retention time 
Support of policy versions 
Support of generalization hierarchies 

We implement these extensions and present the study of their effect on database performance. 

The rest of the paper is organized as follows. Section 2 presents the unified original architecture for limiting disclosure. 
Section 3 presents the realization of the various extensions cited above. Section 4 presents the evaluation of their effect in 
performance. Finally, Section 5 contains concluding remarks. 

2. Unified original architecture for limiting disclosure 

We integrate the design elements of previous work [2] [9] [ l ]  into a unified architecture to support limited disclosure in 
Hippocratic databases presented in Figure 1. In this figure, P stands for purpose, R for recipient, PolicyDataType for data 
type of a P3P-like policy, T for table, C for column or attribute, CT for choice table, and CC for choice column. 
Furthermore, data type makes reference to the data categories used in a privacy policy, e.g., PatientDiseaseInfo, not to the 
regular database data types. The remaining part of this section explains the main components of this architecture. 

Privacy policy. The document that specifies how an organization, e.g., a company, can use data associated to the 
data owner. It states the purposes, recipients and retention time of the different pieces of data. A privacy policy is 
expressed using a privacy specification language, e.g., P3P [lo] or EPAL [ l  11. In this work, we assume the use of a 
P3P-like language. 
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Figure 1: Unified original architecture for limiting disclosure

1.1. Contributions

We integrate the different design features related to limiting disclosure in Hippocratic databases proposed in previous
work, and present a unified architecture to support limited disclosure. We take this unified architecture as our starting
point to study various extensions. These extensions solve problems that are faced while implementing Hippocratic
databases that support real-world privacy requirements.

The extensions covered are:

• Mapping purpose, recipient, and data type of a policy with database roles
• Support of multiple DML operations
• Support of retention time
• Support of policy versions
• Support of generalization hierarchies

We implement these extensions and present the study of their effect on database performance.

The rest of the paper is organized as follows. Section 2 presents the unified original architecture for limiting disclosure.
Section 3 presents the realization of the various extensions cited above. Section 4 presents the evaluation of their effect in
performance. Finally, Section 5 contains concluding remarks.

2. Unified original architecture for limiting disclosure

We integrate the design elements of previous work [2] [9] [1] into a unified architecture to support limited disclosure in
Hippocratic databases presented in Figure 1. In this figure, P stands for purpose, R for recipient, PolicyDataType for data
type of a P3P-like policy, T for table, C for column or attribute, CT for choice table, and CC for choice colurrm.
Furthermore, data type makes reference to the data categories used in a privacy policy, e.g., PatientDiseaseInfo, not to the
regular database data types. The remaining part of this section explains the main components of this architecture.

• Privacy policy. The document that specifies how an organization, e.g., a company, can use data associated to the
data owner. It states the purposes, recipients and retention time of the different pieces of data. A privacy policy is
expressed using a privacy specification language, e.g., P3P [10] or EPAL [11]. In this work, we assume the use of a
P3P-like language.



Select name, phone, address from PATIENT; 
Purpose = Treatment; Recipient =Nurses 

Select name, phone, address from 
(Select pno,name, NULL AS phone, 

CASE WHEN 
EXISTS (select address-option from optionsgatient 

where patient.pno=optionsgatient.pno 
AND optionsgatient.addres-option=TRUE) 

THEN address ELSE NULL END 
AS address 

From patient) 

Figure 2: Example of query modification 

Drug <& drug-name> 

DrugAdm <pno, dno, dosage, admgeriod-begin,admgeriod-end> 

DiseasePatient <pno,dname> 

Figure 3: Example database schema 

Privacy cntalog. These tables drive the translation of the P3P-like policy into the database privacy policy. Table 
Datatypes stores the mapping between the data types used in the privacy policy and the database tables and 
attributes associated with them. Table OwnerChoices stores the table and attribute names where the individual opt- 
idopt-out choices are stored for a combination of purpose-recipient-data type if a choice is available for this 
combination; this table is known as the choice table. The attribute MapCol in OwnerChoices is used to match each 
tuple in the table associated to the data type with the corresponding tuple in the choice table. For example, the 
attribute patient ID could be used to match each tuple in DiseasePatient (table associated to data type 
PatientDiseaseInfo) with the choice table PatientChoices that stores individual preferences. 

Policy translator. Translates the privacy policy expressed in the P3P-llke language into the privacy metadata tables 
in the database. 

Policy metadata. It is the equivalent of the privacy policy inside the database. It contains the tables Rules and 
ChoiceConditions. Table Rules contains tuples of the form (P,R,T,C,CCOND); each tuple represents a rule that 
grants access to the table T and column C for the purpose P, and Recipient R. The optional condition CCOND 
restricts this access in case an opt-idopt-out choice is available for that combination. Table Choiceconditions 
stores the SQL statement (similar to WHERE condition statement) for each condition used in Rules. 

Query modzjkation. Before execution, a query is modified into its privacy-preserving form: each table in the FROM 
clause is transformed into a privacy-preserving view that checks the privacy metadata rules and data-owner 
preferences. Figure 2 gives the result of modifying a query when the privacy policy does not allow access to the 
attribute Phone and only opt-in access over the attribute Address for the purpose Treatment and the recipient 
Nurses. 

3. Extending the architecture for limiting disclosure 

This section describes each of the extensions on the initial design for limited disclosure in Hippocratic databases 
introduced in section 2. The extensions are independent but are presented here incrementally. Figure 3 gives the database 
schema that is used in the examples. 

Select name, phone, address from PATIENT;
Purpose = Treatment; Recipient = Nurses

Select name, phone, address from
(Select pno,name, NULL AS phone,

CASE WHEN
EXISTS (select address_option from options---.patient

where patient.pno=options---'patient.pno
AND options---'patient.addres_option=TRUE)

THEN address ELSE NULL END
AS address

From patient)

Figure 2: Example of query modification

Patient <l1!JQ, name, birth, sex, address, phone>

Drug <dnQ, drug_name>

DrugAdm <pno, dno, dosage, adm---'period_begin,adm---'period_end>

DiseasePatient <pno,dname>

Figure 3: Example database schema

• Privacy catalog. These tables drive the translation of the P3P-like policy into the database privacy policy. Table
Datatypes stores the mapping between the data types used in the privacy policy and the database tables and
attributes associated with them. Table OwnerChoices stores the table and attribute names where the individual opt­
in/opt-out choices are stored for a combination of purpose-recipient-data type if a choice is available for this
combination; this table is known as the choice table. The attribute MapCol in OwnerChoices is used to match each
tuple in the table associated to the data type with the corresponding tuple in the choice table. For example, the
attribute patient ID could be used to match each tuple in DiseasePatient (table associated to data type
PatientDiseaseInfo) with the choice table PatientChoices that stores individual preferences.

• Policy translator. Translates the privacy policy expressed in the P3P-like language into the privacy metadata tables
in the database.

• Policy metadata. It is the equivalent of the privacy policy inside the database. It contains the tables Rules and
ChoiceConditions. Table Rules contains tuples of the form (P,R,T,C,CCOND); each tuple represents a rule that
grants access to the table T and column C for the purpose P, and Recipient R. The optional condition CCOND
restricts this access in case an opt-in/opt-out choice is available for that combination. Table ChoiceConditions
stores the SQL statement (similar to WHERE condition statement) for each condition used in Rules.

• Query modification. Before execution, a query is modified into its privacy-preserving form: each table in the FROM
clause is transformed into a privacy-preserving view that checks the privacy metadata rules and data-owner
preferences. Figure 2 gives the result of modifYing a query when the privacy policy does not allow access to the
attribute Phone and only opt-in access over the attribute Address for the purpose Treatment and the recipient
Nurses.

3. Extending the architecture for limiting disclosure

This section describes each of the· extensions on the initial design for limited disclosure in Hippocratic databases
introduced in section 2. The extensions are independent but are presented here incrementally. Figure 3 gives the database
schema that is used in the examples.



3.1 Mapping purpose, recipient and data type of a policy with database roles 

The initial design for limiting disclosure translates P3P-like rules of the form (purpose, recipient, data type, opt-idopt- 
out condition) into database privacy rules of the form (purpose, recipient, table, column, choice condition). When a user 
issues a query we need to determine the purpose and recipient of this access. Purpose and recipient are elements used to 
specify privacy policies even in its natural language form; consequently, there is not necessarily a one-to-one mapping 
between recipients and database roles or users. The mapping will depend on the specific way users are organized and the 
relationships between the roles and the different entities that will receive the data. 

There are different ways in which the purpose and recipient can be identified when a user issues a query: (1) The user 
could explicitly state the purpose and recipient along with the query; this requires trust on the users. (2) Dynamically 
infer the purpose and recipient fiom the context of the application [2]. A downside of this approach is that it is difficult to 
capture all possibilities. (3) Register every application or procedure with a purpose and recipient, which becomes a 
difficult task for complex applications and procedures. (4) The user specifies the purpose and the system validates it based 
on user attributes, e.g., active roles, job position and location [12]. 

We propose to use the relationship between purpose-recipient-data type and database roles during privacy policy 
translation. We accomplish this using an additional privacy catalog table RoleAccess that records this mapping. This 
approach is flexible enough to represent any relationship between the elements of a policy rule and the database roles 
associated to them. The mapping can be viewed as a way to specify the database roles that can access specific sections of 
the data using a particular combination of purpose and recipient. The policy translator gets the (purpose, recipient, data 
type) triplet from each P3P-like rule and creates a database privacy rule for each role associated with this triplet in 
RoleAccess. The database rule will have the following structure: (DBRole, purpose, recipient, table, column, choice 
condition). The query modification module considers only the rules defined for the roles of the user issuing the query and 
the purpose-recipient specified with this query. If a user is not allowed to use a certain combination of purpose-recipient, 
the query processing is terminated. This extension allows us to enforce the following example restrictions: 

User Mary should use only recipient Doctors while user Tom should use only recipient Nurses when accessing table 
Patients for the purpose Treatment. 

Given two database roles that are allowed to use purpose Treatment and recipient Doctors, e.g., doctorsl and 
sysadmin, allow sysadmin to access all the columns of table Patient, and doctorsl a subset of them. 

With the extension described in the next section, we will be able to enforce restrictions like: 

Allow user Mary, using purpose Treatment and recipient Doctors, to access the table Drugs only to perform 
SELECT but not UPDATE. 
Given two database roles that are allowed to use purpose Treatment and recipient Doctors, e.g., doctorsl and 
sysadmin, allow sysadmin to perform SELECT and UPDATE over table Patient but only SELECT to doctorsl. 

3.2 Support of multiple DML operations 

The original architecture for limiting disclosure ensures that access using the SELECT command will respect the 
privacy rules and user preferences. In this section, we extend the ideas used for SELECT to other DML operations, i.e., 
INSERT, UPDATE, and DELETE. 

To support privacy restrictions for other DML operations, we extend the structure of the privacy catalog table 
RoleAccess to (P,R,PolicyDataType,DBRole, Operations). Operations is a bitmap in which each bit is associated to each 
DML operation (bitO=SELECT, bitl=INSERT, bit2=UPDATE, bit3= DELETE). When the value of a bit is 1 the 
operation is allowed, otherwise it is restricted. For example the tuples (Treatment, Nurses,DrugAdm,nurse,OOOl) and 
(Treatment,Nurses, DrugAdm,nurse-practitioner,Olll), mean that if the privacy policy contains rules that give access to 
drug administration data for purpose Treatment and recipient Nurses, the database roles that should receive this access are 
nurse and nurse-practitioner, additionally the role nurse will receive only access to view the data while the role nurse- 
practitioner will receive access to view and modify it. 

3.1 Mapping purpose, recipient and data type of a policy with database roles

The initial design for limiting disclosure translates P3P-like rules of the form (purpose, recipient, data type, opt-in/opt­
out condition) into database privacy rules of the form (purpose, recipient, table, column, choice condition). When a user
issues a query we need to determine the purpose and recipient of this access. Purpose and recipient are elements used to
specify privacy policies even in its natural language form; consequently, there is not necessarily a one-to-one mapping
between recipients and database roles or users. The mapping will depend on the specific way users are organized and the
relationships between the roles and the different entities that will receive the data.

There are different ways in which the purpose and recipient can be identified when a user issues a query: (I) The user
could explicitly state the purpose and recipient along with the query; this requires trust on the users. (2) Dynamically
infer the purpose and recipient from the context of the application [2]. A downside of this approach is that it is difficult to
capture all possibilities. (3) Register every application or procedure with a purpose and recipient, which becomes a
difficult task for complex applications and procedures. (4) The user specifies the purpose and the system validates it based
on user attributes, e.g., active roles, job position and location [12].

We propose to use the relationship between purpose-recipient-data type and database roles during privacy policy
translation. We accomplish this using an additional privacy catalog table RoleAccess that records this mapping. This
approach is flexible enough to represent any relationship between the elements of a policy rule and the database roles
associated to them. The mapping can be viewed as a way to specify the database roles that can access specific sections of
the data using a particular combination of purpose and recipient. The policy translator gets the (purpose, recipient, data
type) triplet from each P3P-like rule and creates a database privacy rule for each role associated with this triplet in
RoleAccess. The database rule will have the following structure: (DBRole, purpose, recipient, table, column, choice
condition). The query modification module considers only the rules defined for the roles of the user issuing the query and
the purpose-recipient specified with this query. If a user is not allowed to use a certain combination of purpose-recipient,
the query processing is terminated. This extension allows us to enforce the following example restrictions:

• User Mary should use only recipient Doctors while user Tom should use only recipient Nurses when accessing table
Patients for the purpose Treatment.

• Given two database roles that are allowed to use purpose Treatment and recipient Doctors, e.g., doctors 1 and
sysadmin, allow sysadmin to access all the columns of table Patient, and doctors1 a subset of them.

With the extension described in the next section, we will be able to enforce restrictions like:

• Allow user Mary, using purpose Treatment and recipient Doctors, to access the table Drugs only to perform
SELECT but not UPDATE.

• Given two database roles that are allowed to use purpose Treatment and recipient Doctors, e.g., doctors I and
sysadmin, allow sysadmin to perform SELECT and UPDATE over table Patient but only SELECT to doctors 1.

3.2 Support of multiple DML operations

The original architecture for limiting disclosure ensures that access using the SELECT command will respect the
privacy rules and user preferences. In this section, we extend the ideas used for SELECT to other DML operations, i.e.,
INSERT, UPDATE, and DELETE.

To support privacy restrictions for other DML operations, we extend the structure of the privacy catalog table
RoleAccess to (P,R,PolicyDataType,DBRole, Operations). Operations is a bitmap in which each bit is associated to each
DML operation (bitO=SELECT, bit1=INSERT, bit2=UPDATE, bit3= DELETE). When the value of a bit is I the
operation is allowed, otherwise it is restricted. For example the tuples (Treatment~ Nurses,DrugAdm,nurse,OOOI) and
(Treatment,Nurses, DrugAdm,nurse-practitioner,OIII), mean that if the privacy policy contains rules that give access to
drug administration data for purpose Treatment and recipient Nurses, the database roles that should receive this access are
nurse and nurse-practitioner, additionally the role nurse will receive only access to view the data while the role nurse­
practitioner will receive access to view and modify it.



The policy translator will produce privacy rules of the form (DBRole,P,R,T,c,CCOND,Operations) and this 
information will be used when processing DML operations. The processing of the SELECT operation is similar to the one 
implemented in the original design. The main difference is that when the process requires checking if a rule has been 
defined for purpose P, recipient R, table T and column C, it, also ensures that the operations granted with this rule include 
SELECT. For other DML operations, a privacy checking process is performed based on the algorithms provided in Figure 
4. An operation can be allowed, denied or allowed with limited effect; in this last case, the effect of an update operation is 
restricted to the subset of the data to which a user has access to. As in previous work in limiting disclosure in Hippocratic 
databases, we use NULL to represent a prohibited value; the advantages and disadvantages of this use are presented in [2]. 
For the INSERT operation, we treat NULL as a special value that users can always insert independently of the privacy 
restrictions; this will allow a user who only has access to insert on certain columns of a table, to insert a tuple with values 
for these columns and NULL for the remaining columns. Naturally, if there is a column that is NOT NULL and the user 

INSERT 
Input: INSERT INTO t l (col-list) VALUES (value-list) 
For each column in col-list in which value-list[i]fNULL 

status =checkPermission(purpose, recipient, dbRole, t l ,  col-list[i], 
Insert, out conditionchoice) 

case status //O=prohibited, l=allowed without condition, 
//2=allowed without condition 

0: return -1 
1: break //continue with the next column 
2: If conditionchoice does not depend on tl 

Check if conditionchoice is fulfilled 
Execute (unmodified) INSERT command 
If operation was successful 

We insert in the choice tables that depend on tl 

UPDATE 
Input: UPDATE t 1 SET col-l=newValue-l [, ...I W E R E  conditions 
translatedCols="" 
For each column in col-list 

status =checkPermission(purpose, recipient, dbRole, t l ,  col-list[i], 
Update, out conditionchoice); 

case status //O=prohibited, l=allowed without condition, 
//2=allowed without condition 

0: break //update will not affect this col 
1: //update will affect all rows of this col 

translatedCols += col-i + "=" + newvalue-i + "," 
break 

2: //update will affect the allowed rows of this col 
translatedcols += col-i + "=" + "CASE W E N  " + 
conditionchoice + " THEN " + newvalue-i + 

" ELSE " + col-i + " END,"; 
Execute "UPDATE " + tl + " SET " + translatedcols +conditions; 

DELETE 
Input: DELETE FROM tl WHERE conditions 
col-list = set of all columns in t l  
newConditions="" 
For each column in col-list 

status =checkPermission(purpose, recipient, dbRole, t l ,  col-list[i], 
Delete, out conditionchoice); 

case status //O=prohibited, l=allowed without condition, 
//2=allowed without condition 

case 0: return -I;// abort 
case 1: break;//there is access to the whole column 
case 2: //delete will affect the allowed rows of this col 

newconditions += conditionchoice + " AND "; 
Execute "DELETE FROM " + tl + conditions + newconditions; 
If operation was successful 

Remove rows in choice tables that depend on tl 

Figure 4: Algorithms for other DML operations 

The policy translator will produce privacy rules of the form (DBRole,P,R,T,c,CCOND,Operations) and this
information will be used when processing DML operations. The processing of the SELECT operation is similar to the one
implemented in the original design. The main difference is that when the process requires checking if a rule has been
defined for purpose P, recipient R, table T and column C, it also ensures that the operations granted with this rule include
SELECT. For other DML operations, a privacy checking process is performed based on the algorithms provided in Figure
4. An operation can be allowed, denied or allowed with limited effect; in this last case, the effect of an update operation is
restricted to the subset of the data to which a user has access to. As in previous work in limiting disclosure in Hippocratic
databases, we use NULL to represent a prohibited value; the advantages and disadvantages of this use are presented in [2].
For the INSERT operation, we treat NULL as a special value that users can always insert independently of the privacy
restrictions; this will allow a user who only has access to insert on certain columns of a table, to insert a tuple with values
for these columns and NULL for the remaining columns. Naturally, if there is a column that is NOT NULL and the user

INSERT
Input: INSERT INTO tI (coUist) VALUES (value_list)
For each column in col_list in which valueJist[i]iNULL

status ~checkPerrnission(purpose, recipient, dbRole, tl, coUist[i],
Insert, out conditionChoice)

case status //O~rohibited, I~allowed without condition,
//2~allowed without condition

0: return-I
I: break //continue with the next column
2: If conditionChoice does not depend on tl

Check if conditionChoice is fulfilled
Execute (unmodified) INSERT command
If operation was successful

We insert in the choice tables that depend on tl

UPDATE
Input: UPDATE tl SET coU~newValue_1 [, ...] WHERE conditions
translatedCols~""

For each column in col_list
status ~checkPerrnission(purpose, recipient, dbRole, tl, coUist[i],

Update, out conditionChoice);
case status //O~rohibited, I~allowed without condition,

//2~allowed without condition
0: break //update will not affect this col
I: //update will affect all rows of this col

translatedCols +~ col_i + "~,, + newValueJ + ","
break

2: //update will affect the allowed rows of this col
translatedCols~ coU + "~,, + "CASE WHEN" +
conditionChoice +" THEN" + newValuej +

" ELSE" + colJ +" END,";
Execute "UPDATE" + tl + " SET" + translatedCols +conditions;

DELETE
Input: DELETE FROM tl WHERE conditions
coUist ~ set of all columns in tI
newConditions~""

For each column in colJist
status =checkPerrnission(purpose, recipient, dbRole, tl, coUist[i],

Delete, out conditionChoice);
case status //O~rohibited, I=allowed without condition,

//2=allowed without condition
case 0: return -I;// abort
case I: break;//there is access to the whole column
case 2: //delete will affect the allowed rows of this col

newConditions~ conditionChoice + " AND ";
Execute "DELETE FROM" + tl + conditions + newConditions;
Ifoperation was successful

Remove rows in choice tables that depend on tl

Figure 4: Algorithms for other DML operations



does not have access to insert on it, he will be unable to insert in this table. For UPDATE, the user needs to have access to 
all the columns being updated independently of the new values; the modified command will apply the changes only to 
those columns that the user has access to according to the privacy rules, and the rows he has access to according to the 
data-owner preferences. For DELETE, the user needs to have permission over all the columns of the table; additionally, 
the translated command will delete only the rows that the user has access to according to data-owner preferences. The 
resulting architecture after applying the modifications introduced in the two first extensions is presented in Figure 5. The 
new or modified components are in bold. 

3.3 Support of retention time 

Limited retention is a principle of Hippocratic databases and a key element of privacy policies. It ensures that data is 
retained only as long as necessary for the fulfillment of the purposes for which it has been collected. The original 
architecture of the Hippocratic database [I]  suggests the implementation of the Data Retention Manager which basically 
deletes all data items that have outlived their purpose. The same work recognizes that completely forgetting some 
information once it is stored in a database without affecting recovery is non-trivial. To the best of our knowledge no 
further mechanism to support retention time was proposed in the context of Hippocratic databases. 

Our approach to support retention time is similar to the one used to support opt-inlopt-out preferences. The advantage of 
this approach is that it does notrequire deleting the information after the allowed retention time. Additionally, using SQL 
conditions constitutes a flexible mechanism to express complex retention restrictions. P3P defines the element Retention as 
part of privacy rules. This element can have several predefined values: no-retention, stated-purpose, legal-requirement, 
business-practices, and indefinitely [lo]. The time length associated to each of these values depends on the specific 
privacy policy and organization. Furthermore, for values, e.g., stated-purpose or legal-requirement, the time length can 
depend also on the purpose associated to each privacy rule. We store this mapping between P3P retention value, purpose 
and actual time length in the privacy catalog table Retention. 

We assume there is a table, referred to as primary table, which stores basic information of the data owner and where 
each row is associated with exactly one data owner. Our support of retention time makes use of the Signature-Date table in 
which we store the policy signature date for each data owner. During policy translation, if the retention element is included 
in a P3P rule, the values of the retention and purpose elements are used to determine the retention time length tl. The 
translator also builds a condition that ensures that the date in which a command is executed falls in the period between the 
privacy signature date sd, which will probably be different for each data owner, and sd+tl. We store the reference to this 
condition in the new column DCOND of the table Rules and the actual condition in the table DateConditions. Figure 6 
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Figure 5: Architecture after first two extensions 

does not have access to insert on it, he will be unable to insert in this table. For UPDATE, the user needs to have access to
all the columns being updated independently of the new values; the modified command will apply the changes only to
those columns that the user has access to according to the privacy rules, and the rows he has access to according to the
data-owner preferences. For DELETE, the user needs to have permission over all the columns of the table; additionally,
the translated command will delete only the rows that the user has access to according to data-owner preferences. The
resulting architecture after applying the modifications introduced in the two first extensions is presented in Figure 5. The
new or modified components are in bold.

3.3 Support of retention time

Limited retention is a principle of Hippocratic databases and a key element of privacy policies. It ensures that data is
retained only as long as necessary for the fulfillment of the purposes for which it has been collected. The original
architecture of the Hippocratic database [1] suggests the implementation of the Data Retention Manager which basically
deletes all data items that have outlived their purpose. The same work recognizes that completely forgetting some
information once it is stored in a database without affecting recovery is non-trivial. To the best of our knowledge no
further mechanism to support retention time was proposed in the context of Hippocratic databases.

Our approach to support retention time is similar to the one used to support opt-in/opt-out preferences. The advantage of
this approach is that it does not require deleting the information after the allowed retention time. Additionally, using SQL
conditions constitutes a flexible mechanism to express complex retention restrictions. P3P defines the element Retention as
part of privacy rules. This element can have several predefined values: no-retention, stated-purpose, legal-requirement,
business-practices, and indefinitely [10]. The time length associated to each of these values depends on the specific
privacy policy and organization. Furthermore, for values, e.g., stated-purpose or legal-requirement, the time length can
depend also on the purpose associated to each privacy rule. We store this mapping between P3P retention value, purpose
and actual time length in the privacy catalog table Retention.

We assume there is a table, referred to as primary table, which stores basic information of the data owner and where
each row is associated with exactly one data owner. Our support ofretention time makes use of the Signature-Date table in
which we store the policy signature date for each data owner. During policy translation, if the retention element is inCluded
in a P3P rule, the values of the retention and purpose elements are used to determine the retention time length tl. The
translator also builds a condition that ensures that the date in which a command is executed falls in the period between the
privacy signature date sd, which will probably be different for each data owner, and sd+tl. We store the reference to this
condition in the new column DCOND of the table Rules and the actual condition in the table DateConditions. Figure 6
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Select name, phone, address from PATIENT; 
Purpose = Treatment; Recipient = Nurses 

n 

Select name, phone, address from 
(Select pno,name, NULL AS phone, 

CASE WHEN 
EXISTS (select address-option from optionsgatient where 
patient.pnc=optionsgatient.pno and 
optionsgatient.addres-option=TRUE) AND 
current-date<=((Select signature-date from 
patient-signature-date where 
patient-signature-date.pno=patient.pno) + integer '90') 

THEN address ELSE NULL END 
AS address 

From patient) 

Figure 6: Example of limited retention 
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Figure 7: Architecture after adding support for limited retention 

gives a query and its modified form that ensures limited disclosure and limited retention. Figure 7 gives the incremental 
architecture after adding this feature. 

3.4 Support of policy versions 

The study in [8] found that 80% of organizations use a different privacy policy for employees and clients, 42% have 
multiple policies for clients, and 75% require support of policy versions. To the best of our knowledge, there is little work 
about how we could support multiple versions and multiple policies in the context of Hippocratic databases. The different 
cases of multiple versions and multiple policies requirements can be analyzed as follows: 

Multiple policies. Company Al3C needs to support two policies, P1 for patients and P2 for doctors. Solution: We 
translate P1 and P2 independently. The metadata will contain the rules of both policies and we will have two 
primary tables. 

Single policy, multiple data owners. Company Al3C uses policy P for patients and doctors. Patients and doctors are 
different entities in the database. Solution: We translate P twice. During the first time, the privacy catalog considers 
the tables associated to patients; during the second one, the tables associated to doctors. 

Select name, phone, address from PATIENT;
Purpose = Treatment; Recipient = Nurses

Select name, phone, address from
(Select pno,name, NULL AS phone,

CASE WHEN
EXISTS (select address_option from options--'patient where
patient.pno=options--.patient.pno and
options--'patient.addres_option=TRUE) AND
current_date<=«Select signature_date from
patient_signature_date where
patient_signature_date.pno=patient.pno) + integer '90')

THEN address ELSE NULL END
AS address

From patient)

Figure 6: Example of limited retention
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gives a query and its modified form that ensures limited disclosure and limited retention. Figure 7 gives the incremental
architecture after adding this feature.

3.4 Support of policy versions

The study in [8] found that 80% of organizations use a different privacy policy for employees and clients, 42% have
multiple policies for clients, and 75% require support of policy versions. To the best of our knowledge, there is little work
about how we could support multiple versions and multiple policies in the context of Hippocratic databases. The different
cases of multiple versions and multiple policies requirements can be analyzed as follows:

• Multiple policies. Company ABC needs to support two policies, PI for patients and P2 for doctors. Solution: We
translate PI and P2 independently. The metadata will contain the rules of both policies and we will have two
primary tables.

• Single policy, multiple data owners. Company ABC uses policy P for patients and doctors. Patients and doctors are
different entities in the database. Solution: We translate P twice. During the first time, the privacy catalog considers
the tables associated to patients; during the second one, the tables associated to doctors.



Multiple policies over time. A policy is updated for old and new patients. Solution: We translate initially the 
original policy. When it is updated, we delete the metadata and translate the updated policy. We have one primary 
table. 

Multiple versions. a) The policy for patients is updated only for new patients. b) Two policy versions for different 
groups of patients are simultaneously used. Solution: Since this case will require the use of two policies associated 
with the same database entity Patient, this case is not directly supported by the frameworks for limiting disclosure 
proposed in previous work. The remaining part of this section presents our extension to support multiple policy 
versions. 

In our approach we get the policy ID and version from the P3P-like policy. We assume that the version of a policy is 
part of its ID. Also, each row of a primary table being used by more than one policy will have a label i.e., extra column, 
with the ID of the active policy for this row. Each data owner has one active policy at any time, but different data owners 
can have different policy versions. The new privacy catalog table Policies contains information of the policies supported 
by the system, and the primary and signature-date tables they should use. This information is used during policy translation 
and each generated rule is stored with its corresponding Policy ID. During query modification, the system performs the 
regular test to determine if there is access for the specific combination of database role, purpose, recipient, data table and 
attribute. In the presence of multiple versions, there will be more than one rule for this combination and the system will 
add another level of CASE statement to process the versions accordingly. Figure 8 shows an example of this query 
modification. We need to propagate the association with policy versions to other tables that store information about data 
owners; we could add another column to store the version, or we could implement the query modification module such that 
each privacy-preserving view joins the corresponding primary table and consequently uses its version information. In this 
work, we use the first approach. Figure 9 shows the incremental design with support for multiple policy versions. 

3.5 Support of generalization hierarchies in Hippocratic databases 

Hippocratic databases and anonymization are two important areas in the effort to achieve effective mechanisms to 
ensure privacy in database systems. Unfortunately, little work has been done to integrate their results. In the design for 
limited disclosure presented so far the support of opt-idopt-out choices is very limited; data owners can only give either 
full access to the data or deny it completely; there is not the option to give access to a generalized version of the data. We 
propose the study of the integration of Hippocratic databases and anonyrmzatiodgeneralization techniques. The ideas we 
present in this section represent only the first step in this integration path. We present here a design to introduce 
generalization hierarchies into the limiting disclosure framework for Hippocratic databases. 

The first step is to identify the data elements that will be generalized and build a generalization hierarchy for each of 
them. The number of levels of a generalization tree could be different for different elements. The first level represents the 
actual value of the data element; level two represents the first degree of generalization, and so on. The information of the 
tree is loaded by the DBA into the metadata table Generalization. Figure 10 gives an example of a generalization tree and 
some tuples of the table Generalization corresponding to this tree. The content of the choice tables for the data elements 

Select name, phone, address from PATIENT; 
Purpose = Treatment; Recipient =Nurses 

n 

Select name, phone, address from 
(Select pno,name, NULL AS phone, 

CASE WHEN policyversion=Ol THEN address 
WHEN policyversion=02 THEN 

CASE WHEN 
EXISTS (select address-option from optionsqatient 

where patient.pno=optionsqatient.pno 
AND optionsqatient.addres_option=TRUE) 

THEN address ELSE NULL END 
END AS address 

From ~atient) 

Figure 8: Example of limiting disclosure with multiple policy versions 

• Multiple policies over time. A policy is updated for old and new patients. Solution: We translate initially the
original policy. When it is updated, we delete the metadata and translate the updated policy. We have one primary
table.

• Multiple versions. a) The policy for patients is updated only for new patients. b) Two policy versions for different
groups of patients are simultaneously used. Solution: Since this case will require the use of two policies associated
with the same database entity Patient, this case is not directly supported by the frameworks for limiting disclosure
proposed in previous work. The remaining part of this section presents our extension to support multiple policy
versions.

In our approach we get the policy ID and version from the P3P-like policy. We assume that the version of a policy is
part of its ID. Also, each row of a primary table being used by more than one policy will have a label i.e., extra column,
with the ID of the active policy for this row. Each data owner has one active policy at any time, but different data owners
can have different policy versions. The new privacy catalog table Policies contains information of the policies supported
by the system, and the primary and signature-date tables they should use. This information is used during policy translation
and each generated rule is stored with its corresponding Policy ID. During query modification, the system performs the
regular test to determine if there is access for the specific combination of database role, purpose, recipient, data table and
attribute. In the presence of multiple versions, there will be more than one rule for this combination and the system will
add another level of CASE statement to process the versions accordingly. Figure 8 shows an example of this query
modification. We need to propagate the association with policy versions to other tables that store information about data
owners; we could add another column to store the version, or we could implement the query modification module such that
each privacy-preserving view joins the corresponding primary table and consequently uses its version information. In this
work, we use the first approach. Figure 9 shows the incremental design with support for multiple policy versions.

3.5 Support of generalization hierarchies in Hippocratic databases

Hippocratic databases and anonymization are two important areas in the effort to achieve effective mechanisms to
ensure privacy in database systems. Unfortunately, little work has been done to integrate their results. In the design for
limited disclosure presented so far the support of opt-inlopt-out choices is very limited; data owners can only give either
full access to the data or deny it completely; there is not the option to give access to a generalized version of the data. We
propose the study of the integration of Hippocratic databases and anonymizationlgeneralization techniques. The ideas we
present in this section represent only the first step in this integration path. We present here a design to introduce
generalization hierarchies into the limiting disclosure framework for Hippocratic databases.

The first step is to identify the data elements that will be generalized and build a generalization hierarchy for each of
them. The number of levels of a generalization tree could be different for different elements. The first level represents the
actual value of the data element; level two represents the first degree of generalization, and so on. The information of the
tree is loaded by the DBA into the metadata table Generalization. Figure 10 gives an example of a generalization tree and
some tuples of the table Generalization corresponding to this tree. The content of the choice tables for the data elements

Select name, phone, address from PATIENT;
Purpose = Treatment; Recipient = Nurses

Select name, phone, address from
(Select pno,name, NULL AS phone,

CASE WHEN policyversion=OI THEN address
WHEN policyversion=02 THEN

CASE WHEN
EXISTS (select address_option from optionsyatient

where patient.pno=optionsyatient.pno
AND optionsyatient.addres_option=TRUE)

THEN address ELSE NULL END
END AS address

From patient)

Figure 8: Example of limiting disclosure with multiple policy versions
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Figure 10: Example of a generalization hierarchy 

that can be generalized will not be Boolean anymore. They will store instead, the level of generalization that the data 
owner wants for the element. A value of 0 means that access is not allowed, 1 means full access and values greater than 1 
will allow the disclosure of generalized values. The query modification module will use a generalization function that will 
convert a data value into its generalized form. The form of the CASE statement will change to process each possible 
choice value. Figure 11 gives an example of query modification with support of generalization hierarchies. Figure 12 
shows the incremental design after adding support of generalization hierarchies. 

4. Experiments 

We implement the extensions presented in Section 3 as a middleware application that performs the functionality of the 
SQL modification module. In this section, we present the results of the performance study of the various extensions, 
analyzing the overhead, scalability, and effect of record filtering associated to them. The cost considered for selection 
queries is the query execution and retrieval time. We ignore the cost of query rewriting. For update queries, we consider 
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that can be generalized will not be Boolean anymore. They will store instead, the level of generalization that the data
owner wants for the element. A value of 0 means that access is not allowed, 1 means full access and values greater than 1
will allow the disclosure of generalized values. The query modification module will use a generalization function that will
convert a data value into its generalized form. The form of the CASE statement will change to process each possible
choice value. Figure 11 gives an example of query modification with support of generalization hierarchies. Figure 12
shows the incremental design after adding support of generalization hierarchies.

4. Experiments

We implement the extensions presented in Section 3 as a middleware application that performs the functionality of the
SQL modification module. In this section, we present the results of the performance study of the various extensions,
analyzing the overhead, scalability, and effect of record filtering associated to them. The cost considered for selection
queries is the query execution and retrieval time. We ignore the cost of query rewriting. For update queries, we consider



Select P.Name, DP.dName from Patient P, DiseasePatient DP where 
P.pid=DP.pid 

Purpose = Research; Recipient = Lab 

& 
Select P.Name, D.dName from 

(Select pno from Patient) AS P 
(Select pno, 

CASE (select diseaseName-option from options-disease 
where DiseasePatient.pno=options-disease.pno) as level 

WHEN 0 THEN NULL 
WHEN 1 THEN dname 
ELSE generalize("DiseasePatient","dName",ame,level) 
END AS dname 

From DiseasePatient) AS DP 
where P.pno=DP.pno and DP.dno=D.dno 

Figure 11: Example of limiting disclosure with generalization hierarchies 

I DML Operation + Purpose + Recipient I 
I Query Processor I I 

-- 
Query Modification I 

(Modifies Select, Insert,Update,Delete) 
Privacy 1 

'T' Policv 
Regular Query Processing 
(Processes modified queries ) 

Storage System 

Privacv Metadata 
Yxy %\& 

chojces A 1 1q Signature 
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both the privacy-checking and execution times. We do not include the evaluation of generalization hierarchies because this 
extension is part of an ongoing work whose results will be presented in the hture. 

4.1. Tests configuration 

We use a synthetic database based on the Wisconsin Benchmark [13] with attributes presented in Table 1. We use 
PostgreSQL 8.1, set the shared buffer to 25MB and leave all the other configuration parameters with their default values. 
The tests are performed in a 3.2 GHz Pentium IV machine with 1.5GB of memory and running Microsoft Windows XP as 
operating system. The results presented in this section consider the average of the warm performance numbers having 95% 

Select P.Name, DP.dName from Patient P, DiseasePatient DP where
P.pid=DP.pid

Purpose = Research; Recipient = Lab

I Select P.Name, D.dName from
(Select pno from Patient) AS P
(Select pno,

CASE (select diseaseName_option from options_disease
where DiseasePatient.pno=options_disease.pno) as level

WHEN 0 THEN NULL
WHEN I THEN dname
ELSE generalize("DiseasePatient","dName",dname,level)
END AS dname

From DiseasePatient) AS DP
where P.pno=DP.pno and DP.dno=D.dno

Figure 11: Example of limiting disclosure with generalization hierarchies
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both the privacy-checking and execution times. We do not include the evaluation of generalization hierarchies because this
extension is part of an ongoing work whose results will be presented in the future.

4.1. Tests configuration

We use a synthetic database based on the Wisconsin Benchmark [13] with attributes presented in Table 1. We use
PostgreSQL 8.1, set the shared buffer to 25MB and leave all the other configuration parameters with their default values.
The tests are performed in a 3.2 GHz Pentium IV machine with 1.5GB of memory and running Microsoft Windows XP as
operating system. The results presented in this section consider the average of the warm performance numbers having 95%



confidence and an error margin less than %5%. As discussed in [2], there are several ways in which we could store the 
choice columns. We use the external single approach since it was found to be an effective compromise. With this 
approach, we store all the choice columns in a single external table. We also use an external table to store the policy 
signature dates and assume the use of two versions in the experiments that use multiple version support. 

4.2. Performance evaluation 

4.2.1. Overhead and scalability of Select queries. To measure the overhead cost of the different extensions we consider 
a worst-case scenario to run simple Select queries. The queries select all the records of the data table i.e., application 
selectivity = loo%, and nothing is filtered by the data-owner preferences or the retention time restrictions, i.e., choice 
selectivity and retention selectivity are 100%. This scenario incurs in all the cost of privacy checking but does not get any 
benefit from record filtering. Figure 13 gives the overhead cost of the various extensions for different sizes of the data 
tables. We can observe that the costs of the extensions and combinations of them are sinall and scale well when the 
database size increases. 

4.2.2. Effect of record filtering on select queries. When the choice selectivity and retention selectivity are less than 
loo%, select queries perform significantly better than in the worst case scenario and in several cases even better than the 
original queries. Figure 14 and 15 give the execution time of select queries when we change the choice selectivity and the 
retention selectivity, respectively. The results are presented for different combinations of the implemented extensions. For 
this experiment, we use tables with one million records and application selectivity of 100%. The performance 
improvement is significant for values of selectivities smaller than 50%. We expect even better results when choice and 
retention filtering are considered simultaneously. 

The performance results for update queries follow those for select queries. The cost of privacy checking is relatively more 
significant in the case of update queries because of the reduced cost of update operations when modifying few tuples, and 
the extra cost of maintaining the choice and signature-date tables. For example, inserting a tuple in the primary table 
requires also inserting the corresponding tuples in choice and signature-date tables. This cost is compensated by the 
performance gains associated with the operations that do not need to be executed because their privacy check fails. 

5. Conclusions and future work 

We identified, studied and implemented several privacy-preserving features that extend the previous work on Limiting 
Disclosure in Hippocratic databases. The features studied in detail are: mapping purpose, recipient, and data type of a 
policy with database roles, support of multiple DML operations, support of retention time, support of policy versions, and 
support of generalization hierarchies. We discussed why we need these extensions and the limited or non-existing support 
of these features in previous work. Our performance analysis showed that the overhead of the implemented extensions is 

Table 1: Benchmark attributes specification and choice columns 

confidence and an error margin less than ±5%. As discussed in [2], there are several ways in which we could store the
choice columns. We use the external single approach since it was found to be an effective compromise. With this
approach, we store all the choice columns in a single external table. We also use an external table to store the policy
signature dates and assume the use of two versions in the experiments that use multiple version support.

4.2. Performance evaluation

4.2.1. Overhead and scalability of Select queries. To measure the overhead cost of the different extensions we consider
a worst-case scenario to run simple Select queries. The queries select all the records of the data table i.e., application
selectivity = 100%, and nothing is filtered by the data-owner preferences or the retention time restrictions, i.e., choice
selectivity and retention selectivity are 100%. This scenario incurs in all the cost of privacy checking but does not get any
benefit from record filtering. Figure 13 gives the overhead cost of the various extensions for different sizes of the data
tables. We can observe that the costs of the extensions and combinations of them are small and scale well when the
database size increases.

4.2.2. Effect of record filtering on select queries. When the choice selectivity and retention selectivity are less than
100%, select queries perform significantly better than in the worst case scenario and in several cases even better than the
original queries. Figure 14 and 15 give the execution time of select queries when we change the choice selectivity and the
retention selectivity, respectively. The results are presented for different combinations of the implemented extensions. For
this experiment, we use tables with one million records and application selectivity of 100%. The performance
improvement is significant for values of selectivities smaller than 50%. We expect even better results when choice and
retention filtering are considered simultaneously.

The performance results for update queries follow those for select queries. The cost of privacy checking is relatively more
significant in the case of update queries because of the reduced cost of update operations when modifying few tuples, and
the extra cost of maintaining the choice and signature-date tables. For example, inserting a tuple in the primary table
requires also inserting the corresponding tuples in choice and signature-date tables. This cost is compensated by the
performance gains associated with the operations that do not need to be executed because their privacy check fails.

5. Conclusions and future work

We identified, studied and implemented several privacy-preserving features that extend the previous work on Limiting
Disclosure in Hippocratic databases. The features studied in detail are: mapping purpose, recipient, and data type of a
policy with database roles, support of multiple DML operations, support of retention time, support of policy versions, and
support of generalization hierarchies. We discussed why we need these extensions and the limited or non-existing support
of these features in previous work. Our performance analysis showed that the overhead of the implemented extensions is

Table 1: Benchmark attributes specification and choice columns

Column Datatype Description
UniQue2 Int Primary key, Sequential order
Unique I Int Candidate key, random order
Onepercent Int Values 0-99, random order
Tenpercent Int Values 0-9, random order
Twentypercent Int Values 0-4, random order
Fiftvpercent Int Values 0-1, random order
strinsrul 52-byte str Unique character string
stringu2 52-byte str Unique character string
ChoiceO Int Values 0-1 1% = I), indexed
Choicel Int Values 0-1 10% = I), indexed
Choice2 Int Values 0-1 50% = I), indexed
Choice3 Int Values 0-1 90% = I), indexed
Choice4 Int Values 0-1 100% = I), indexed
SignatureDate Date Values d-d+99, random order
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small and scale well to large databases. We believe that our contribution in this work represents a step in the challenging 
path of finding efficient ways to engineer the Hippocratic database and answer real world privacy requirements. Some 
paths for hture work are: the integration of results in the area of anonyrnization into the Hippocratic database, the design 
of privacy-preserving mechanisms to support Export and Import operations maintaining privacy definitions, the support of 
Mandatory Access Control via Hippocratic databases, and the study of performance of different ways to organize the 
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small and scale well to large databases. We believe that our contribution in this work represents a step in the challenging
path of finding efficient ways to engineer the Hippocratic database and answer real world privacy requirements. Some
paths for future work are: the integration of results in the area of anonymization into the Hippocratic database, the design
of privacy-preserving mechanisms to support Export and Import operations maintaining privacy definitions, the support of
Mandatory Access Control via Hippocratic databases, and the study of performance of different ways to organize the



metadata (normalized versus de-normalized tables, storing conditions as strings versus storing the components used in 
conditions in compact attributes and building the conditions on-the-fly, indexes over privacy catalog and metadata, etc.). 
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