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Safety Impacts of Design Exceptions
Introduction  

Indiana Department of Transportation's 
(INDOT) highway design criteria are considered to 
be essential to ensure the safety of the motoring 
public. However, for a variety of reasons, situations 
arise where exceptions to standard-design criteria 
are requested and accepted after review. Although 
these decisions are carefully thought out, the safety 
impacts of various design-criteria exceptions are 
not well understood.  The intent of this research is 
to rigorously study design exceptions in Indiana 
and to perform a careful statistical analysis of the 
impact that such exceptions have on roadway 
safety. 

INDOT currently has a hierarchy of three 
levels of highway design criteria. Level One 
includes those highway design elements which 
have been judged to be the most critical indicators 
of highway safety and serviceability.  There are 14 
Level-One design criteria with minimum standards 
being met for: design speed; lane widths; shoulder 
widths; bridge width; bridge structural capacity; 
horizontal curvature; superelevation transition 
lengths, stopping-sight distance on horizontal and 
vertical curves; maximum grade; superelevation 
rate; minimum vertical clearance; accessibility for 
the handicapped; and bridge rail safety.  Level-Two 
design criteria are judged to be important to safety 
and serviceability but are not considered as critical 
as Level One.  Factors in Level Two criteria 
include: roadside safety elements; the obstruction-
free zone; median and side slopes; access control; 
acceleration lane length; deceleration lane length; 
shoulder cross slope; auxiliary lane and shoulder 
widths; minimum grade for drainage; minimum 
level-of-service criteria; parking lane width; two-

way left-turn width; and critical length of grade.  
Finally, Level Three design criteria include all 
other design criterion not listed in levels one and 
two. This research focuses on the impact of design 
exceptions within the most important Level-One 
category, which includes the most critical 
indicators of highway safety and serviceability.   

To conduct the study, detailed 
information was gathered on 36 Level One design 
exceptions granted by INDOT between 1998 and 
2003.  Of these design exceptions, 32 were near 
bridges and 4 were along regular roadway 
intervals. To compare with similar roadways that 
were not granted design exceptions, 71 “control” 
roadway segments (those containing no design 
exceptions) were carefully chosen for their 
proximity and design similarities to those roadway 
segments that were granted design exceptions (63 
control bridges and 8 control roadway intervals).  
Accident data were then meticulously matched 
(using location information) such that all police-
reported accidents that occurred from January 1, 
2003 to December 31, 2007 (a 5-year period).  A 
total of 5,889 accidents occurred on these 107 
roadway segments over the 5-year period (roughly 
11 reported accidents per roadway segment per 
year). 

Using these data, detailed statistical 
analyses of the frequency and severity of accidents 
were undertaken (using negative binomial 
regression and multinomial logit models) to 
determine if the design exceptions had any 
significant impact on the frequency or severity of 
accidents. 

Findings  

For the analysis of the severity of 
accidents, the injury level sustained by the most 
severely injured individual in the accident is used.  
Three options are considered: no injury (property 

damage only), injury and fatality.  Detailed 
accident data are used to estimate multinomial 
logit models that estimate the probability of the 
three injury outcomes.  The use of such a 
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multivariate analysis is necessary to control for all 
factors that may affect injury severity (age of 
driver, gender of driver, number of occupants, 
etc.).  A simple statistical comparison of the 
average accident severities on roadway segments 
with and without design exceptions would mask 
differences in driver and vehicle characteristics 
that may occur from one roadway segment to the 
next and potentially produce erroneous 
conclusions. 

The multivariate analysis of accident 
severity (using both standard multinomial logit 
models and mixed multinomial logit models) 
found that the presence of a design exception had 
no statistically significant effect on the severity of 
accidents.  In addition, a statistical test was 
conducted that showed that when separate 
severity models were estimated for roadway 

segments with and without design exceptions, no 
statistically significant difference was found.  It is 
therefore concluded that previously granted 
design exceptions have not statistically affected 
safety in terms of accident severity. 

For the analysis of the frequency of 
accidents, a negative binomial count model is 
used to estimate the number of accidents 
occurring over the five year period (2003-2007 
inclusive) on individual roadway segments.  It is 
found that the presence of a design exception had 
no statistically significant effect (this time on the 
likelihood of an accident) on the frequency of 
accidents.  However, the statistical assessment 
showed that the process generating accident 
frequencies on segments with and without design 
exceptions was statistically different. 

Implementation  

The statistical analysis provided in the 
project finds that previously granted Level One 
design exceptions have not had a statistically 
significant impact on the frequency or severity of 
accidents.  Although the sample of Level One 
design exceptions available for this study was 
small, some insight into potential critical roadway 
elements was possible (as discussed in the report).  
With regard to guiding future Level One design-
exception decisions, using previous design 
exceptions as “precedents” would be the best way 
to proceed (broad policy statements are not yet 
possible given the limited number design-

exceptions available for statistical analysis).  Thus 
it is recommended that INDOT maintain a 
database of Level One design exceptions and that 
a case by case comparison with previously granted 
design exceptions guide future design-exception 
decisions.  In addition, in terms of guiding 
decisions as to which design exceptions may be 
potentially problematic, the individual models 
estimated in this report do provide some guidance 
as does other recently published research using 
Indiana and national accident data.  A case by case 
comparison with past research findings should also 
be considered when granting design exceptions. 

Contacts  

For more information: 
Prof. Fred L. Mannering 
Principal Investigator 
School of Civil Engineering 
Purdue University 
West Lafayette IN 47907 
Phone: (765) 496-7913 
Fax:     (765) 496-7996 
E-mail: flm@purdue.edu 
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ABSTRACT 

Compliance to the Indiana Department of Transportation's (INDOT) highway 

design criteria is considered essential to ensure the roadway safety. However, 

for a variety of reasons, situations arise where exceptions to standard-design 

criteria are requested and accepted after review. This research explores the 

impact that design exceptions have on the accident severity and accident 

frequency in Indiana. Data on accidents at 36 roadway sites with design 

exceptions and 71 without design exceptions are used in this research, and 

appropriate statistical models are estimated for the severity and frequency of 

these accidents. The results of the detailed statistical modeling show that 

presence of design exceptions, approved by INDOT, do not have a statistically 

significant adverse effect on the frequency or severity of accidents. While the 

data are too limited to investigate the effect of specific design exceptions (the 

number of Level One design exceptions granted is a modest number), the 

research herein shows that INDOT procedures for granting design exceptions 

have been sufficiently strict to avoid adverse safety consequences and that 

current practices should be continued.  To guide future Level One design 

exceptions, the detailed statistical findings of this research effort suggest that 

using previous design exceptions as “precedents” would be the best way to 

proceed.  To this end, it is recommended that INDOT maintain a database of 

Level One design exceptions.   
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CHAPTER 1. INTRODUCTION 

Indiana Department of Transportation's (INDOT) highway design criteria are 

considered to be essential to ensure the safety of the motoring public. However, 

for a variety of reasons, situations arise where exceptions to standard-design 

criteria are requested and accepted after review. Common reasons for 

considering design exceptions include: impact to the natural environment; social 

or right-of-way impacts; preservation of historic or cultural resources; sensitivity 

to context or accommodating community values; and construction or right-of-

way costs (Federal Highway Administration, 1999; American Association of 

State Highway and Transportation Officials, 2004).  Because of the potential of 

serious safety consequences and tort liability, the process for granting design 

exceptions is very closely monitored by state and federal highway agencies, 

although practices and standards for granting design exceptions can vary 

significantly from state to state (National Cooperative Research Program, 2003).  

 

Although these design-exception decisions are carefully thought out, the safety 

impacts of various design-criteria exceptions are not well understood.  Over the 

years, there have been numerous research efforts that have attempted to 

evaluate the safety impacts of design exceptions.  For example, Agent et al. 

(2002) studied the effect of design exceptions on crash rates in the state of 

Kentucky.  They found that the most common design exception was for a design 

speed lower than the posted speed limit followed by a lower than standard sight 

distance, curve radius or shoulder width.  With an average of about 39 design 

exceptions per year in Kentucky, they concluded (based on observations of 

crash rates) that design exceptions did not result in projects with high crash 
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rates relative to average statewide rates.  Unfortunately, in this and many other 

studies, the amount of data available (which is limited because of the small 

number of design exceptions granted per year and the highly detailed roadway 

and accident information required) has made it difficult to develop statistically 

defensible models to assess the safety impacts of design exceptions in a 

multivariate framework.  

 

Given the scarcity of design-exception data and associated accident data, some 

have attempted to infer the effects of design exceptions from statistical models 

that have been estimated on a simple cross section of roadway segments in an 

effort to uncover the impact of specific design features (shoulder width, median 

presence, etc.) on the frequency of accidents and the severity of accidents in 

terms of resulting injuries.  Common statistical approaches to determine the 

relationship between roadway characteristics and accident frequencies include: 

Poisson and negative binomial models (Jones et al., 1991; Shankar et al., 1995; 

Hadi et al., 1995; Poch and Mannering, 1996; Milton and Mannering, 1998; 

Abdel–Aty and Radwan, 2000; Savolainen and Tarko, 2005; Lord, 2006; Wang 

and Abdel-Aty, 2008; Lord and Park, 2008); zero–inflated negative binomial 

models (Shankar et al., 1997; Carson and Mannering, 2001; Lee and 

Mannering, 2002); negative binomial with random effects models (Shankar et 

al., 1998); Conway–Maxwell–Poisson generalized linear models (Lord et al., 

2008); negative binomial with random parameters (Anastasopoulos and 

Mannering, 2009) and dual-state negative binomial Markov switching models 

(Malyshkina et. al, 2009a).  For the severity of accidents, quantifying the effects 

of roadway characteristics on vehicle-occupant injuries have been undertaken 

using a wide variety of models including multinomial logit models, dual-state 

multinomial logit models, nested logit models, mixed logit models and ordered 

probit models (O’Donnell and Connor, 1996; Shankar and Mannering, 1996; 

Shankar et al., 1996; Duncan et al., 1998; Chang and Mannering, 1999; Carson 

and Mannering, 2001; Khattak, 2001; Khattak et al., 2002; Kockelman and 
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Kweon, 2002; Lee and Mannering, 2002; Abdel-Aty, 2003; Kweon and 

Kockelman, 2003; Ulfarsson and Mannering, 2004; Yamamoto and Shankar, 

2004; Khorashadi et al., 2005; Lee and Abdel-Aty, 2005; Eluru and Bhat, 

2007;Savolainen and Mannering, 2007; Milton et al., 2008; Malyshkina and 

Mannering, 2009). 

 

However, attempting to infer the impact of design exceptions from general 

roadway-segment data is potentially problematic because roadway segments 

that are granted design exceptions are likely to be a non-random sample of the 

roadway-segment population (segments may have common special features 

that make them more likely to require a design exception).  If this is the case, 

roadway segments prone to design exceptions will share unobserved effects 

and the relationship of their characteristics to the frequency and severity of 

accidents may be significantly different than the relationship on the non-design-

exception roadway-segment sample.  One way of resolving this problem is to 

gather a sample of sufficient size that includes roadway segments with design 

exceptions and similar roadway segments without design exceptions (not a 

random sample of roadway segments without design exceptions), and to use 

random parameter models to account for possible unobserved heterogeneity.  

The intent of this current study is to use such a sample and modeling approach 

to closely assess the effect of design exceptions on the frequency and severity 

of accidents. 

 

INDOT currently has a hierarchy of three levels of highway design criteria. Level 

One includes those highway design elements which have been judged to be the 

most critical indicators of highway safety and serviceability.  There are 14 Level-

One design criteria with minimum standards being met for: design speed; lane 

widths; shoulder widths; bridge width; bridge structural capacity; horizontal 

curvature; superelevation transition lengths, stopping-sight distance on 

horizontal and vertical curves; maximum grade; superelevation rate; minimum 
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vertical clearance; accessibility for the handicapped; and bridge rail safety.  

Level-Two design criteria are judged to be important to safety and serviceability 

but are not considered as critical as Level One.  Factors in Level Two criteria 

include: roadside safety elements; the obstruction-free zone; median and side 

slopes; access control; acceleration lane length; deceleration lane length; 

shoulder cross slope; auxiliary lane and shoulder widths; minimum grade for 

drainage; minimum level-of-service criteria; parking lane width; two-way left-turn 

width; and critical length of grade.  Finally, Level Three design criteria include all 

other design criterion not listed in levels one and two.  

 

In the current study we focus on the impact of (Level-One) design exceptions.  

Among the questions that we answer is whether or not design exceptions have 

significantly affected the frequency and severity of accidents.  We consider data 

on individual accidents and use the methodologies of statistical modeling within 

the framework of count data and discrete outcome models. In this study we use 

the following two statistical modeling approaches: 

1. In the first approach we will focus on severity of accidents. The idea is to 

study a relationship between the presence of design exceptions and the 

probability of various accident severity levels (determined by the injury 

level sustained by the most critically injured individual in the accident). 

This will be done by estimation of standard and mixed multinomial 

statistical models for accident severity. 

2. In the second approach we will undertake a study of accident frequency 

study. We will estimate standard and mixed negative binomial statistical 

models for the five-year accident frequency (which is the cumulative 

number of accidents occurred over the considered five-year period). 

Then we will test whether the presence of design exceptions has any 

effect on accident frequency. 

To reveal the effect of design exceptions on safety, while modeling accident 

severity and frequency, we will control for other possible confounding effects, 
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such as road characteristics, weather conditions, driver characteristics, and so 

on. The use of the above two accident modeling approaches will provide 

important new insights and sufficient statistical evidence on the effect of design 

exceptions on roadway safety.  

 

This report is organized as follows. In the next chapter we will briefly describe 

the methodology of statistical modeling used in our study. Detailed descriptions 

and simple descriptive statistics of the accident data used are given in 

CHAPTER 3. In CHAPTER 4 we consider influence of design exceptions on 

accident severity. In CHAPTER 5 we consider influence of design exceptions on 

accident frequency. Finally, in CHAPTER 6 we summarize and discuss the main 

results of our study.  
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CHAPTER 2. METHODOLOGY OF STATISTICAL MODELING 

2.1. Multinomial logit models of accident severity 

First, let us consider accident severity, which is a non-quantitative discrete 

outcome of traffic accidents. The most widely used statistical models for non-

count data that is composed of discrete outcomes are the multinomial logit 

model and the ordered probit model. However, there are two potential problems 

with applying ordered probability models to accident severity outcomes 

(Savolainen and Mannering 2007). The first is related to the fact that non-injury 

accidents are likely to be under-reported in accident data because they are less 

likely to be reported to authorities. The presence of under-reporting in an 

ordered probability model will result in biased and inconsistent model coefficient 

estimates. In contrast, the coefficient estimates of an unordered multinomial 

logit probability model are consistent except for the constant terms (Washington 

et. al. 2003, page 279). The second problem is related to undesirable 

restrictions that ordered probability models place on influences of the 

explanatory variables (Washington et. al. 2003, page 294). As a result, in our 

research study we use and estimate multinomial logit models for accident 

severity. 

 

The simple standard multinomial logit model can be introduced as follows. Let 

there be N  available data observations and I  possible discrete outcomes in 

each observation. Then in the multinomial logit model the probability )(i
nP  of the 

i th outcome in the n th observation is specified by equation (Washington et al., 

2003, page 263) 
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∑ =
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′
= I
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i
nP
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)(

)exp(
)exp(

jnj

ini

Xβ
Xβ ,        Ii ,...,3,2,1= ,   Nn ,...,3,2,1= . Eq. 2.1  

Here inX  is the vector of explanatory variables for the n th observation and iβ  is 

the vector of model coefficients to be estimated ( iβ′  is the transpose of iβ ). We 

use a conventional assumption that the first component of vector inX  is equal to 

unity, and therefore, the first component of vector iβ  is the intercept in linear 

product iniXβ′ . Note that )(i
nP , given by Equation (2.1), is a valid probability set 

for I  discrete outcomes because the necessary and sufficient conditions 

0)( ≥i
nP  and 1

1
)( =∑ =

I

i
i

nP  are obviously satisfied1.  

 
We can multiply the numerator and denominator of the fraction in Equation (2.1) 

by an arbitrary number without any change of the probabilities. As a result, 

without any loss of generality we can set one of the intercepts to zero. We 

choose the first component of vector Iβ  to be zero in this case. Moreover, if the 

vector of explanatory variables does not depend on discrete outcomes, i.e. if 

nin XX ≡ , then without any loss of generality we can set one of vectors of model 

coefficients to zero. We choose vector Iβ  to be zero in this case. 

 

Because accidents are independent events, the likelihood function for the set of 

probabilities given in Equation (2.1) is  

∏ ∏= =
=

N

n

I

i
ini

nI PL
1 1

)(
21 ][),...,( δβββ , Eq. 2.2  

where inδ  is defined to be equal to unity if the i th discrete outcome is observed 

in the n th observation and to zero otherwise. 

 
                                            
1 Equation (2.1) can formally be derived by using a linear specification ininU ε~+′≡ iniXβ , by 

defining { })(maxProb)(
jnijin

i
n UUP ≠∀≥=   and by choosing the Gumbel (Type I) extreme 

value distribution for the i.i.d. random error terms inε~ . For details see Washington et al., 2003. 
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Now we assume that the explanatory variables vector is independent of the 

discrete outcomes, nin XX ≡ , and consider two simple special cases of the 

multinomial logit model. If there are three possible discrete outcomes, 3=I  and 

3,2,1=i , then in this case Equation_(2.1) simplifies to  

1)exp()exp(
)exp(

21

1)1(

+′+′
′

=
nn

n

XβXβ
Xβ

nP ,

1)exp()exp(
)exp(

21

2)2(

+′+′
′

=
nn

n

XβXβ
Xβ

nP , 

1)exp()exp(
1

21

)3(

+′+′
=

nn XβXβnP , 

Eq. 2.3  

where there are two coefficient vectors 1β  and 2β  to be estimated. We will use 

these special-case logit models in the next two chapters.  

 

It is customary to use the maximum likelihood method to estimate unknown 

vectors of coefficients iβ  in the logit models given by Equations (2.1) and_(2.3). 

Namely, one finds such values of the unknown coefficients that the likelihood 

function (and correspondingly the log-likelihood function) given by Equation 

(2.2) reaches its global maximum. In the present study we use econometric 

software package LIMDEP/NLOGIT for all model estimations by means of the 

maximum likelihood method2. We also use MATLAB software package for initial 

processing of data. 

 

Next, we describe how the magnitude of the influence of specific explanatory 

variables on the discrete outcome probabilities can be measured. This is done 

by elasticity computations (Washington et al., 2003, page_271). Elasticities 
)(

,

i
n

kjn

P
XE  are computed from the partial derivatives of the outcome probabilities for 

the n th observation as 

                                            
2 LIMDEP/NLOGIT can be found at http://www.limdep.com, we use NLOGIT 4.0. 
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, i
n

kjn

kjn

i
nP

X P
X

X
PE

i
n

kjn
⋅

∂
∂

= ,    Iji ,...,1, = ,   Nn ,...,1= ,   Kk ,...,1= . Eq. 2.4  

Here )(i
nP  is the probability of outcome i  given by Equation (2.1), kjnX ,  is the k th 

component of the vector of explanatory variables jnX  that enters the formula for 

the probability of outcome j , and K  is the length of this vector. If ij = , then the 

elasticity given by Equation (2.4) is called direct elasticity, otherwise, if ij ≠ , 

then the elasticity is called cross elasticity. The direct elasticity of the outcome 

probability )(i
nP  with respect to variable kinX ,  measures the percent change in 

)(i
nP  that results from an infinitesimal percentage change in kinX , . Note that kinX ,  

directly enters the numerator of the formula for )(i
nP , as given by Equation (2.1). 

The cross elasticity of )(i
nP  with respect to variable kjnX ,  measures the percent 

change in )(i
nP  that results from an infinitesimal percentage change in kjnX , . 

Note that kjnX ,  enters the numerator of the formula for the probability )( j
nP  of the 

outcome j , which is different from outcome i . Thus, cross elasticities measure 

indirect effects that arise from the fact that the outcome probabilities must sum 

to unity, 1
1

)( =∑ =

I

i
i

nP . If the absolute value of the computed elasticity 
)(

,

i
n

kjn

P
XE  of 

explanatory variable kjnX ,  is less than unity, then this variable is said to be 

inelastic, and the resulting percentage change in the outcome probability )(i
nP  

will be less (in its absolute value) than a percentage change in the variable. 

Otherwise, the variable is said to be elastic. It is customary to report averaged 

elasticities, which are the elasticities averaged over all observations (i.e. 

averaged over Nn ,...,3,2,1= ). Let us consider the case of three possible 

discrete outcomes, given by Equation (2.3). In this case 3,2,1=i  and we have 

the following formulas for the averaged direct and cross elasticities (Washington 

et al., 2003, pages 271-272): 
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Eq. 2.5  

nknkn
n

P
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)3,2(

,1
β⋅−===  

nknkn
n

P
XXX XPEEE n

knkk ,,2
)2()3(

;2
)1(

;2

)3,1(

,2
β⋅−===  

averaged cross 
   elasticities.  

Here brackets n...  means averaging over all observations Nn ,...,3,2,1= . 

 

The elasticity formulas given above are applicable only when explanatory 

variable kjnX ,  used in the outcome probability model is continuous. In the case 

when kjnX ,  takes on discrete values, the elasticities given by Equation (2.4) 

cannot be calculated, and they are replaced by pseudo-elasticities (for example, 

see Washington et al., 2003, page 272). The later are given by the following 

equation, which is an obvious discrete counterpart of Equation (2.4), 

)(
,

,

)(
)(

, i
n

kjn

kjn

i
nP

X P
X

X
PE

i
n

kjn
⋅

Δ
Δ

= ,    Iji ,...,1, = ,   Nn ,...,1= ,   Kk ,...,1= . Eq. 2.6  

Here )(i
nPΔ  denotes the resulting discrete change in the probability of outcome i  

due to discrete change kjnX ,Δ  in variable kjnX , .  

 

In addition to simple multinomial logit models, we consider mixed multinomial 

logit models of accident severity. In a mixed multinomial logit model, the 

probability of the i th outcome in the n th observation is (Washington et. al. 2003, 

page 287)  

∫= iii βφβ dqPP i
n

i
n )|(~ )()( ,        Ii ,...,3,2,1= ,   Nn ,...,3,2,1= . Eq. 2.7  

The right-hand-side of Equation (2.7) is a mixture of the standard multinomial 

probabilities )(i
nP , given by Equation (2.1). Probability distribution )|( ii φβq  is the 

distribution of the multinomial logit parameters iβ , given fixed parameters iφ . 
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The likelihood equation (2.2) and the elasticity equations (2.4) and (2.6) hold for 

mixed multinomial logit models with )(i
nP  replaced by )(~ i

nP .  

2.2. Negative binomial models of accident frequency 

Now, let us consider accident frequency, which is a quantitative count data that 

is the number of accidents occurred. The most widely used statistical models for 

count data are the Poisson and negative binomial models. Poisson model is a 

particular case of negative binomial model (a negative binomial model reduces 

to a Poisson model when the overdispersion parameter is zero). As a result, 

without loss of generality, we consider only negative binomial models in this 

study. 

 

The simple standard negative binomial model of five-year accident frequency 

can be introduced as follows. The probability of nA  accidents occurred on road 

segment n during the considered five-year time period (Washington et al., 2003, 

page 248) 

nA

n

n

nn

nA
n A

AP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γ

+Γ
=

αλ
αλ

αλα
α

α

11
1

!)/1(
)/1(

/1
)( , 

)exp( nn Xβ′=λ ,        Nn ,...,2,1= . 
Eq. 2.8  

Here nX  is the vector of explanatory variables for the n th roadway segment, Γ is 

the gamma-function, prime means transpose (β′  is the transpose of β ), and N  

is the number of roadway segments. Vector β  and the over-dispersion 

parameter α  are unknown estimable coefficients of the negative binomial 

model. Scalar nλ  is the mean five-year accident rate on roadway segment n . 

  

Accident events are assumed to be independent. Therefore, the full likelihood 

function is 
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∏
=

=
N

n

A
nPL

1

)(),( αβ . Eq. 2.9  

As in the case of accident severity, for accident frequency models we use the 

maximum likelihood estimation (MLE) with the help of LIMDEP/NLOGIT 

econometric software package. 

 

With regard to the magnitude of the influence of specific explanatory variables 

on the expected accident frequency, instead of the elasticities used for the 

severity analysis we use marginal effects which are easier to interpret for count-

data models.  The marginal effect is computed as (see Washington et al., 2003), 

( ) ( )[ ] βXβ
X

nn
k,nk,n

n

k,n

nn exp
XX

   
X

|AE
λ

λ
=′

∂
∂

=
∂
∂

=
∂

∂
. Eq. 2.10  

where Xn,k is the kth component of the vector of explanatory variables Xn. The 

marginal effect gives the effect that a one unit change in the explanatory 

variable Xn,k has on the mean accident frequency λn. As was the case with 

elasticities, because each observation generates its own marginal effect, the 

average across all observation will be reported in the forthcoming empirical 

analysis. 

 

 

In this study, we also used mixed negative binomial models, which are defined 

similarly to the mixed multinomial logit models. In a mixed negative binomial 

model, the probability of nA  accidents occurred on road segment n is 

αα ddqPP A
n

A
n ∫= βφβ )|,(~ )()( ,       Nn ,...,2,1= . Eq. 2.10  

The right-hand-side of Equation (2.10) is a mixture of the standard negative 

binomial probabilities )( A
nP , given by Equation (2.8). Probability distribution 

)|,( φβ αq  is the distribution of the negative binomial parameters β  and α , given 
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fixed parameters φ . The likelihood equation (2.9) holds for mixed multinomial 

negative binomial models with )( A
nP  replaced by )(~ A

nP . 

2.3. Choice of explanatory variables for model estimation 

To uncover the direct influence of design exceptions on accident severity and 

frequency, we need to control for other explanatory variables (factors) that might 

also affect severity/frequency. Examples of these other variables are weather 

conditions, accident time and date, vehicle and driver characteristics, roadway 

segment characteristics and so on. All explanatory variables can be divided into 

two distinct types. First, there are indicator (dummy) variables that are equal to 

unity if some particular conditions are satisfied, and are equal to zero otherwise. 

Examples of indicator variables are driver’s gender indicator, weekend indicator, 

precipitation indicator and roadway median presence indicator. Second, there 

are quantitative variables that take on meaningful quantitative values, such as 

driver’s age, speed limit, roadway segment length and AADT. In addition, one 

can easily define derivative indicator variables that are obtained from 

quantitative variables. For example, one can define a “young driver” indicator as 

being equal to unity if the driver’s age is below 25. When estimating models, we 

frequently define and use the most useful (as judged by the model likelihood 

function) new derivative indicator variables that are based on quantitative 

variables.  

 

We check statistical significance of the explanatory variables in all logit models 

by using 5% significance level for the two-tailed t-test of a large data sample. In 

other words, coefficients with t-ratios between -1.96 and +1.96 are considered 

to be statistically insignificant and others outside of these bounds are 

statistically significant. Note that the explanatory variables can be mutually 

dependent (e.g. a quantitative variable and its derivative indicator variable are 

strongly mutually dependent). 
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Statistical models are estimated by maximizing the model’s log-likelihood 

function. However, one cannot rely on the log-likelihood maximization alone in 

order to choose the optimal number of explanatory variables to be included in 

the statistical model. The reason is that the log-likelihood (LL) function is always 

maximized when all available explanatory variables are included into the model. 

This is because a removal of any explanatory variable is equivalent to restricting 

its value to zero, which always either decreases the maximum of LL or leaves it 

the same. As a result, in the present study we use the Akaike Information 

Criterion (AIC), minimization of which ensures an optimal choice of explanatory 

variables in a model (Tsay, 2002, page 37; Washington  et al., 2003, page 212; 

Wikipedia). The main idea behind the AIC is to examine the complexity of a 

model together with goodness of its fit to the data sample, and to find a balance 

between the two. A model with too few explanatory variables will provide a poor 

fit to the data sample. A model with too many variables will provide a very good 

fit, but will lack necessary robustness and will perform poorly in out-of-the-

sample data. The preferred model with the optimal number of explanatory 

variables is the model with the lowest AIC value, which is given by equation 

KLLAIC 22 +−= , Eq. 2.11  

where LL is the log-likelihood value of a model, and K is the number of 

estimable coefficients in the model (one coefficient for each explanatory 

variable, including the intercepts). 

 

In our research we estimate all logit models by using one of the two procedures 

A and B shown in Figure 2.1. Procedure A is as follows:  

I. We start with all explanatory variables initially included into a logit model. 

Note that, when estimating a model, we have to exclude observations 

that are missing for any of the included variables. Next, we obtain the 

final model by using three steps of model estimation. The first step is 
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We remove the least statistically significant explanatory variables 

(as judged by their t-ratios) one by one if both of the following two 

conditions are satisfied: the removal of a variable decreases the 

AIC value and the removed variable is statistically insignificant 

(under the 5% confidence level)3. Note that while using the Akaike 

information criterion, we always keep the number of data sample 

observations constant in order to calculate the changes of the AIC 

value correctly. Each time when we have removed several (usually 

four) least significant explanatory variables from a model, we 

include some of the previously excluded observations back into 

the data sample because now the model includes fewer variables 

with missing observations. We keep removing insignificant 

explanatory variables one by one, periodically including previously 

excluded observations back into the data sample, until we cannot 

remove any additional variable under the two conditions listed 

above.  

II. We start with all explanatory variables initially included into a logit model. 

Note that, when estimating a model, we have to exclude observations 

that are missing for any of the included variables. Next, we obtain the 

final model by using three steps of model estimation. The first step is 

1. We remove the least statistically significant explanatory variables 

(as judged by their t-ratios) one by one if both of the following two 

conditions are satisfied: the removal of a variable decreases the 

 

                                            
3 If the asymptotic normality of maximum likelihood estimates holds, then the AIC value does 
not change with removal (addition) of a variable whose coefficient has 15.73% p-value for the 
two-tailed test (15.73% p-value corresponds to 2±  t-ratio for a normal variate). In this case 
the 5% confidence level test of the variable is redundant, and the AIC test alone can be used for 
removal and addition of variables in model estimation steps 1 and 2. Nevertheless, we use both 
tests to make our estimation procedures more robust in case the normality of maximum 
likelihood estimates does not hold.   
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Figure 2.1 Model estimation procedures 
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AIC value and the removed variable is statistically insignificant 

(under the 5% confidence level)4. Note that while using the Akaike 

information criterion, we always keep the number of data sample 

observations constant in order to calculate the changes of the AIC 

value correctly. Each time when we have removed several (usually 

four) least significant explanatory variables from a model, we 

include some of the previously excluded observations back into 

the data sample because now the model includes fewer variables 

with missing observations. We keep removing insignificant 

explanatory variables one by one, periodically including previously 

excluded observations back into the data sample, until we cannot 

remove any additional variable under the two conditions listed 

above.  

After we removed all variables that we could, we need to check if 

any of the removed variables can be added back into the model. 

This is because variables are mutually dependent and “interact” in 

the model. Therefore, we proceed to the second step of model 

estimation:  

2. We add explanatory variables one by one if at least one of the 

following two conditions is satisfied: either the addition of a 

variable decreases the AIC value or the added variable is 

significant5. As usual, the AIC values are compared under the 

condition that the number of observations is kept constant. As the 

number of the explanatory variables included into the model 
                                            
4 If the asymptotic normality of maximum likelihood estimates holds, then the AIC value does 
not change with removal (addition) of a variable whose coefficient has 15.73% p-value for the 
two-tailed test (15.73% p-value corresponds to 2±  t-ratio for a normal variate). In this case 
the 5% confidence level test of the variable is redundant, and the AIC test alone can be used for 
removal and addition of variables in model estimation steps 1 and 2. Nevertheless, we use both 
tests to make our estimation procedures more robust in case the normality of maximum 
likelihood estimates does not hold.   
5 We first search for and add AIC decreasing variables, and afterwards we add significant 
variables if there are any. 
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grows, the data sample size shrinks because of a larger number of 

missing observations associated with the included variables. We 

add explanatory variables one by one until no any additional 

variable can be added to the model.  

Next we return back to the first estimation step given above and remove 

variables that can be removed. We iterate between steps 1 and 2 until we 

can neither remove nor add any more variables. At this point we arrive at 

the model that we call the “AIC optimal model” (refer to Figure 2.1). Next, 

we proceed to the third and final step of model estimation: 

3. To make our final results more robust, we drop from the AIC 

optimal model all remaining statistically insignificant variables 

(judged by the 5% significance level for the two-tailed t-test). As a 

result, we obtain the final model, which is our best model 

(according to the estimation procedures chosen by us). 

Now we describe procedure B:  

I. In this procedure we start with only intercepts (constant terms) initially 

included into a logit model (refer to Figure 2.1). Next, we proceed in a 

way very similar to that used in procedure A. We run step 2 of model 

estimation and add explanatory variables into the model. Then, we iterate 

between steps 1 and 2 until we can neither remove nor add any more 

variables, at which point we arrive at the AIC optimal model. Finally, we 

run step 3 of model estimation and obtain the best final model. 

By default we always use procedure A for model estimation, and only if we 

cannot use it (usually when the available data sample is too small for the initial 

model estimation with all explanatory variables included), then we resort to 

procedure B. 
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2.4. Likelihood ratio test 

In the forthcoming chapters we will need to compare several estimated models 

in order to infer if there are statistically significant differences among these 

models. As a result, here we would like to demonstrate how model comparisons 

are done by using a likelihood ratio test. Assume that we have divided a data 

sample into different data bins. The likelihood ratio test uses the model 

estimated for the whole data sample and the models separately estimated for 

each data bin. The test statistic is (Washington et al., 2003, page 244) 

⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

=

M

1m

2 )(LL)(LL2X mββ   ~ 2
)1(df KM ×−=χ , Eq. 2.12  

where )(βLL  is the log-likelihood of the model estimated for the whole data 

sample and β  is the vector of coefficients estimated for this model; )( mβLL  is 

the log-likelihood of the model estimated for observations in the m th data bin 

and mβ  is the vector of coefficients estimated for this model ( Mm ,...,3,2,1= ); M  

is the number of the data bins; K  is the number of coefficients estimated for 

each model (i.e. K  is the length of vectors β  and mβ )6; 2
)1(df KM ×−=χ  is the chi-

squared distribution with KM ×− )1(  degrees of freedom (df). The zero-

hypothesis for the test statistic given by Equation (2.12) is that the model 

estimated for the whole data sample and the combination of the M  models 

separately estimated for the data bins, are statistically the same. In other words, 

for a chosen confidence level π  if the left-hand-side of Equation (2.12) is 

between zero and the (1-π )th percentile of the chi-squared distribution given on 

the right-hand-side, then we conclude that the division of the data into different 

bins makes no statistically significant difference for the model estimation. We 

conclude that there is a difference otherwise. 

 

                                            
6 Note that the left-hand-side of Equation (2.12) is always non-negative because a combination 
of models separately estimated for data bins always provides a fit which is at least as good as 
the fit for the whole data sample. 
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In the case when data is divided into two bins “a” and “b” one can conduct an 

alternative likelihood ratio test (Washington et al., 2003, page 282) 

[ ])(LL)(LL2X aa,b
2 ββ −−=   ~ 2

df K=χ , Eq. 2.14  

where )( aLL β  is the log-likelihood of data “a” given a model estimated by MLE 

using data “a”, and )( ,abLL β  is the log-likelihood of data “a” given the same 

model estimated by MLE using data “b”. In Equation (2.) the degrees of freedom 

is equal to K , which is the number of coefficients in each model. The test given 

by Equation (2.) can also be reversed using )( bLL β  and )( ,baLL β  for data “b”.  

 

Note that the likelihood ratio tests given by Equations (2.12) and (2.) are 

theoretically justified only for large data samples (Gourieroux and Monfort, 

1996).  
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CHAPTER 3. DATA DESCRIPTION 

3.1. Design exception and control sites 

Our data consists of 32 bridges and 4 roadway intervals with level-one design 

exceptions (DEs). For a control data sample, we chose 63 control bridges and 8 

control roadway intervals without any design exceptions. The control sites were 

chosen so that their characteristics are similar to those of the design exception 

(DE) sites. The list of all sites with design exception is given in Table 3.1. In 

Appendix C we give a map of the Indiana State, which shows the numbers of 

design exceptions requested and approved in each county in 1998-2003. A list 

of all control sites is given in Table 3.2. 

 

It is important to note that all bridges are geographically localized sites (they are 

points on the map). As a result, below we will introduce an “effective radius of 

influence”, and we will consider accidents that occurred within this radius from 

the localized sites (bridges). In the next chapter we will estimate the effective 

radius of influence to be miles55.0=effR . In contrast, roadway intervals are 

non-localized sites, and we will consider all accident that occurred in the 

intervals. 

3.2. Accident severity data 

The data on individual accidents used in the present study is from the Indiana 

Electronic Vehicle Crash Record System (EVCRS). The EVCRS was launched 

in 2004 and includes available information on all accidents investigated by 

Indiana police starting from January 1, 2003. 
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Table 3.1 A list of sites with design exceptions  

Design # Location Structure 
related County Design exception Road 

related 
Approval 
date (y/m)

0002230 75-th St. over I-465 bridge Marion minimum vertical clearance I-465 2001/02 

9982320 CR580 (Hamiltom Rd.) over Kilmore 
creek bridge Clinton design speed CR580 - 

0006743 CR600 (MT Comfort Rd.) over I-70 bridge Hancock stopping-sight distance I-70 2003/03 

9980560 CR900 (Hunters Creek Rd.) over Little 
Salt creek  bridge Lawrence 

superelevation transition 
length, superelevation rate, 
bridge rail safety 

CR900 2001/07 

9702290 Ditch Rd. over I-465 bridge Marion minimum vertical clearance I-465 - 

0100316 Green Valley Rd. over I-265 bridge Floyd bridge rail safety 
Green 
Valley 

Rd. 
2002/07 

9614710 I-64 from 0.4 mile West of SR 165 to 0.2 
mile West of Owenswille Rd. interval Posey, 

Vanderburgh 

stopping-sight distance, 
horizontal obstruction 
clearance 

I-64 2000/12 

9709094 I-64 over abandoned R/R; 7.71 km West 
of SR 165 bridge Posey cross slope I-64 - 

9709095 I-64 over Flat run ditch; 0.95 km West of 
SR 165 bridge Posey cross slope I-64 - 

9614701 I-64 over the Big Bayou river bridge Posey bridge width I-64 - 

9709091 I-64 over the Black river; 6.21 mile West 
of SR165 bridge Posey shoulder width, cross slope I-64 - 

9709093 I-64 over Wilsey Rd.; 5.67 mile West of 
SR165 bridge Posey cross slope I-64 - 

9241915 
9241916 I-65 over SR311  bridge Clark superelevation transition 

length 
SR311,  

I-65 - 

0100294 I-65 over railroad; 0.06 mile south of 
SR38 bridge Tippecanoe minimum vertical clearance I-65 2002/06 

9884890 Lena Rd. over Conrail railroad bridge Clay vertical alignment Lena Rd. - 
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Table 3.1 (Continued) 

Design # Location Structure 
related County Design exception Road 

related 
Approval 
date (y/m)

9900930 SR5 over Wabash River at Huntington 
reservoir  bridge Huntington shoulder width, cross slope SR5 - 

9803620 SR9 over Loon creek; 2.51 km South of 
US 24 bridge Huntington superelevation rate SR9 - 

9900900 SR9 over Conrail R/R; 0.15 km South of 
SR 18 bridge Grant minimum vertical clearance SR9 - 

9620250 SR56 over French Lick creek, 0.12 miles 
East of SR145 bridge Orange bridge rail safety SR56 - 

9241925 SR60 over I-65 bridge Clark stopping-sight distance SR60,  
I-65 2003/03 

9611950 SR62 over Stinking Fork; 3.69 mile east 
of SR37 bridge Crawford bridge rail safety SR62 - 

9900570 SR63 over CSX railroad bridge Vermillion superelevation transition 
length SR63 2000/08 

9620230 SR66 over Deer creek; 0.14 mile East of 
SR166 bridge Perry stopping-sight distance, super-

elevation transition length SR66 2001/06 

9800320 SR101 over Dubois creek bridge Union vertical alignment, maximum 
grade SR101 2000/03 

9800310 SR168 over creek; 2.54 mile East of 
US41 bridge Gibson, 

Knox bridge width SR168 - 

9137955 SR250 over Wades creek; 1.09 km west 
of SR156 bridge Switzerland 

horizontal curvature, 
superelevation rate, horizontal 
obstruction clearance 

SR250 2002/08 

9244245 SR267 over I-74 bridge Hendricks shoulder width SR267 1998/09 
9702050 SR267 over abandoned railroad bridge Hendricks bridge rail safety SR267 - 
9803520 SR327 underpass at CSX railroad bridge Decalb vertical alignment SR327 1998/03 

8915240 US12 over Munson ditch; 1.1 mile East 
of SR49 bridge Porter superelevation rate US12 2001/01 
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Table 3.1 (Continued) 

Design # Location Structure 
related County Design exception Road 

related 
Approval 
date (y/m)

8915285 US12 over Unnamed channel; 1.3 mile 
West of SR49 bridge Porter shoulder width US12 2001/02 

8900433 US24 road relocation from 0.8 mile West 
of CR400 to 0.2 mile East of CR600 interval Wabash stopping-sight distance US24 1999/01 

9707490 US41 (Calumet Ave.) from 1.5 mile 
North of I-80 to 2.8 mile interval Lake vertical alignment US41 - 

9707150 US41 from Sr64 to 1 mile South of 
SR441 interval Gibson, 

Knox shoulder width US41 2002/06 

0101270 US52 NB exit ramp over I-65 bridge Boone horizontal curvature, stopping-
sight distance 

US52,  
I-65 2002/08 

9702150 
 

US231 over Big Wea creek; 1.56 km 
North of SR28 bridge Tippecanoe superelevation transition 

length US231 - 

 

 

 

 

 

 

 

 

 



 

 

25

Table 3.2 A list of control sites (without design exceptions) 
Related 
design 
number 

Location Structure 
related County Road related 

0002230 West Hanna Ave. over I-74. bridge Marion I-74 
South eastern Ave. over I-465 bridge Marion I-465 

9982320 CR150 over creek bridge Huntington CR150 
CR70 over creek bridge Warren CR70 

0006743 11A Rd. over I-69 bridge DeKalb I-69 
North Little Point Rd. over I-70 bridge Morgan I-70 

9980560 CR300 (Old Scotland Rd.) over creek bridge Greene CR300 
CR180 over creek bridge Greene CR180 

9702290 East 46th St. over I-465 bridge Marion I-465 
West 46th St. over I-465 bridge Marion I-465 

0100316 Klerner Lane over I-265 bridge Floyd Klerner Lane 
Payne Koehler Rd. over I-265 bridge Floyd Payne Koehler Rd. 

9614710 I-64 from 0.4 mile West of SR68 to 0.8 mile East of CR700 interval Warrick, 
Spencer I-64 

I-64 from 0.4 mile West of SR165 to 0.2 mile West of OwensvilleRd. interval Perry I-64 

9709094 I-64 over creek bridge Warrick I-64 
I-70 over creek bridge Wayne I-70 

9709095 I-70 over ditch bridge Hancock I-70 
I-74 over ditch bridge Montgomery I-74 

9614701 
I-70 over river bridge Vigo I-70 

I-74 over river bridge Vermillion, 
Fountain I-74 

9709091 I-65 over river bridge Huntington I-69 
I-70 over creek bridge Putnam I-70 

9709093 I-65 over West Manson Colfax Rd. bridge Clinton I-65 
I-74 over Whites Hill Rd. bridge Dearborn I-74 

9241915 I-65 over US24 bridge Bartholomew I-65, SR31 
I-69 over US24 bridge Allen I-69, US24 

0100294 I-65 over railroad bridge Tippecanoe I-65 
I-69 over railroad bridge Delaware I-69 
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Table 3.2 (Continued) 
Related 
design 
number 

Location Structure 
related County Road related 

9884890 CR200 (Meridian Rd.) over railroad bridge Clay CR200 
CR500 (South Whitney Rd.) over R/R bridge Delaware CR500 

9900930 East Salamonie Dam Rd. at Salamonie reservoir bridge Wabash East Salamonie Dam Rd. 
East Mississinewa Dam Rd. at Salamonie reservoir bridge Miami East Mississinewa Dam Rd.

9803620 US30 over creek bridge Kosciusko US30 
US30 over creek bridge Whitley US30 

9900900 SR24 over railroad bridge Allen SR24 
East Raymond Str. over railroad bridge Marion East Raymond Str. 

9620250 SR56 over creek bridge Orange SR56 
SR54 West over creek bridge Lawrence SR54 

9241925 SR334 over I-65 bridge Boone SR334, I-65 
SR39 over I-70 bridge Hendricks SR39, I-70 

9611950 SR62 over creek bridge Harrison SR62 
SR9 over creek bridge Shelby SR9 

9900570 SR37 North over ditch bridge Morgan SR37 

9620230 SR66 over creek bridge Perry SR66 
SR129 over creek bridge Switzerland SR129 

9800320 US35 over creek bridge Pulaski US35 
SR16 over creek bridge White SR16 

9800310 SR67 over creek bridge Greene SR67 
US36 over creek bridge Parke US36 

9137955 SR62 over creek bridge Jefferson SR62 
SR121 over creek bridge Fayette SR121 

9244245 US52 under I-465 bridge Marion US52 
East Main Str. Under I-65 bridge Johnson East Main Str. 

9702050 Bluff Rd. over creek bridge Marion Bluff Rd. 
SR238 over creek bridge Hamilton SR238 

9803520 SR331 underpass at R/R bridge Saint Joseph SR331 
Benham Ave. railroad underpass bridge Elkhart Benham Ave. 
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Table 3.2 (Continued) 
Related 
design 
number 

Location Structure 
related County Road related 

8915240 US33 over ditch bridge Whitley US33 
US136 over ditch bridge Montgomery US136 

8915285 US136 over channel bridge Montgomery US136 
US421 over channel bridge Pulaski US421 

8900433 US24 from 0.36 mile West of CR200 to 0.48 mile West of CR750 interval Huntington US24 
US30 from 2.23 mile West of SR101 to 0.56 mile East of SR101 interval Allen US30 

9707490 US41 (Calumet Ave.) from 0.2 mile South of I-80 to Fisher Str. interval Lake Calumet Ave. 
Kennedy Ave. from 0.58 mile South of I-90 to 0.61 mile North of I-80 interval Lake Kennedy Ave. 

9707150 US41 from 4.3 mile South of SR54 to 0.55 mile North of SR67 interval Knox, Sullivan US41 
US41 from 0.55 mile South of SR10 to 4.55 mile North of US24 interval Newton US41 

0101270 SR37 NB exit ramp over I-69 bridge Hamilton SR37, I-69 
SR 912 (Cline Ave.) NB exit ramp over I-90 bridge Lake SR912, I-90 

9702150 US50 over creek bridge Jackson US50 
US150 over creek bridge Washington US150 

 
 

 

 

 

 

 

 

 



 

 

28

Finally, detailed descriptions of all design exceptions considered in Tables 3.1 

and 3.2 (along with aerial photos of the design exception sites) are available on 

request in .pdf computer files. 

 

The information on accidents included into the EVCRS can be divided into three 

major categories7: 

1. An Environmental Record – it includes information on circumstances 

related to an accident. For example, weather, roadway and traffic 

conditions, number of dead and injured people involved, etc. 

2. A Vehicle and Driver Record – it includes information on all vehicles 

involved into an accident and on all drivers of these vehicles. For 

example, accident contributing factors by each vehicle, type and model of 

each vehicle, posted speed limit for each vehicle, driver’s injury status, 

driver’s age and gender, driver’s name and address, etc. 

3. Non-driver Individual Record – it includes information on all people who 

are involved into an accident but are not drivers. This record includes 

only the name and address of those people, but it does not include any 

information on their injuries (if any). 

In our study we use only information from the first two categories above. These 

two categories include 127 variables for each accident, which is an abundance 

of data. However, we do not need to consider all these variables. Indeed, 

because our study focuses on accident causation and severity, we choose all 

information and all data variables that can reasonably be related to the subject 

of our study, and we consider only these variables. For example, we do not 

consider the name of the road where an accident took place and the license 

plate numbers of the vehicles involved because we can reasonably expect that 

                                            
7 Note that accident data is subject to missing observations and typos. In addition, there can be 
misidentification errors on police crash reports due police officers’ mistakes and prejudices. We 
eliminate obvious typos during initial data processing and exclude missing observations, but we 
do not correct for concealed typos and unobserved misidentification errors. We assume that 
police misidentification errors are sufficiently small not to affect our final results. 
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these variables do not contribute to the accident cause and severity. The list of 

all variables that we consider for accident severity is given in Appendix A.  

 

In the present study, we consider data on 5889 accidents occurred from 2003 to 

2007. Among these, 3429 accidents occurred in a 55.0=effR  mile proximity of all 

bridges ( effR  is the effective radius of influence estimated below), and 2460 

accidents occurred on all roadway intervals. Of the 3429 accidents occurred 

near bridges, 1192 accidents occurred in the proximity of design exception 

bridges and 2237 accidents occurred in the proximity of control bridges. Of the 

2460 accidents occurred on roadway intervals, 739 accidents occurred on 

design exception intervals and 1721 accidents occurred on control intervals. 

 

The percentage distributions of the 5889 accidents that we consider by accident 

type are given in Figure 3.18. The percentage distribution of the accidents by 

their severity level is given in Figure 3.2. 

7.79%

11.28%

54.54%

26.39%

(Car/SUV)+truck 
accidents

(Car/SUV)+(Car/SUV) 
accidents

Single vehicle accidents

Other accidents

 

Figure 3.1 Percentage distribution of accidents by their type 
                                            
8 For convenience, from each of the percentage distribution plot we exclude accidents for which 
the considered descriptive variable (e.g. accident type) is unknown. 
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0.41%

21.68%

77.91%

fatality

injury 

PDO 

"PDO" means property damage only (no injury)

 

Figure 3.2 Percentage distribution of accidents by their severity level 

3.3. Accident frequency data 

In our accident frequency study, we estimate negative binomial models for five-

year accident frequencies. These are numbers of accidents that occurred on 

roadway segments over the five-year period 2003-2007.  Thus, we need to 

choose roadway segments, and we make this choice as follows. For all bridges 

(with and without design exceptions) we choose 1.1-mile long roadway 

segments around the bridges ( 55.0=effR  each way from the bridges). As far as 

the roadway intervals (with and without design exceptions) are concerned, we 

divide them into smaller segments that have roughly homogeneous properties 

(e.g. homogeneous AADT). As a result, we end up with 143 roadway segments. 

Among those 104 segments are at bridges (35 segments with design exceptions 

and 69 control segments).9 The remaining 39 segments are on roadway 

intervals (13 segments with design exceptions and 26 control segments). 

 

                                            
9 The number of segments at bridges, 104, is larger than the number of all bridges, 95. This is 

because in some cases we consider accidents on two roads that cross at the bridge sites. 
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After the roadway segments are chosen, we need to collect information on 

characteristic properties of these segments. Segment length, locality of the road 

(rural/urban), number of lanes, median surface type, median width (in feet), 

interior shoulder presence and width, outside shoulder presence and width, 

number of bridges, number of horizontal curves, number of ramps, horizontal 

curve lengths and radii are determined by using the Google Earth software.10 

Average annual daily traffic (AADT) volumes are taken from the Indiana 

Department of Transportation (INDOT) website (WWW.IN.GOV/INDOT/3238.HTM), 

most of the AADT volumes are adjusted by using the appropriate growth factors, 

which are also defined by the INDOT. Road class (interstate, US route, state 

route, county road, street), rumble strips, median type, road surface type, speed 

limit value, road type (one-lane, two-lane, multi-lane, one-way, two-way, 

undivided, divided, alley, private drive) are taken from the available data on 

individual accidents data (the same data that is used in the severity study). 

Accident frequencies on roadway segments are found by matching locations of 

segments and individual accidents for the five-year period considered (2003-

2007). The list of all explanatory variables that we consider for accident 

frequency is given in Appendix B. 

                                            
10 For each segment, the horizontal curve length and radius are calculated by using the length 

of the segment curve chord and the maximum perpendicular distance between the chord and 

the segment curve. 



 

 

32

CHAPTER 4. ACCIDENT SEVERITY STUDY 

In this chapter we study the severity of accidents and its dependence on the 

presence/absence of design exceptions and other factors. Below, we first 

explain how we use the available accident data and estimate statistical models 

of accident severity. Then, we present the results obtained from the estimation 

of these models for accidents that happened in Indiana in 2003-2007. 

4.1. Modeling Procedures: accident severity 

For each accident, the severity level is determined by the injury level sustained 

by the most severely injured individual (if any) involved into the accident. By 

using the available individual accident data, we are able to distinguish between 

three levels of accident severity. Listed in increasing order, these are (refer to 

Figure 3.2 for injury proportions) 

1. no-injury or property damage only (PDO),  

2. injury, 

3. fatality. 

As a result, for the statistical modeling of accident severity we use a multinomial 

logit model with three possible outcomes that correspond to these three levels 

of accident severity. This multinomial logit model is given by Equation (2.3), 

where the outcomes “1”, “2” and “3” correspond to “fatality”, “injury” and “PDO” 

levels of accident severity respectively. To find important explanatory variables 

and the best multinomial logit models, we use the model outcome methodology 

described in detail in Section 2.3 of CHAPTER 2. 
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Because bridges are geographically localized sites (points on the map) we 

introduce an effective radius of influence effR . It is the radius of a circular area 

around a bridge within which occurring accidents are influenced by the 

presence of the bridge. We find effR  as follows: 

• We estimate a multinomial logit (MNL) model for severity of all accidents 

inside the 2-mile areas around all bridges (with and without design 

exceptions). We use model choice methodology described in detail in 

Section 2.3 to construct this model. 

• We define an auxiliary distance variable  nr̂   

⎩
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⎧
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},min{ˆ , Eq. 4.1 

 
where nr  is the distance between the nth accident and the nearby bridge, 

and R  is a radius of influence of the bridge on the neighboring accidents. 

Equation (4.1) implies that the value of the geographical distance nr  

(between the bridge and the nth accident) matters and is used only if 

Rrn ≤ , otherwise this value does not matter and is replaced by R . 

• We use variable nr̂ , given by Equation 4.1, as an explanatory variable in 

the multinomial logit (MNL) model for severity of all accidents inside the 

2-mile areas around all bridges. We estimate this model by the maximum 

likelihood estimation (MLE) method for different values of R , ( )0,2∈R , 

and find the dependence of the resulting log-likelihood (LL) at the MLE 

convergence on the value of R .11 The resulting dependence of LL on the 

value of R  is shown in Figure 4.1. Finally, we define the effective radius 

effR  of influence to be equal to the value of R  that maximizes LL.  

 

                                            
11 Note that the number of accident severity observations is independent of the value of R  and 
is equal to the number of accidents occurred inside the 2-mile areas around all bridges. 
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We use the above procedure and find that the effective radius of influence is 

miles55.0=effR . Hereafter, we consider only those accidents around bridges 

that occurred within this radius from the bridges. On the other hand, because 

roadway intervals are non-localized sites (curves on the map), we consider all 

accidents that occurred on the intervals. 

-3186
-3185.8
-3185.6
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-3184.3

-3184.25
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0.50 0.52 0.54 0.56 0.58 0.60

 

Figure 4.1 Dependence of the log-likelihood of MNL model of accident severity 
on the radius of influence R  

4.2. Results: standard MNL models of accident severities  

In this section we consider and estimate standard multinomial logit (MNL) 

models of accident severities. These models are specified by Equation (2.3) in 

CHAPTER 2.  
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First, we test whether severity of accidents near bridges (within mile55.0=effR  

radius) and severity of accidents on roadway intervals should be considered 

together or must be considered separately. We divide accident data into two 

bins: the first bin includes accidents occurred near bridges, and the second bin 

includes accidents on roadway intervals. We then use the likelihood ratio test, 

explained in Section 2.4, to test whether two MNL models estimated for severity 

of accidents in the two bins are statistically different. The test result, presented 

in Table 4.1, shows that the two models are statistically the same. Thus, the 

severity of accidents occurred near bridges and on roadway intervals should be 

considered together.  

Table 4.1 Likelihood ratio tests for standard MNL models of accident severity 

Test purpose M K )( mβLL  )( mβ∑ LL df p-value conclusion

compare bridges and intervals 2 19 -1840.03 -1827.22 19 0.141 the same 

compare DE and control sites 2 19 -1840.03 -1831.90 19 0.640 the same 

 

 

Next, by using the model choice methodology described in Section 2.3, we 

construct and estimate the best standard multinomial logit (MNL) model of 

severity of all accidents occurred near bridges (within mile55.0=effR  radius) 

and on roadway intervals. Summary statistics for explanatory variables used in 

the accident severity models is given in Table 4.2. The estimation results for this 

MNL model are given in Table 4.3.  

 

To determine whether the presence of design exceptions has any effect on 

accident severity, we carry out the following two tests: 

1. First, we include “design exception (DE) presence” indicator variable into 

the MNL model. We find that this variable is statistically insignificant (see 

Table 4.3). 
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2. Second, we divide data into two bins – the first bin contains all accidents 

that are near bridges and on roadway intervals with design exceptions 

(DEs), while the second bin contains all accidents near control bridges 

and on control intervals (without DEs). We estimate the best MNL model 

separately for severity of the accidents in the two bins.  Then, we carry 

out the likelihood ratio test (see Section 2.4) to determine whether there 

is a statistically significant difference between the two MNL models 

estimated for severity of the accidents in the two bins. The test result, 

given in Table 4.1, shows that there is no significant difference, and we 

do not need to distinguish between DE sites and control sites, while 

estimating accident severity.  

Thus, we find that design exception presence does not have any statistically 

significant effect on accident severity. 

 

Finally, as a test, we include “bridge” indicator variable into the best MNL model. 

We find that this variable is statistically insignificant (see Table 4.3). This 

confirms the result that severity of accidents occurred near bridges and on 

roadway intervals should be considered together, as earlier found by the 

likelihood ratio test. 

 



 

 

37

Table 4.2 Summary statistics for variables used in models of accident severity 

Variable Mean Standard 
deviation Minimum Maximum 

“Age of the oldest driver is ≥ 30 and < 40 years” indicator variable  0.189 0.391 0 1.00 
“Primary cause of accident is driver-related” indicator variable 0.858 0.349 0 1.00 
“Help arrived in 10 minutes or less after the crash” indicator variable  0.590 0.492 0 1.00 
“License state of the vehicle at fault is Indiana” indicator variable 0.794 0.405 0 1.00 
“Road classification is "interstate"” indicator variable 0.269 0.443 0 1.00 
“The largest number of occupants in all vehicles involved” quantitative 
variable 1.72 1.39 0 48.0 

“No road junction at the accident location” indicator variable 0.620 0.485 0 1.00 
“Age (in years) of the oldest vehicle involved” quantitative variable  8.44 5.24 -1.00 40.0 
“Traffic control device for the vehicle at fault is a signal” indicator variable  0.127 0.333 0 1.00 
“Roadway surface is covered by snow/slush” indicator variable 0.0529 0.224 0 1.00 
“Two vehicles are involved” indicator variable 0.705 0.456 0 1.00 
“Age (in years) of the vehicle at fault” quantitative variable 7.08 5.18 -1.00 38.0 
“Urban locality of the accident” indicator variable 0.680 0.466 0 1.00 
“Number of occupants in the vehicle at fault” quantitative variable 1.42 1.11 0 48.0 
“Posted speed limit (if the same for all vehicles involved)” quantitative 
variable 44.4 13.8 5.00 70.0 

“Gender of the driver at fault: 1 – female, 0 – male” indicator variable  0.389 0.487 0 1.00 
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Table 4.3 Estimation results for the standard MNL model of accident severities12 

Variable 

Coefficient (t-ratio) Averaged elasticities of variables

fatality injury )1(
;1 SLE  

=)2(
;1 SLE

)3(
;1 SLE=

)2(
;2 SLE  

=)1(
;2 SLE

)3(
;2 SLE=

Constant -6.01 (-10.5) -3.49 (-9.46) - - - - 
“Two vehicles are involved” indicator variable  -1.87 (-2.92) -.597 (-4.89) -1.32     .0020    -.333     .0887    
“Roadway surface is covered by snow/slush” indicator variable  -.545 (-2.49) -.545 (-2.49) -.0298    .0001    -.0258    .0041   
“Help arrived in 10 minutes or less after the crash” indicator 
variable  .367 (4.03) .367 (4.03) .216     -.0007    .166     -.0511    

“Number of occupants in the vehicle at fault” quantitative variable  -.159 (-2.66) -.159 (-2.66) -.233     .0007    -.185     .0480    
“The largest number of occupants in all vehicles involved” 
quantitative variable  .149 (3.00) .149 (3.00) .260     -.0007    .203     -.0579    

“Age (in years) of the vehicle at fault” quantitative variable  .140 (3.43) - .977     -.0048    - - 
“No road junction at the accident location” indicator variable  - -.227 (-2.39) - - -.114     .0261    
“License state of the vehicle at fault is Indiana” indicator variable  - .230 (2.09) - - .142     -.0396    
“Road classification is "interstate"” indicator variable  - -.343 (-2.64) - - -.0710    .0165    
“Urban locality of the accident” indicator variable  - -.344 (-2.76) - - -.184     .0470    
“Primary cause of accident is driver-related” indicator variable  - 1.58 (8.92) - - 1.02     -.308     
“Posted speed limit (if the same for all vehicles involved)” 
quantitative variable  - .0178 (3.27) - - .631     -.167     

“Traffic control device for the vehicle at fault is a signal” indicator 
variable  - .399 (3.22) - - .0361    -.0145    

“Gender of the driver at fault: 1 – female, 0 – male” indicator 
variable  - .178 (2.07) - - .0537    -.0157    

“Age (in years) of the oldest vehicle involved” quantitative variable - .0265 (3.18) - - .176     -.0508    
“Age of the oldest driver is ≥ 30 and < 40 years” indicator variable - .317 (3.10) - - .0462    -.0151    

                                            
12 Refer to Equations (2.3)–(2.5), where outcomes “1”, “2”, “3” correspond to “fatality”, “injury”, “PDO”.  
 



 

 

39

Table 4.3 (Continued) 

Variable 

Coefficient (t-ratio) Averaged elasticities of variables 

fatality injury )1(
;1 SLE  

=)2(
;1 SLE

)3(
;1 SLE=  

)2(
;2 SLE  

=)1(
;2 SLE

)3(
;2 SLE=

“DE presence” indicator variable  .497 (.815) -.0399 (-.434) .159 -.0007 -.0101 .0027 
“Bridge site” indicator variable  -.235 (-.383) .0634 (.653) -.136 .0004 .0288 -.0079 
Log-likelihood at MLE convergence -1840.03 
Restricted log-likelihood -1951.34 
Number of parameters 19 
Number of observations 3666 

2R  0.057 
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4.3. Results: mixed MNL models of accident severities 

In this section we consider and estimate mixed multinomial logit (MNL) models 

of accident severities. These models are given by Equation (2.7) in CHAPTER 

2.  

 

We follow the same procedures as in the previous section, where we 

considered standard MNL models. First, we use the likelihood ratio test in order 

to test whether severity of accidents near bridges (within mile55.0=effR  radius) 

and severity of accidents on roadway intervals should be considered together or 

must be considered separately. The test result, presented in the first row in  

Table 4.4, shows that the severity of accidents occurred near bridges and on 

roadway intervals should be considered together during estimation of mixed 

MNL models.  

Table 4.4 Likelihood ratio tests for mixed MNL models of accident severity 

Test purpose M K )( mβLL  )( mβ∑ LL df p-value conclusion
compare bridges and intervals 2 21 -1829.57 -1816.28 21 0.185 the same 
compare DE and control sites 2 21 -1830.53 -1816.92 21 0.164 the same 

 

 

Next, we construct and estimate the best mixed multinomial logit (MNL) model 

of severity of all accidents occurred near bridges (within mile55.0=effR  radius) 

and on roadway intervals. The estimation results for this mixed MNL model are 

given in Table 4.5. To find whether the presence of design exceptions has any 

effect on accident severity, we again carry out two tests: 

1. First, we include “design exception (DE) presence” indicator variable into 

the mixed MNL model. We find that this variable is statistically 

insignificant (see Table 4.5). 
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2. Second, we carry out the likelihood ratio test to determine whether there 

is a statistically significant difference between the two mixed MNL models 

estimated for severity of the accidents occurred at DE sites and control 

sites. The test result, given in the second row in Table 4.4, shows that 

there is no significant difference, and we do not need to distinguish 

between DE sites and control sites, while estimating mixed MNL models 

for accident severities.  

Thus, we again find that design exception presence does not have any 

statistically significant effect on accident severity. 

 

As a test, we again include “bridge” indicator variable into the best mixed MNL 

model. We find that this variable is statistically insignificant (see Table 4.5). This 

confirms the result that the severity of accidents that occurred near bridges and 

on roadway intervals should be considered together, as found by the likelihood 

ratio test. 

 

Turning to the specific model results shown in Table 4.5, The findings in this 

table show that the severity model has a very good overall fit (McFadden ρ2 

statistic above 0.5) and that the parameter estimates are of plausible sign, 

magnitude and average elasticity.  We find that two variables produce random 

parameters (in the mixed-logit formulation).  The indicator variable for having 

two vehicles involved in the crash was found to be normally distributed in the 

injury-crash outcome with a mean -1.85 and standard deviation of 2.65.  This 

means that for 75.7% of the observations having two vehicles involved in the 

crash reduced the probability of the injury outcome and for 24.3% of the 

observations having two vehicles involved increased the probability of an injury 

outcome. Also, the parameter for the interstate-highway indicator variable is 

uniformly distributed with a mean of -2.26 and a standard deviation of 6.03. 

Some other interesting results included the age of the at-fault vehicle (where 

elasticity values show that a 1% increase in at-fault vehicle age increases the 
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probability of a fatal injury by 0.972%) and the age of the oldest vehicle involved 

in the accident (which also increased the probability of an injury).  These two 

variables may be capturing improvements in safety technologies on newer 

vehicles. 

 

The presence of snow and slush was found to reduce the probability of fatality 

and injury, likely due to lower levels of friction which may increase collision time 

and, therefore, allow energy to be more easily dissipated during a crash. 

Accidents that did not occur at an intersection and those that occurred in urban 

areas were less likely to result in an injury (by an average of 12.9% and 21% 

respectively as indicated by the average elasticities).  Finally, accidents 

involving female drivers who were at fault, having the at-fault vehicle under 

signal control, having higher posted speed limits, and having driver-related 

causes indicated as the primary cause of the accident all resulted in a higher 

likelihood of an injury accident. 
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Table 4.5 Estimation results for the mixed MNL model of accident severities13 

Variable 
Coefficient (t-ratio) Averaged elasticities of variables 
fatality injury )1(

;1 SLE  )2(
;1 SLE  )3(

;1 SLE  )1(
;2 SLE  )2(

;2 SLE  )3(
;2 SLE  

Fixed parameters 
Constant -6.09 (-10.4) -4.59 (-7.26) - - - - - - 
“Two vehicles are involved” indicator variable  -2.41 (-3.63) - -1.45 .0012 .0030 - - - 
“Roadway surface is covered by snow/slush” indicator 
variable  -.843 (-2.41) -.843 (-2.41) -.0460 .0001 .0002 .0038 -.0255 .0038 

“Help arrived in 10 minutes or less after the crash” 
indicator variable  .609 (3.69) .609 (3.69) .358 -.0008 -.0014 -.0488 .1576 -.0488

“Number of occupants in the vehicle at fault” 
quantitative variable  -.328 (-2.54) -.328 (-2.54) -.479 .0010 .0016 .0574 -.2301 .0574 

“The largest number of occupants in all vehicles 
involved” quantitative variable  .303 (2.70) .303 (2.70) .526 -.0013 -.0040 -.0666 .243 -.0666

“Age (in years) of the vehicle at fault” quantitative 
variable  .139 (3.38) - .972 -.0033 -.0055 - - - 

“No road junction at the accident location” indicator 
variable  - -.409 (-2.43) - - - .0285 -.129 .0285 

“License state of the vehicle at fault is Indiana” 
indicator variable  - .390 (2.11) - - - -.0390 .145 -.0390

“Urban locality of the accident” indicator variable  - -.686 (-2.78) - - - .0533 -.210 .0533 
“Primary cause of accident is driver-related” indicator 
variable  - 2.27 (8.28) - - - -.255 .814 -.255 

“Posted speed limit (if the same for all vehicles 
involved)” quantitative variable  - .0239 (2.66) - - - -.129 .511 -.129 

“Traffic control device for the vehicle at fault is a 
signal” indicator variable  - .724 (2.90) - - - -.0146 .0353 -.0146

                                            
13 Refer to Equations (2.3)–(2.5), where outcomes “1”, “2”, “3” correspond to “fatality”, “injury”, “PDO”.  
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Table 4.5 (Continued) 

Variable 
Coefficient (t-ratio) Averaged elasticities of variables 
fatality injury )1(

;1 SLE  )2(
;1 SLE  )3(

;1 SLE  )1(
;2 SLE  )2(

;2 SLE  )3(
;2 SLE  

“Gender of the driver at fault: 1 – female, 0 – male” 
indicator variable  - .308 (2.06) - - - -.0155 .0543 -.0155

“age (in years) of the oldest vehicle involved” 
quantitative variable  - .0417 (2.96) - - - -.0457 .160 -.0457

“age of the oldest driver is ≥ 30 and  
< 40 years” indicator variable  - .577 (3.12) - - - -.0162 .0501 -.0162

“DE presence” indicator variable  .460 (.752) -.0974 (-.622) .147 -.0004 -.0007 .0038 -.0149 .0038 
“bridge site” indicator variable  -.244 (-.395) .175 (1.11) -.141 .0003 .0005 -.0119 .0443 -.0119

Random parameters 
“Two vehicles are involved” indicator variable  - -1.85 (-3.67) - - - .0223 -.0185 .0223 
“Road classification is "interstate"” indicator variable  - -2.26 (-2.59) - - - -.0141   .104 -.0141

Standard deviations of parameter distributions 

“Two vehicles are involved” indicator variable  - 2.65 (3.86) 
normal - - - - - - 

“Road classification is "interstate"” indicator variable  - 6.03 (3.74) 
uniform - - - - - - 

Log-likelihood at MLE convergence -1828.38 
Restricted log-likelihood -1951.34 
Number of parameters 21 
Number of observations 3666 

2R  0.546 
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CHAPTER 5. ACCIDENT FREQUENCY STUDY 

In this chapter we study five-year frequencies of accidents and their 

dependence on the presence/absence of design exceptions and other factors. 

Below, we first explain how we use the available accident data and estimate 

statistical models of accident frequencies. Then, we present the results obtained 

from the estimation of these models for accidents that happened in Indiana in 

2003-2007.  

5.1. Modeling Procedures: accident frequency 

A five-year accident frequency nA  is the number of accidents occurred on the 

nth roadway segment during a given five-year time period. In this study, we use 

negative binomial models for modeling of five-year accident frequencies (see 

Section 2.2). In addition, we also considered negative binomial models of 

annual accident frequencies. However, in this case we encountered likelihood 

convergence problems, which were due to the presence of repeat observations 

(each roadway segment is observed during five years) and a resulting 

correlation of error terms in the estimated models.14 As a result, in this study we 

focus only on the results of modeling of five-year accident frequencies. All major 

findings and conclusions reported below for five-year accident frequencies were 

found to hold for annual accident frequencies as well. 

 

As was the case with accident severity, we use the effective radius of influence 

around bridges to be miles55.0=effR . (Keep in mind that effR  is the radius of a 

                                            
14 The presence of this correlation was confirmed by estimation of negative monomial models 
with random effects for annual accident frequencies. 
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circular area around a bridge within which occurring accidents are influenced by 

the presence of the bridge.) As a result, for DE and control bridges we choose 

1.1-mile long roadway segments around the bridges ( 55.0=effR  each way from 

each bridge), and then consider these segments. As far as DE and control 

roadway intervals are concerned, we choose roadway segments by dividing 

these intervals into smaller segments that have the same AADT (averaged 

annual daily traffic), same number of lanes, etc.  This gives 143 roadway 

segments from the original sample of 26 design exceptions and 71 control 

segments. 

 

In order to find important explanatory variables and best negative binomial 

models, we use model choice methodology described in detail in Section 2.3 of 

CHAPTER 2. 

5.2. Results: negative binomial models of accident frequencies  

In this section we consider and estimate standard negative binomial (NB) and 

mixed negative binomial models of five-year accident frequencies. These 

models are given by Equations (2.8) and (2.10) in CHAPTER 2 respectively.  

 

We attempted the estimation of a random parameters negative binomial model 

as shown in Equation (2.10). Trying various distributions, all estimated 

parameters were determined to be fixed at the likelihood convergence (standard 

deviations of parameter estimates across the population were not significantly 

different from zero implying that the parameters were fixed across 

observations). Thus, standard negative binomial models are estimated on five-

year accident frequencies, and 122 of the 143 road segments had complete 

data for use in the accident-frequency model estimation. For these 122 road 

segments, the average 5-year accident frequency was 34.84 with a standard 

deviation of 65.51.  
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The negative binomial estimation results are given in Table 5.1 along with the 

marginal effects as previously discussed.  The results show that the parameter 

estimates are of plausible sign and magnitude and the overall statistical fit is 

quite good (McFadden ρ2 statistic above 0.75). 

Table 5.1 Estimation results for the standard NB model of 5-year accident 
frequencies (at bridges and on roadway intervals) 

Variable Coefficient t-ratio Marginal 
effects 

Constant 3.12 7.23 - 
“Locality of the road: 1 – urban, 0 – rural” indicator 
variable  1.80 4.43 71.9 

“Degree of curvature of the sharpest horizontal curve 
on the road segment” quantitative variable  -0.0562 -2.08 -2.24 

“Average annual daily traffic  per lane in thousands” 
quantitative variable  0.0509 2.28 2.04 

“Logarithm of a roadway segment length” quantitative 
variable  0.937 2.83 37.5 

“Total number of ramps” quantitative variable  0.163 2.00 6.52 
“Roadway surface is "blacktop"” indicator variable  -1.08 -3.13 -43.4 
“Interior shoulder presence” indicator variable  -1.25 -3.10 -50.1 
“Median width is less than 30 feet” indicator variable -0.905 -2.55 -36.2 
Over-dispersion parameter (alpha) 1.37 7.94 - 
“DE presence” indicator variable 0.0601 0.204 - 
“bridge site” indicator variable -0.155 -0.414 - 
Log-likelihood at MLE convergence -472.77 
Restricted log-likelihood -1963.29 
Number of parameters 10 
Number of observations 122 

2R  0.759 
 

Table 5.1 shows that the design exception parameter is statistically insignificant 

again suggesting that design exceptions do not have a statistically significant 

impact on the frequency of accidents.15   

 

                                            
15 The bridge-segment indicator variable was also statistically insignificant suggesting 
no difference between bridge and non-bridge segments. 
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Turning to the specific model results shown in Table 5.1, we find that urban 

roads have a significantly higher number of accidents and that the higher the 

degree of curvature (defined as 18000 divided by π times the radius of the curve 

in feet), the lower the accident risk.  This second finding seems counterintuitive 

(sharper curves result in fewer accidents) but this could be reflecting the fact 

that drivers may be responding to sharp curves by driving more cautiously 

and/or that such curves are on lower design-speed segments with inherently 

lower accident risk. Other results in Table 5.1 show that: increases in average 

annual daily traffic per lane increase accident frequencies (the marginal effect 

shows that for every 1000 vehicle increase in AADT per lane the 5-year 

accident frequency goes up by 2.04 accidents); longer road-segment lengths 

increase accident frequencies (this is an exposure variable because it is related 

to the number of miles driven on the roadway segment); and for interstates the 

higher the number of ramps the greater the number of accidents (with marginal 

effects indicating that each ramp increases the 5-year accident rate by 6.52 

accidents). 

 

The asphalt surface indicator was found to result in fewer accidents.  This is 

likely capturing unobserved information relating to pavement friction and 

condition (as measured by the International Roughness Index, rutting 

measurements, and so on) because other studies with detailed pavement-

condition information have found the type of roadway surface (concrete or 

asphalt) to be statistically insignificant (see Anastasopoulos et al., 2008 and 

Anastasopoulos and Mannering, 2009).  Finally, for multilane highways, the 

presence of an interior shoulder and medians widths of less than 30 feet were 

found to decrease accident frequency.  This latter finding is likely capturing 

unobserved characteristics associated with highway segments that had medians 

of 30ft or more (which was about 55% of the sample). 
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We also conducted likelihood ratio tests as was done for the mixed-logit severity 

analysis. The test statistic X2, given by Equation (2.14) was 23.00 with 10 

degrees of freedom. The corresponding p-value based on the χ2 distribution, is 

0.0107 (the critical χ2 value at the 90% confidence level is 15.99). However, 

because we have only a limited number of accident-frequency observations 

(equal to 122), the parameter estimates of the separate frequency models (for 

design exception and non-design exception segments) are not necessarily 

statistically reliable (high standard errors) and the asymptotic χ2 distribution is 

likely to be a poor approximation for the test statistic X 2. To resolve this 

problem, Monte Carlo simulations can be undertaken to find the true distribution 

of the test statistic X 2. This is done by first generating a large number of 

artificial data sets under the null hypothesis that the model is the same for 

segments with and without design exceptions. Then the test statistic values X 2, 

given by Equation (2.14), for each of the simulated data sets are computed, and 

these values are used to find the true probability distribution of X 2. This 

distribution is then used for determining the p-value that corresponds to the X 2 

calculated for the actual observed data. The p-value is then used for the 

inference. This Monte-Carlo-simulations-based approach to the likelihood ratio 

test is universal, it works for any number of observations (Cowen, 1998). 

 

The true p-value, calculated by using the simulations-based distribution of X 2 is 

0.0311, which is about three times larger than the approximate χ2-based value 

0.0107. However, both these values are below 5%. Therefore, the hypothesis 

that design exception and non-design exception sites were statistically the same 

is rejected, and it can be concluded that design exceptions have a statistically 

significant effect on accident frequencies. This is an extremely important finding.  

The fact that the indicator variable for design exceptions was found to be 

statistically insignificant suggests that the difference between design exception 

and non-design exception segments in terms of higher accident frequencies is 

not significant.  However, the likelihood ratio test results suggest that the 
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process (estimated parameters) generating the accident frequencies of the 

design exception and non-design exception segments are significantly different. 

This has important implications in that potential changes in explanatory 

variables X could produce significantly different accidents frequencies between 

design exception and non-design exception segments.  While more data would 

be needed to completely uncover these effects, this finding indicates that 

caution needs to be exercised even when granting design exceptions that 

appear to have been acceptable based on historical data. 

 

Finally for additional background information on the frequency data, Table 5.2 

presents summary statistics for the full 143 segments in the  roadway sample. 

Table 5.2 Summary statistics for variables used in models of accident frequency 

Variable Mean Standard 
deviation Minimum Maximum

“5-year accident frequency on segment” dependent 
variable 41.13 101.23 0 877 

“Average annual daily traffic per lane in thousands” 
quantitative variable 10.28 9.12 0.12 45.20 

“Roadway surface is "blacktop"” indicator variable 0.238 0.426 0 1.00 
“Degree of curvature of the sharpest horizontal curve 
on the road segment” 6.067 17.4 0 109 

“Median width is less than 30 feet” indicator variable 0.566 0.496 0 1.00 
“Logarithm of a roadway segment length” 
quantitative variable  0.274 0.463 -0.916 1.89 

“Locality of the road: 1 – urban, 0 – rural” indicator 
variable  0.266 0.442 0 1.00 

“Interior shoulder presence” indicator variable  0.566 0.496 0 1.00 
“Total number of ramps” quantitative variable  1.14 2.03 0 9.00 
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CHAPTER 6. DISCUSSION 

Overall, our results suggest that the current process used to grant design 

exceptions has been sufficiently strict to avoid adverse safety consequences 

resulting from design exceptions – although the finding that different processes 

may be generating the frequencies of accidents in design exception and non-

design exception segments is cause for concern with regard to future granting of 

design exceptions. 

 

Our specific findings (even with the limited data available to us) provide some 

insight into areas where caution should be exercised when granting Level One 

design exceptions.  With regard to the severity of accidents, while most of the 

factors that affected severity were driver characteristics, we did find that urban-

area accidents have a lower likelihood of injury and that the posted speed limit 

is critical (higher speed limits result in a significantly higher probability of an 

injury accident).  Thus, urban/rural location and design exceptions on highways 

with higher speed limits need to be given careful scrutiny. 

 

With regard to the frequency of accidents, we find that horizontal curvature is 

critical and thus special attention needs to be paid to design exceptions relating 

to horizontal curves.  For multilane highways, the presence of interior shoulders 

was found to significantly reduce the frequency of accidents so this should be 

considered carefully when granting design exceptions.  Also, higher accident 

frequencies were found in urban areas suggesting that special attention should 

be given to design exceptions that could compromise safety in these areas (as 

expected, urban areas have higher accident frequencies but lower severities).  
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Finally, the asphalt-surface indicator was found to result in fewer accidents.  As 

stated previously, this is likely capturing unobserved information relating to 

pavement friction and condition (as measured by the International Roughness 

Index, rutting measurements, and so on), and suggests that friction and 

pavement conditions have to be watched closely when design exceptions are 

granted. 

 

In terms of a process in the form of a decision support system for guiding future 

Level One design exceptions, the statistical findings of this research effort 

suggest that using previous design exceptions as precedents would be a good 

starting point.  While the current study indicates that the design exceptions 

granted over the 1998-2003 timeframe have not adversely affected overall 

safety, the number of available design exceptions is too small to make broad 

statements with regard to policy.  Thus, a case by case comparison with 

previously granted design exceptions is the only course of action that can be 

recommended. 
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Appendix A.  

List of all explanatory variables considered for accident severity study: 
 
X3  – Collision date 
 
X4  – Day of the week 
 
X5 – Collision time  
 
X13 – Construction  
  (no; yes; buck-up of traffic outside of but due to construction zone) 
 
X14 – Light condition  
  (daylight; dawn / dusk; dark with street lights on; dark with no lights) 
 
X15 – Weather condition 

(clear; cloudy; sleet/hail / freezing rain; fog / smoke / smog; rain; snow; 
severe cross wind) 

 
X16 – Surface condition 
  (dry; wet; muddy; snow / slush; ice; loose material on roadway; water) 
 
X17 – Type of median 
  (drivable; curbed; barrier wall; none) 
 
X18 – Type of roadway junction  

(no junction involved; four-way intersection; ramp T-intersection;              
Y-intersection; traffic circle / roundabout; five point or more; interchange) 

 
X19 – Road character 

(straight / level; straight / grade; straight / hillcrest; curve / level; curve / 
grade; curve / hillcrest; non roadway crash) 

 
X20 – Primary contributing circumstance 

(alcoholic beverages; illegal drugs; driver asleep or fatigue; prescription 
drugs; driver illness; unsafe speed; failure to yield right of way; disregard 
signal / red signal; left of center; improper passing; improper turning; 
improper lane usage; following too closely; unsafe backing; 
overcorrecting / oversteering; ran off road right; ran off road left; wrong 
way on one way; pedestrian action; passenger distraction; violation of 
license restriction; jackknifing; cell phone usage; other telematics in use; 
other (explain in narrative); driver distracted [explain in narrative]; speed 
too fast for weather conditions; engine failure or defective; accelerator 
failure or defective; brake failure or defective; tire failure or defective; 
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headlight defective or not on; other lights defective; steering failure; 
window / windshield defective; oversize / overweight load; insecure / 
leaky load; tow hitch failure; other explained in narrative; glare; roadway 
surface condition; holes / ruts in surface; shoulder defective; road under 
construction; severe crosswinds; obstruction not marked; lane marking 
obscured; view  obstructed; animal on roadway; traffic control problem; 
other [explained in narrative]; utility work) 

 
X22 – Time when help arrived  
 
X25 – Vehicle type, considered for the    vehicle     at fault, i.e. for the vehicle that 

contributed to the primary cause of an accident 
(passenger car / station wagon; pickup; van; sport utility vehicle; truck 
[single 2 axle, 6 tires]; truck [single 3 or more axles]; truck / trailer [not 
semi]; tractor / one semi trailer; tractor / double trailer; tractor / triple 
trailer tractor [cab only, no trailer]; motor home / recreational vehicle; 
motorcycle; bus/seats 9-15 persons with driver; bus / seats 15+ persons 
with driver; school bus; unknown type; farm vehicle; combination vehicle; 
pedestrian; bicycle) 

 
X26  – Vehicle year, considered for all vehicles involved 
 
X27 – Number of occupants, considered for all vehicles involved 
 
X28 – Vehicle license state, considered for the vehicle at fault, i.e. for the 

vehicle that contributed to the primary cause of an accident 
  (Indiana; Indiana’s neighboring states [IL, KY, OH, MI]; other US states; 
  Canada / Mexico / U.S. Territories; other foreign countries) 
 
X29 – Speed limit, considered only if known and the same speed limit value for 
  all vehicles involved 
 
X30 – Road type, considered for the vehicle at fault, i.e. for the vehicle 

contributed to the primary cause of an accident  
(one lane [one way]; two lanes [one way]; multi-lanes [one way]; two 
lanes [two way]; multi-lane undivided [two way]; multi-lane undivided 2-
way left [two way]; multi-lane divided 3 or more lanes [two way]; alley; 
private drive) 

 
X31 – Traffic control, considered for the vehicle at fault, i.e. for the vehicle 

contributed to the primary cause of an accident  
(officer / crossing guard / flagman; RR crossing gate / flagman; RR 
crossing flashing signal; RR crossing sign; traffic control signal; flashing 
signal; stop sign; yield sign; lane control; no passing zone; other 
regulatory sign / marking; none) 
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X33 – Fire, considered for all vehicles involved  
  (no; yes) 
 
X34 – Driver age, considered for all drivers involved  
 
X35 – Driver gender, considered for all drivers involved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

60

Appendix B.  

List of all explanatory variables considered for accident frequency study: 
 
X2  – Number of accidents on a roadway segment during a five-year period 
 
X7  – Site characteristics 
  (design exception (DE) site ; control (not DE) site) 
 
X8 – Site type 
  (bridge; interval)  
 
X9 – Roadway classification  
  (interstate; US route; state route; county road; city street; unknown ) 
 
X10 – Rumble strips presence   
  (no; yes) 
 
X11 – Type of median 
  (drivable; curbed; barrier wall; none) 
 
X12 – Roadway surface   
  (concrete; blacktop; brick; dirt / gravel; other) 
 
X13 – Speed limit, in miles per hour 
 
X14 – Road type, considered for the vehicle at fault, i.e. for the vehicle   

contributed to the primary cause of an accident  
(one lane [one way]; two lanes [one way]; multi-lanes [one way]; two 
lanes [two way]; multi-lane undivided [two way]; multi-lane undivided 2-
way left [two way]; multi-lane divided 3 or more lanes [two way]; alley; 
private drive) 

 
X15 – Length of the roadway segment, in miles 
 
X16 – Locality of the roadway segment 
  (urban; rural) 
 
X15 – Number of lanes on the travel way (in one direction) 
 
X16 – Surface of the median section 
  (paved; grass; grass with trees; grass with bushes; other; none) 
 
X19 – Width of the median section, in feet 
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X20 – Interior shoulder presence   
  (no; yes) 
 
X21 – Interior shoulder width, in feet  
  (no; yes) 
 
X22 – Outside shoulder presence   
  (no; yes) 
 
X23 – Outside shoulder width, in feet  
  (no; yes) 
 
X24 – Number of bridges along the roadway segment 
 
X25 – Number of horizontal curves along the roadway segment 
  
X28 – Length of the sharpest horizontal curve, in miles 
 
X29 – Radius of the sharpest horizontal curve, in miles 
 
X30 – Number of ramps along the roadway segment 
 
X34 – Average Annual Daily Traffic, in vehicles per day 
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Appendix C.  

Indiana State map with numbers of design exceptions shown in counties 
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