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ABSTRACT 
 

This study measures the COPs of R744/R32/R1234yf and R32/R1234yf with GWPs of approximately 300 and 200 

under two heating modes in experimentally and analytically, where the heat sink water change temperature 10 K and 

25 K. In experiment, COP of Ternary 300 and Binary 300 are comparable to that of R410A. In analysis, COP of 

Ternary 300, Binary 300 and Binary 200 are higher than that of R410A. Even if temperature glide of zeotropic 

mixture equal to water temperature change in the heat exchanger, irreversible loss in heat exchanger increases 

because of lower heat transfer performance of heat exchanger. COP of Ternary 300, Binary 300 and Binary 200 are 

higher than that of R410A in experiment if compressor is improved and the diameter of connecting pipe and heat 

exchanger is increased. 

1. INTRODUCTION 
 

Hydro-fluorocarbons (HFCs) are widely used as refrigerants in air-conditioning and refrigeration systems.  At the 

1997 Kyoto Conference (COP3), it was determined that the product and use of HFCs should be regulated due to 

their high global warming potential (GWP).  Therefore, several studies related to Hydro-fluoro-olefins (HFOs) have 

been reported in the past decade.  In the above mentioned situation for the air-conditioning and refrigeration systems, 

recently, R1234yf is nominated as one of the alternates of HFCs, due to its extremely low GWP.  The heating 

capacity of heat pump cycles using R1234yf is, however, expected to be lower than that of R410A currently most 

used, because of its lower vapor density and latent heat.  To achieve performance equal to R410A, much larger unit 

is required.  In the previous studies (Kojima et al., 2015), drop-in experiments on heat pump cycle  using  mixtures 

of R1234yf/R32 was carried out; R32 was selected as the second component to increase vapor density and latent 

heat.  It was found that mixtures of R1234yf/R32 were strong candidates for replacing R410A.  In this study, adding, 

to reduce GWP furthermore as maintaining the volumetric capacity, adding R744 to R-32/1234ze(E) was therefore 

attempted.   

 

On other hand, the mixtures of R744/R32/R1234yf and R32/R1234yf are zeotropic and have a temperature change 

during the phase-change, typically called temperature glide.  When the temperature glide is utilized effectively, the 

irreversible loss or exergy loss in heat exchangers is reduced and the cycle performance is improved (e.g., Jakobs 

and Kruse, 1978, Kruse, 1981, McLinden and Radermacher, 1987, Swinney et al., 1998).  The temperature glide is 

determined by the composition and pressure of refrigerant mixture.   
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In this study, the cycle performance of the binary mixture R32/R1234yf and the ternary mixture R744/R32/R1234yf 

are experimentally compared for their compositions corresponding to GWP of 200 and 300. Additionally, to 

understand the feasibility of zeotropic refrigerant, irreversible losses in each element are discussed on the 

experimental data that changing heat sink water temperature of condensation inlet and outlet  

 

 

2. EXPERIMENTAL SETUP AND METHOD 
 

2.1 Experimental Setup 
Figure 1 shows an experimental apparatus, which is a water heat source vapor compression cycle.  The experimental 

apparatus consists of three loops of refrigerant, and cooling and heating water.  The refrigerant loop is composed of 

a manually controlled hermetic type rotary compressor, an oil separator, a condenser, a liquid receiver, a solenoid 

expansion valve and an evaporator.  Using constant-temperature bathes, certain temperature cooling and heating 

water are supplied to the condenser and the evaporator.  Four mixing chambers are installed between each 

component in the refrigerant loop for measuring the pressure and the bulk mean temperature of refrigerant.  The 

other four mixing chambers are installed in water loops for measuring bulk mean temperatures of water.  The 

dimensions of the condenser and the evaporator are specified in Table 1.  Those heat exchangers are both 7200 mm 

long counter flow double-tube type coils.  The refrigerant flows in the inner micro-fin tube, while the water 

simulating cooling or heating load flows the annulus.  Circulating subcooled liquid is sampled at the inlet of 

expansion valve and the mass fractions of each component are measured by the gas chromatography.   

 

2.2 Experimental Method 

2.1.1 Test conditions: Table 2 lists the experimental conditions at heating mode 1 and heating mode 2.  The degree 

of superheat at evaporator outlet is fixed at 3 K for entire experimental conditions.  For heating mode 1, water 

temperatures are fixed as follows.  At condenser inlet and outlet, they are kept at 293.15 K and 303.15 K, 

respectively.  At evaporator inlet and outlet, they are kept at 288.15 K and 282.15 K, respectively.  Similarly, for 

heating mode 2, water temperatures at condenser inlet and outlet are kept at 293.15 K to 318.15 K, respectively, and 

water temperatures at evaporator inlet and outlet are kept at 288.15 K and 282.15 K, respectively. In two heating 

modes, the heating load is 2.2 kW. 

 

2.2.2 Test refrigerants: Table 3 lists the test refrigerants and their properties: GWP of a 100 year time horizon, 

normal boiling point, temperature glide at average temperature of 308.15 K, and volumetric capacity defined as the 

product of latent heat and saturated vapor density.  The compositions of the ternary mixtures R744/R32/R1234yf 

Table 1: Specifications of the heat exchangers 

 Outside diameter [mm] Inside diameter [mm] Length [mm] Type of tube 
Condenser 

Outer tube 15.88 13.88 7200 Smooth tube 
Inner tube 9.53 7.53 7200 Micro-fin tube 

Evaporator 
Outer tube 15.88 13.88 7200 Smooth tube 
Inner tube 9.53 7.53 7200 Micro-fin tube 

 

 
 

Figure 1: Schematic view of experimental apparatus 
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and binary mixtures R32/R1234yf are determined from the criteria at GWP100 of 200 and 300. 

 

2.3 Data reduction 

The heating load, namely, the heat transfer rates in the condenser is calculated from the refrigerant-side heat balance, 

as follows: 

 outCOND,inCOND,refCOND hhmQ         (1) 

The heat transfer rate QCOND corresponds to the capacities or the heat loads of the heating mode operations.  The 

deviation of those heat loads was confirmed to be within 5 %.  COP of heating modes, COPh is obtained from the 

above heat load and the compression work, WCOMPR, which is found from the specific enthalpy difference between 

the compressor suction and discharge. 

inCOMPR,outCOMPR,

outCOND,inCOND,

COMPR

COND
h

hh

hh

W

Q
COP




       (2) 

The COPh takes into account the compressor isentropic efficiency, but not the mechanical, volumetric, and inverter 

efficiencies. The propagated measurement uncertainty in the COPh was within 5%.  For the performance assessment 

of heat pump cycles, the irreversible loss (de’Rossi et al., 1991) is calculated as follows. The total irreversible loss 

during cycling, Ltotal, can be divided into the following irreversible losses of the main elements (e.g., compressor and 

evaporator) and also the heat loss and pressure drop, as follows: 

PHCOMPREXPEVACONDtotal LLLLLLL       (3) 

Figure 2 illustrates irreversible losses generated in condenser, evaporator, expansion valve, compressor (departure 

from the isentropic compression), and connecting pipe in a T-s diagram.  In the figure, water temperature and 

refrigerant temperature are plotted against the entropy generation rate.  The irreversible losses per refrigerant mass 

in each component are calculated as follow, 

   dsTTL
s

s 
outCOND,

inCOND,

WRCOND        (4) 

 dsTTL
s

s 
outEVA,

inEVA,

RWEVA        (5) 

dsTL
s

s
outEXP,

inEXP,

REXP         (6) 

Table 2: Experimental conditions 

 Heating mode 1 Heating mode 2 

Heat source temperature [K] 288.15→ 282.15 (ΔT = 6 K) 

Heat sink temperature [K] 293.15→303.15 (ΔT = 10 K) 293.15→318.15 (ΔT = 25 K) 

Degree of superheat [K] 3 

Heat transfer rate [kW] 

(Heating/cooling heat load) 
2.2 

 

Table 3: Comparison of properties between test refrigerants 

designation GWP100 NBP Temp. glide * vol. capacity *

[K] [K] [MJ･m-3
]

(Ternary300) 4/44/52 298 222.30 6.7 14.00

(Ternary200) 5/28/67 190 223.99 10.6 13.03

(Binary300) 43/57 292 226.55 4.0 12.56

(Binary200) 28/72 190 229.74 6.2 11.21

2088 221.74 0.1 15.04

composition (mass%)

R32/

R1234yf

R744/R32/

R1234yf

R410A
 

*Bulk temperature 308.15 K 
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dsTL
s

s
outCOMPR,

inCOMPR,

RCOMPR         (7) 

Figure 3 illustrates the irreversible loss caused by pressure drop in a T-s diagram. The solid lines denote an actual 

cycle and the dashed lines denote an ideal cycle without pressure drop. The irreversible losses caused by pressure 

drop are expressed as hatched areas edged by the solid and dashed lines.  

 

3. THERMODAINAMIC ANALYSIS METHOD 
 

3.1 Calculation condition of thermodynamic analysis 

Table 4 lists the analysis conditions at heating mode 1 and heating mode 2 that is the same as experimental condition.  

Efficiency of compressor is 1.0 to calculate ideal cycle.  Calculated refrigerants are the same as experimental test 

refrigerants in table 3. 

 

3.2 Calculation method of thermodynamic analysis 

The calculations of type A and Type B are carried out.  As shown in Figure 4(a), the calculation of type A is that 

                       
Figure 2: Irreversible loss in each element                   Figure 3: Irreversible loss by pressure drop 

 

                                 
(a) type A (temp. glide is smaller)                            (b) type B (temp. glide is larger) 

Figure 4: Calculation method of thermodynamic analysis 
 

Table 4: Analysis conditions 

 Heating mode 1 Heating mode 2 

Heat source temperature [K] 288.15→ 282.15 (ΔT = 9 K) 

Heat sink temperature [K] 293.15→303.15 (ΔT = 10 K) 293.15→318.15 (ΔT = 25 K) 

Degree of superheat [K] 3 

Heat transfer rate [kW] 

(Heating/cooling heat load) 
2.2 

Efficiency of Compressor [-] 1.0 
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temperature glide of refrigerant is smaller than water temperature difference in the heat exchanger inlet and outlet.  

On the other hand, the calculation of type B is that temperature glide of refrigerant is larger as shown in Figure 4(b).  

The condensation and evaporation pressure is decided so that pinch points (temperature difference between 

refrigerant and water) become 0 K.  

 

 

4. EXPERIMENTAL AND ANALYSIS RESULTS 

 

4.1 Coefficient of performance (COP) 
Figure 5 shows coefficient of performance for heating mode 1 and heating mode 2 in the experiment, where blue, 

red, green, purple and orange represent the results obtained for ternary 300, ternary 200, binary 300, binary 200 and 

R410A, respectively.  The refrigerant charge is varied to find the maximum COP during the experiment.  The 

optimized charge is determined as the refrigerant amount exhibits the highest COP at the most of conditions for each 

test refrigerant.  The series of experimental data are obtained at that optimized refrigerant charge.  For the heating 

mode 1, the COP of ternary300 and binery300 are comparable to that of R410A.  The COP of ternary 200 and 

binary 200 are lower than that of R410A. For the heating mode 2, the COP trend due to differences in refrigerant is 

the same as that of heating mode 1.  The difference in COP due to difference in refrigerant of heating mode 2 is, 

                        
Figure 5: COP in the experiment                       Figure 6: COP in the analysis 

                        
(a) Experimental result                                             (b) Analysis result  

Figure 7: Irreversible loss in condenser 
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                               (a) heating mode 1                                                       (b) heating mode 2 

Figure 8: Temperature distribution in condenser in experiment 
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however, smaller than that of heating mode 1.   

 

Figure 6 shows COP for heating mode 1 and heating mode 2 in the analysis.  For heating mode 1, the COP of 

ternary 300, binary 300 and binary 200 are higher than that of R410A.  For heating mode 2, the COP trend due to 

differences in refrigerant is the same as that of heating mode 1.  The difference in COP due to difference in 

refrigerant of heating mode 2 is, however, smaller than that of heating mode 1.  Compared with results in 

experiment and results in analysis, the COP trend due to differences in refrigerant in experiment differ from that in 

analysis.   

 

 

4.2 Irreversible Loss of Condenser, Evaporator and Expansion Valve 

Figure 7 (a) and (b) shows irreversible loss in condenser in experiment and analysis for heating mode 1 and heating 

mode 2.  Symbols indicate the refrigerants in the same rule as in Figure 5.  For heating mode 1, the irreversible loss 

in condenser of Ternary 200 is the largest among test refrigerants in experiment (Figure 7 (a)); the irreversible loss 

in condenser of R410A is, however, the largest among test refrigerants in analysis (Figure 7 (b).  For heating mode 2, 

the trend of irreversible loss in condenser due to difference in refrigerant in experiment is the same as that in 

analysis. 

The irreversible losses generated in condenser are determined by the mean temperature difference between 

refrigerant and heat sink water. Figure 8 (a) and (b) explains the temperature distribution in condenser for heating 

mode 1 and heating mode 2 in experiment.  For heating mode 1, mean temperature difference between R410A and 

heat sink water is the smallest and mean temperature difference between Ternary 200 and heat sink water is the 

largest despite the temperature glide of Ternary 200 equal to water temperature change in the condenser.  These 

causes are lower heat transfer coefficient of zeotropic mixture and lower heat transfer performance of heat 

exchanger.  For heating mode 2, in all refrigerants, the temperature differences between refrigerant and heat sink 

water in condensing start point are much the same.  Thus the trend of irreversible loss in condenser due to difference 

in refrigerant in experiment is the same as that in analysis.   

 

Figure 9 (a) and (b) shows irreversible loss in evaporator in experiment and analysis for heating mode 1 and heating 

mode 2.  Symbols indicate the refrigerants in the same rule as in Figure 5.  Both in experiment results and analysis 

results, in all test refrigerants, the irreversible losses in evaporator for heating mode 1 are the same as that for 

heating mode 2.  For heating mode 1 and heating mode 2, the trend of irreversible loss in condenser due to 

                        
(a) Experimental result                                             (b) Analysis result  

Figure 9: Irreversible loss in evaporator 
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                               (a) heating mode 1                                                        (b) heating mode 2 

Figure 10: Temperature distribution in evaporator in experiment 
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difference in refrigerant in experiment is the same as that in analysis except irreversible loss in evaporator of Binary 

300 in experiment is higher than another refrigerant.  

The irreversible losses generated in evaporator are determined by the mean temperature difference between 

refrigerant and heat source water. Figure 10 (a) and (b) explains the temperature distribution in evaporator for 

heating mode 1 and heating mode 2 in experiment.  The temperature distributions in evaporator for heating mode 1 

are the same as that for heating mode 2 in all test refrigerants.  For heating mode 1 and heating mode 2, temperature 

difference between Binary 300 and heat sink water is the largest among test refrigerant in evaporating end point 

despite the temperature glide of Binary 300 equal to water temperature change in the evaporator.  Therefore, as 

results of irreversible loss in condenser and evaporator, even if temperature glide of zeotropic mixture equal to water 

temperature change in the heat exchanger, irreversible loss in heat exchanger increases because of lower heat 

transfer performance of heat exchanger.   

 

Figure 11 (a) and (b) shows irreversible loss through expansion value in experiment and analysis for heating mode 1 

and heating mode 2.  Symbols indicate the refrigerants in the same rule as in Figure 5.  For heating mode 1 and 

heating mode 2, the trend of irreversible loss through expansion valve due to difference in refrigerant in experiment 

is the same as that in analysis 

 

4.3 Irreversible Loss of Compressor and Pressure Drop 

Figure 12 shows irreversible loss in compressor in experiment for heating mode 1 and 2. On other hand, irreversible 

loss in compressor in analysis is not exist because efficiency of compressor is 1.0 in this analysis.  For heating mode 

1 and 2, the irreversible loss in compressor of R410 is the smallest among test refrigerants.  At zeotropic mixture, 

the more the temperature glide is large, the more the irreversible loss in compressor is large.  In other words, the 

more the thermophysical property of zeotropic mixture is different from that of R410A, the more the irreversible 

loss in compressor is large.  This cause is that compressor and compressor oil in this study are compressor and 

compressor oil for R410A.  Therefore, the irreversible loss in compressor of zeotropic mixture decreases if 

compressor is improved. 

                            
Figure 12: Irreversible loss in compressor           Figure 13: Irreversible loss caused by pressure drop 

                            
(a) Experimental result                                       (b) Analysis result 

Figure 11: Irreversible loss through expansion valve 

 



 

2205, Page 8 
 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

Figure 13 shows irreversible loss caused by pressure drop for heating mode 1 and 2. On other hand, irreversible loss 

caused by pressure drop in analysis is not exist because pressure drop is ignored in this analysis.  For heating mode 1 

and 2, the more the volumetric capacity is small, the more the irreversible loss caused by is large.  Therefore, the 

irreversible loss caused by pressure drop decreases if the diameter of connecting pipe and heat exchanger is 

increased. 

4. CONCLUSIONS 
 

The COP of four test refrigerants, R410A, R32, R1234ze(E)/R32(20/80 mass%), and R1234ze(E)/R32 (50/50 

mass%) has been experimentally and analytically evaluated with a heat pump cycle.  The concluding remarks are as 

follows: 

(1) For heating mode 1 and 2, in experiment, COP of Ternary 300 and Binary 300 are comparable to that of R410A. 

In analysis, COP of Ternary 300, Binary 300 and Binary 200 are higher than that of R410A 

(2) Even if temperature glide of zeotropic mixture equal to water temperature change in the heat exchanger, 

irreversible loss in heat exchanger increases because of lower heat transfer performance of heat exchanger. 

(3) COP of Ternary 300, Binary 300 and Binary 200 are higher than that of R410A in experiment if compressor is 

improved and the diameter of connecting pipe and heat exchanger is increased. 

NOMENCLATURE 
 

COP coefficient of performance ( - )  Subscripts 

h enthalpy (kJ･kg
-1

) COND condenser 

L irreversible loss (kJ･kg
-1

) COMPR compressor 

m mass flow rate (kg･s
-1

) EVA evaporator 

Q heat transfer rate (kW) EXP expansion valve 

T temperature (K) H heat loss 

s entropy (kJ･kg
-1･K

-1
) h  heating mode 

W compression work (kW) in inlet 

   R refrigerant 

   out outlet 

   P  presser drop 
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