
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2005

R-trees with Update Memos
Xiaopeng Xiong

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
05-020

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Xiong, Xiaopeng and Aref, Walid G., "R-trees with Update Memos" (2005). Computer Science Technical Reports. Paper 1634.
http://docs.lib.purdue.edu/cstech/1634

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

R-TREES WITH UPDATE MEMOS

Xiaopeng Xiong
Walid G. Aref

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #05-020
October 2005

R-TREES WITH UPDATE MEMOS

Xiaopeng Xiong
Walid G. Aref

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #05-020
October 2005

R-trees with Update Memos

Xiaopeng Xiong Walid G. Aref

Department of Computer Sciences, Purdue Universiry, West Lafayette, IN 47907-1398

{xxiong, aref} @cs.purdue.edu

Abstract

The problern of frequerztly clpdating ~nulti-dimensiorzal
uzdexes orises i~ z man?. location-dependent applications.
While the R-tree and its varianrs are one of the donzinant
choices for indexing i7izrlr1-dir17erz~io1zal objects, the R-tree
exhibits i1zferiorpe1for17ioizce iiz the presence offrequent up-
dotes. 111 this paper; we preseil? all R-tl-ee variant, ternzed
the RUM-tree (stand5 for R-nee with Updote Me~iio) that
177i1zi1nizes the cost of ol7jecr crpdates. The RUM-tree pro-
cesses updates in a memo-based approoch that avoids disk
accesses for purging old entries dcrriizg an update process.
Therefore, the cost of an ~lpdate operation in the RUM-tree
reduces to the cost of 01zl11 an insert operation. The renzoval
of old object entries is carrred out b j a garbage cleaner iiz-
side the RUM-tree. In this popei; rve present the details of
the RUM-tree and study its pi-operties. Theoretical a~zaly-
szs and experiinental evaluatio~z denlo~zstrnte that the RUM-
tree outpe~$ornzs other R-tree variants by up to a factor of
eight in sce~zarios with frequent c~pdates.

1. Introduction

With the advances in positioning systems and wireless
devices, spatial locations of moving objects can be sampled
continuously to database servers. Many emerging applica-
tions require to maintain the latest positions of moving ob-
jects. In addition, a variety of potential applications rely on
monitoring multidimensional items that are sampled contin-
uously. Considering the fact that every sampled data value
results in an update to the underlying database server, it is
essential to develop spatial indexes that can handle frequent
updates in efficient and scalable manners.

As one of the primary choices for indexing low-
dimensional spatial data, the R-tree [6] and the R*-
tree [I] exhibit satisfactory search performance in tradi-
tional databases when updates are infrequent. However, due
to the costly update operation, R-trees are not practically
applicable to situations with enormous amounts of updates.

Improving the R-trees' update performance is an important
yet challenging issue.

Two approaches exist to process updates in R-trees,
namely, the top-down approach and the bottom-up ap-
proach. The top-down approach was originally proposed
in [6] and has been adopted in many R-tree variants.
e.g., 11, 8, 17, 211. This approach treats an update as a
combination of a separate deletion and a separate insertion.
Firstly, the R-tree is searched from the root to the leaves to
locate and delete the data item to be updated. Given the fact
that R-tree nodes may overlap each other, such search pro-
cess is expensive as it may follow multiple paths before it

gets to the right data item. After the deletion of the old data
item, a single-path insertion procedure is invoked to insert
the new data item into the R-tree. Figure I (a) illustrates the
top-down update process. The top-down approach is rather
costly due to the expensive search operation.

Recently. new approaches for updating R-trees in a
bottom-up manner have been proposed [lo! 1 I]. The
bottom-up approach starts the update process from the leaf
node of the data item to be updated. The bottom-up ap-
proach tries to insert the new entry into the original leaf
node or to the sibling node of the original leaf node. For
fast access of the leaf node of a data item, a secondary in-
dex such as a direct link [lo] or a hash table [l I] is main-
tained on the identifiers for all objects. Figure l(b) illus-
trates the bottom-up update process. The bottom-up ap-
proach exhibits better update performance than the top-
down approach when the change in an object between two
consecutive updates is small. In this case, the new data item
is likely to remain in the same leaf node. However, the per-
formance of the bottom-up approach degrades quickly when
the change between consecutive updates becomes large.
Moreover, a secondary index may not fit in memory due
to its large size. which may incur significant maintenance
overhead to the update procedure. Note that the secondary
index needs to be updated whenever an object moves from
one leaf node to another.

In this paper: we propose the RUM-tree (stands for R-
tree with Update Memo), an R-tree variant that handles

R-trees with Update Memos

Xiaopeng Xiong Walid G. Aref

Departmenl of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{xxiong, aref} @cs.purdue.edu

Abstract

The problem of frequently updating multi-dimensional
indexes arises in many location-dependent applications.
While the R-tree and its variants are one of the dominant
choices for indexing multi-dimensional objects, the R-tree
exhibits inferior pelformance in the presence offrequent up
dates. /n this paper, we present an R-tree variant, termed
the RUM-tree (stands for R-tree with Update Memo) that
minimizes the cost of object updates. The RUM-tree pro
cesses updates in a memo-based approach that avoids disk
accesses for purging old entries during an update process.
Therefore, the cost ofan update operation in the RUM-tree
reduces to the cost ofonly an insert operation. The removal
of old object entries is carried out by a garbage cleaner in
side the RUM-tree. /n this papel; we present the derails of
the RUM-tree and study its properties. Theoretical analy
sis and experimental evaluation demonstrate that the RUM
tree outpeiforms other R-tree variants by up to a factor of
eight in scenarios with frequent updates.

1. Introduction

With the advances in positioning systems and wireless
devices, spatial locations of moving objects can be sampled
continuously to database servers. Many emerging applica
tions require to maintain the latest positions of moving ob
jects. In addition, a variety of potential applications rely on
monitoring multidimensional items that are sampled contin
uously. Considering the fact that every sampled data value
results in an update to the underlying database server, it is
essential to develop spatial indexes that can handle frequent
updates in efficient and scalable manners.

As one of the primary choices for indexing low
dimensional spatial data, the R-tree [6] and the R*
tree [1] exhibit satisfactory search performance in tradi
tional databases when updates are infrequent. However, due
to the costly update operation, R-trees are not practically
applicable to situations with enormous amounts of updates.

Improving the R-trees' update performance is an important
yet challenging issue.

Two approaches exist to process updates in R-trees,
namely, the top-down approach and the bottom-up ap
proach. The top-down approach was originally proposed
in [6] and has been adopted in many R-tree variants,
e.g., [1, 8, 17, 21]. This approach treats an update as a
combination of a separate deletion and a separate insertion.
Firstly, the R-tree is searched from the root to the leaves to
locate and delete the data item to be updated. Given the fact
that R-tree nodes may overlap each other, such search pro
cess is expensive as it may follow multiple paths before it
gets to the right data item. After the deletion of the old data
item, a single-path insertion procedure is invoked to insert
the new data item into the R-tree. Figure I (a) illustrates the
top-down update process. The top-down approach is rather
costly due to the expensive search operation.

Recently, new approaches for updating R-trees in a
bottom-up manner have been proposed [10, 11]. The
bottom-up approach starts the update process from the leaf
node of the data item to be updated. The bottom-up ap
proach tries to insert the new entry into the original leaf
node or to the sibling node of the original leaf node. For
fast access of the leaf node of a data item, a secondary in
dex such as a direct link [10] or a hash table [11] is main
tained on the identifiers for all objects. Figure I (b) illus
trates the bottom-up update process. The bottom-up ap
proach exhibits better update performance than the top
down approach when the change in an object between two
consecutive updates is small. In this case, the new data item
is likely to remain in the same leaf node. However, the per
formance of the bottom-up approach degrades quickly when
the change between consecutive updates becomes large.
Moreover, a secondary index may not fit in memory due
to its large size, which may incur significant maintenance
overhead to the update procedure. Note that the secondary
index needs to be updated whenever an object moves from
one leaf node to another.

In this paper, we propose the RUM-tree (stands for R
tree with Update Memo), an R-tree variant that handles

2. Insert

1. Search 2' 2nd Index : &'a(:~~;"~~drr
I~zcornirlg upclntes

(a) Top-down Update Approach (b) Bottom-up Update Approach

Figure 1. Existing R-tree Update Approaches

object updates efficiently. A mento-based update approach
is utilized to minimize the update cost in the RUM-tree.
The memo-based update approach enhances the R-tree by
an Update Meino structure. The Update Memo eliminates
the need to delete the old data item from the index dur-
ing an update. Therefore, the total cost for update process-
ing is reduced dramatically. Compared to R-trees with a
top-down or a bottom-up update approach, the RUM-tree
has the following distinguishing advantages: (I) The RUM-
tree achieves significantly lower update cost while offering
similar search performance; (2) The update memo is much
smaller than the secondary index used by other approaches.
The garbage cleaner guarantees an upper-bound on the size
of the Update Memo making it practically suitable for main
memory; (3) The update performance of the RUM-tree is
stable with respect to the changes between consecutive up-
dates, the extents of moving objects, and the number of
moving objects.

The contributions of the paper can be summarized as fol-
lows:

We propose the RUM-tree that minimizes the update
cost while yielding similar search performance to other
R-tree variants;

We address the issues of crash recovery and concur-
rency control for the proposed RUM-tree, especially
when the Update Memo is memory-based;

We analyze the update costs for the RUM-tree and the
other R-tree variants, and derive an upper-bound on the
size of the Update Memo;

A comprehensive set of experiments is presented. The
performance results indicate that the RUM-tree outper-
forms other R-tree variants by up to a factor of 8 for
frequent updates.

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the R-tree and summarizes related work.
In Section 3, we present the RUM-tree. In Section 4, we
give a cost analysis of the memo-based approach and com-
pare it with the top-down and the bottom-up approaches.

(a) A set of planar poinls (b) R-tree index

Figure 2. Example of R-tree

We derive an upper-bound for the size of the Update Memo
in Section 4. Experiments are presented in Section 5. Fi-
nally, Section 6 concludes the paper.

2. R-tree-based Indexing and Related Work

The R-tree [6] is a height-balanced indexing structure. It
is an extension to the B-tree in the multidimensional space.
In an R-tree, spatial objects are clustered in nodes according
to their Minimal Bounding Rectangles (MBRs). In contrast
to the B-tree, the R-tree nodes are allowed to overlap each
other. An entry in a leaf node is of the form: (A6BRo:po),
where AdBR, is the MBR of the indexed spatial object, and
p, is a pointer to the actual object tuple in the database. An
entry in an internal node is of the form: (MBR,,P,) where
AdBR, is the MBR covering all MBRs in its child node,
and p, is the pointer to its child node c. The number of en-
tries in each R-tree node, except for the root node, is be-
tween two specified parameters rn and Ad (rn < y). The
parameter Ad is termed the falzozit of the R-tree. Figure 2
gives an R-tree example with a fanout of 3 that indexes thir-
teen objects.

In the last two decades, several R-tree variants have
been proposed, e.g., [I , 8, 17, 211. With the recent atten-
tion on indexing moving objects, a number of R-tree-based
methods for indexing moving objects have been proposed.
They focus on one of the following approaches: (1) Index-
ing the historical trajectories of objects, e.g., [3, 7, 12, 13,
22, 23, 251; (2) Indexing the current locations of objects,
e.g., [5,9, 14, 15, 18, 191; and (3) Indexing the predicted tra-
jectories of objects, e.g., [16, 20, 241. Most of these works
assume that the updates are processed in a top-down man-
ner. The memo-based update technique presented in this pa-
per is applicable to most of these works to improve their up-
date performance.

To support frequent updates in R-trees, 11 01 and [l 11 pro-
pose a bottom-up update approach. This approach processes
an update from the leaf node of the old entry, and tries to in-
sert the new entry into the same leaf node or to its sibling
node. The bottom-up approach works well when the consec-
utive changes of objects are small. However. in the case that
consecutive changes are large, their performance degrades
quickly. In Section 5 , we show that the proposed memo-

(b) R-tree index

:Rl- - - - - - - -~.:-R~- ~ R Rl

j::"~.;J:;·~;::n'.~::·~~:...L" r:+,--, r--:rL,-, .-no r:l
2

~1IT"l
(a) A sel of planar points

Figure 2. Example of R-tree

3. (Optional)
Insert in Top;-down

J. Search 2nd Index

Incoming updates

2. Insert
(Single Path)

Incoming updates

(a) Top-down Update Approach (b) Bottom-up Update Approach

Figure 1. Existing R-tree Update Approaches
We derive an upper-bound for the size of the Update Memo
in Section 4. Experiments are presented in Section 5. Fi
nally, Section 6 concludes the paper.

object updates efficiently. A memo-based update approach
is utilized to minimize the update cost in the RUM-tree.
The memo-based update approach enhances the R-tree by
an Update Memo structure. The Update Memo eliminates
the need to delete the old data item from the index dur
ing an update. Therefore, the total cost for update process
ing is reduced dramatically. Compared to R-trees with a
top-down or a bottom-up update approach, the RUM-tree
has the following distinguishing advantages: (1) The RUM
tree achieves significantly lower update cost while offering
similar search performance; (2) The update memo is much
smaller than the secondary index used by other approaches.
The garbage cleaner guarantees an upper-bound on the size
of the Update Memo making it practically suitable for main
memory; (3) The update performance of the RUM-tree is
stable with respect to the changes between consecutive up
dates, the extents of moving objects, and the number of
moving objects.

The contributions of the paper can be summarized as fol
lows:

• We propose the RUM-tree that minimizes the update
cost while yielding similar search performance to other
R-tree variants;

• We address the issues of crash recovery and concur
rency control for the proposed RUM-tree, especially
when the Update Memo is memory-based;

• We analyze the update costs for the RUM-tree and the
other R-tree variants, and derive an upper-bound on the
size of the Update Memo;

• A comprehensive set of experiments is presented. The
performance results indicate that the RUM-tree outper
forms other R-tree variants by up to a factor of 8 for
frequent updates.

The remainder of the paper is organized as follows. Sec
tion 2 overviews the R-tree and summarizes related work.
In Section 3, we present the RUM-tree. In Section 4, we
give a cost analysis of the memo-based approach and com
pare it with the top-down and the bottom-up approaches.

2. R-tree-based Indexing and Related Work

The R-tree [6] is a height-balanced indexing structure. It
is an extension to the B-tree in the multidimensional space.
In an R-tree, spatial objects are clustered in nodes according
to their Minimal Bounding Rectangles (MBRs). In contrast
to the B-tree, the R-tree nodes are allowed to overlap each
other. An entry in a leaf node is of the form: (M B R o,Po),
where]1/1B R o is the MBR of the indexed spatial object, and
Po is a pointer to the actual object tuple in the database. An
entry in an internal node is of the form: (l'vlBRe:Pc) where
111BRe is the MBR covering all MBRs in its child node,
and Pc is the pointer to its child node c. The number of en
tries in each R-tree node, except for the root node, is be
tween two specified parameters m and 111 (m :::; AJ). The
parameter AI is termed the fanout of the R-tree. Figure 2
gives an R-tree example with a fanout of 3 that indexes thir
teen objects.

In the last two decades, several R-tree variants have
been proposed, e.g., [1, 8, 17,21]. With the recent atten
tion on indexing moving objects, a number of R-tree-based
methods for indexing moving objects have been proposed.
They focus on one of the following approaches: (l) Index
ing the historical trajectories of objects, e.g., [3, 7, 12, 13,
22, 23, 25]; (2) Indexing the current locations of objects,
e.g., [5,9,14, 15, 18,19]; and (3) Indexing the predicted tra
jectories of objects, e.g., [16, 20, 24]. Most of these works
assume that the updates are processed in a top-down man
ner. The memo-based update technique presented in this pa
per is applicable to most of these works to improve their up
date performance.

To support frequent updates in R-trees, [10] and [II] pro
pose a bottom-up update approach. This approach processes
an update from the leaf node of the old entry, and tries to in
sert the new entry into the same leaf node or to its sibling
node. The bottom-up approach works well when the consec
utive changes of objects are small. However, in the case that
consecutive changes are large, their performance degrades
quickly. In Section 5, we show that the proposed memo-

based update approach of the RUM-tree outperforms the
bottom-up approach and is more stable under various pa-
rameters.

Incamin u dates RP Spatial ueries 9
Spalial
search

lnsert

3. The RUM-tree Index

In the existing update approaches, the deletion of old en-
tries incurs overhead in update processing. In the top-down
approach, the deletion involves searching in multiple paths.
In the bottom-up approach, a secondary index is maintained
to locate and delete an entry. In this section, we present the
RUM-tree that minimizes additional disk accesses for such
deletion and thus minimizes the update cost.

The primary feature behind the RUM-tree is as follows.
As an update occurs, the old entry of the data item is not re-
quired to be removed. Instead, the old entry is allowed to
co-exist with newer entries before it is removed later. Only
one entry of an object is the most recent entry (referred to in
the paper as the latest entry), and all other entries of the ob-
ject are old entries (referred to in the paper as obsolete en-
tries). The RUM-tree maintains an Update Menzo to identify
the latest entries from obsolete entries. These obsolete en-
tries are identified and are removed from the RUM-tree by
a garbage cleaner mechanism.

In Section 3.1, we describe the RUM-tree structure. In
Section 3.2, we discuss the insert, update, delete, and query
algorithms of the RUM-tree. The garbage cleaner is intro-
duced in Section 3.3. Logging and crash recovery algo-
rithms are presented in Section 3.4. Finally, we discuss con-
currency control issues in Section 3.5.

3.1. The RUM-tree Structure

In the RUM-tree, each leaf entry is assigned a stamp
when the entry is inserted into the tree. The stamp is as-
signed by a global stamp courlter that increments mono-
tonically. The stamp of one leaf entry is globally unique
in the RUM-tree and remains unchanged once assigned.
The stamp places a temporal relationship among leaf en-
tries, i.e., an entry with a smaller stamp was inserted
before an entry with a larger stamp. Accordingly, the
leaf entry of the RUM-tree is extended to the form
(MBR,, pa: oid: stamp), where oid is the identifier of the
stored object, s t a m p is the assigned stamp number, and
M B R , and pa are the same as in the standard R-tree.

The RUM-tree maintains an auxiliary structure, termed
the Update Menlo (UM, for short). The main purpose of
UM is to distinguish the obsolete entries from the latest en-
tries. UM contains entries of the form: (oid, Slatest: Nold),
where oid is an object identifer, Slatest is the s t a m p of
the latest entry of the object oid, and Nold is the maxi-
mum number of obsolete entries for the object oid in the

AddRlpdale (Ram anTser set)

(a) Inse~.tlllpdate Process (b) Query Process

Figure 3. Operations in the RUM-tree

RUM-tree. As an example, a UM entry (099, 1000.2) en-
tails that in the RUM-tree there exist at most two obsolete
entries for the object 099, and that the latest entry of Og9
bears the s t amp of 1000. Note that no UM entry has Nold
equivalent to zero. namely, objects that are assured to have
no obsolete entries in the RUM-tree do not own a UM en-
try. To accelerate searching, the update memo is hashed on
the oid attribute. With the garbage cleaner provided in Sec-
tion 3.3, the size of UM is kept rather small and can prac-
tically fit in main memory of nowadays machines. We de-
rive the upper-bound for the size of UM in Section 4. The
size of UM is further studied through experiments in Sec-
tion 5.

3.2. Insert, Update, Delete, and Search Algorithms

3.2.1. Insert and Update Inserting an entry and updating
an entry in the RUM-tree follow the same procedure as il-
lustrated in Figure 3(a). Pseudo-code for the insertlupdate
algorithm is given in Figure 4. Firstly, an insertlupdate is
assigned a stamp number when it reaches the RUM-tree.
Then, along with the stamp and the object identifier, the
new value is inserted into the RUM-tree using the standard
R-tree insert algorithm [I] . After the insertion, the entry that
has been the latest entry, if exists, for the insertedlupdated
object becomes an obsolete entry. To reflect such a change,
the UM entry for the object is updated as follows. The UM
entry of the object, if exists, changes Slatest to the stanzp of
the insertedlupdated tuple and increments Nold by 1. In the
case that no UM entry for the object exists, a new UM en-
try with the starilp of the insertedlupdated tuple is inserted.
Nold of the UM entry is set to 1 to indicate up to one obso-
lete entry in the RUM-tree. The old value of the object be-
ing updated is not required, which potentially reduces the
maintenance cost of database applications.

3.2.2. Delete Deleting an object in the RUM-tree is equiv-
alent to marking the latest entry of the object as obsolete.
Figure 5 gives pseudo-code for the deletion algorithm. The
object to be deleted is treated as an update to a special loca-

Figure 3. Operations in the RUM-tree

3.2. Insert, Update, Delete, and Search Algorithms

3.2.2. Delete Deleting an object in the RUM-tree is equiv
alent to marking the latest entry of the object as obsolete.
Figure 5 gives pseudo-code for the deletion algorithm. The
object to be deleted is treated as an update to a specialloca-

Spalial
search

(b) Query Process

Spatial ueries

(a) InsertJUpdate Process

RUM-tree. As an example, a UM entry (099 ,1000,2) en
tails that in the RUM-tree there exist at most two obsolete
entries for the object 0 99 , and that the latest entry of 0 99

bears the stamp of 1000. Note that no UM entry has Nold
equivalent to zero, namely, objects that are assured to have
no obsolete entries in the RUM-tree do not own a UM en
try. To accelerate searching, the update memo is hashed on
the oid attribute. With the garbage cleaner provided in Sec
tion 3.3, the size of UM is kept rather small and can prac
tically fit in main memory of nowadays machines. We de
rive the upper-bound for the size of UM in Section 4. The
size of UM is further studied through experiments in Sec
tion 5.

3.2.1. Insert and Update Inserting an entry and updating
an entry in the RUM-tree follow the same procedure as il
lustrated in Figure 3(a). Pseudo-code for the insert/update
algorithm is given in Figure 4. Firstly, an insert/update is
assigned a stamp number when it reaches the RUM-tree.
Then, along with the stamp and the object identifier, the
new value is inserted into the RUM-tree using the standard
R-tree insert algorithm [1]. After the insertion, the entry that
has been the latest entry, if exists, for the inserted/updated
object becomes an obsolete entry. To reflect such a change,
the UM entry for the object is updated as follows. The UM
entry of the object, if exists, changes Slatest to the stamp of
the inserted/updated tuple and increments Nold by 1. In the
case that no UM entry for the object exists, a new UM en
try with the stamp of the inserted/updated tuple is inserted.
Nold of the UM entry is set to I to indicate up to one obso
lete entry in the RUM-tree. The old value of the object be
ing updated is not required, which potentially reduces the
maintenance cost of database applications.

3.1. The RUM-tree Structure

In the RUM-tree, each leaf entry is assigned a stamp
when the entry is inserted into the tree. The stamp is as
signed by a global stamp counter that increments mono
tonically. The stamp of one leaf entry is globally unique
in the RUM-tree and remains unchanged once assigned.
The stamp places a temporal relationship among leaf en
tries, i.e., an entry with a smaller stamp was inserted
before an entry with a larger stamp. Accordingly, the
leaf entry of the RUM-tree is extended to the form
(M BRa, po, oid, stamp), where oid is the identifier of the
stored object, stamp is the assigned stamp number, and
!vIBRa and Po are the same as in the standard R-tree.

The RUM-tree maintains an auxiliary structure, termed
the Update Memo (UM, for short). The main purpose of
UM is to distinguish the obsolete entries from the latest en
tries. UM contains entries of the form: (oid, Slotest, Nold),
where oid is an object identifer, Slatest is the stamp of
the latest entry of the object oid, and Nold is the maxi
mum number of obsolete entries for the object oid in the

3. The RUM-tree Index

based update approach of the RUM-tree outperforms the
bottom-up approach and is more stable under various pa
rameters.

In the existing update approaches, the deletion of old en
tries incurs overhead in update processing. In the top-down
approach, the deletion involves searching in multiple paths.
In the bottom-up approach, a secondary index is maintained
to locate and delete an entry. In this section, we present the
RUM-tree that minimizes additional disk accesses for such
deletion and thus minimizes the update cost.

The primary feature behind the RUM-tree is as follows.
As an update occurs, the old entry of the data item is not re
quired to be removed. Instead, the old entry is allowed to
co-exist with newer entries before it is removed later. Only
one entry of an object is the most recent entry (referred to in
the paper as the latest entry), and all other entries of the ob
ject are old entries (referred to in the paper as obsolete en
tries). The RUM-tree maintains an Update Memo to identify
the latest entries from obsolete entries. These obsolete en
tries are identified and are removed from the RUM-tree by
a garbage cleaner mechanism.

In Section 3.1, we describe the RUM-tree structure. In
Section 3.2, we discuss the insert, update, delete, and query
algorithms of the RUM-tree. The garbage cleaner is intro
duced in Section 3.3. Logging and crash recovery algo
rithms are presented in Section 3.4. Finally, we discuss con
currency control issues in Section 3.5.

Algorithm MemoBasedInsert(oid, newlocat ion)

1 . newTuple = (oid. neu;Location.);
2. s tamp + Stampcounter ; Increment Stampcounter ;
3. Insert newTuple to the RUM-tree;
4. Let ne be the inserted leaf entry for newTuple,

ne.oid + oid, n e s t a m p + stamp;
5. Search oid in Update Memo UAJ.

If no entry is found. insert (oid: s tamp, 1) to UA4;
Otherwise, let v m n e be the found UM entry;
~ m , n . e . S l , ~ , , ~ t stamp; Increment .umne.N0,,j;

Figure 4. InserWUpdate in the RUM-tree

Algorithm MemoBasedDelete(oid)

s tamp 6 StainpCo~tater; Increment Stampcounter ;
Search oid in Update Memo UAd.
If no entry is found, insert (oid. s tamp, 1) to U M ;
Otherwise, let uinne be the found UM entry;
1l7n.n.e.Sl,~,~, 6 stam.p; Increment ~ m . n e . N , , ~ ;

Figure 5. Delete in the RUM-tree

tion. The special update does not actually go through the R-
tree. It only affects the UM entry for the object to be deleted,
if exists! by changing Slatest to the next value assigned by
the stamp counter, and incrementing Nold by 1. In the case
when no UM entry for the given object exists, a new UM en-
try is inserted whose Slatest is set to the next stamp number
and Nold is set to 1. In this way, all entries for the given ob-
ject will be identified as obsolete and consequently will get
removed by the garbage cleaner.

3.2.3. Search Figure 3(b) illustrates the processing of spa-
tial queries in the RUM-tree. As the obsolete entries and the
latest entry for one object may co-exist in the RUM-tree,
the output satisfying the spatial predicates is a superset of
the actual answers. In the RUM-tree, UM is utilized as ajil-
ter to purge false answers, i.e., UM filters obsolete entries
out of the answer set. By adding such an additional jilter
step, any existing query processing algorithms in other R-
tree variants can apply directly to the RUM-tree. The RUM-
tree employs the algorithm given in Figure 6 to identify a
leaf entry as latest or obsolete. The main idea is to com-
pare the stamp of the leaf entry with the Slotest of the cor-
responding UM entry. Recall that of a UM entry is
always the stamp of the latest entry of the corresponding ob-
ject. If the stamp of the leaf entry is smaller than Slatest of
the UM entry, the leaf entry is obsolete for the object; oth-
erwise it is the latest entry for the object. In the case that
no corresponding UM entry exists, the leaf entry is the lat-
est entry.

Discussion. Sanity checking can be done at a higher
level before invoking the index. The RUM-tree does not

Algorithm CheckStatus(1ea f E n t r y)

I . Search leaf Entry.oid in UA4. If no entry is found, return
L A T E S T ; Otherwise, let u m e be the found UM entry;

2. If (lea fEntry . s tamp == u i n e . S ~ , ~ , , ~) , return L A T E S T ;
Otherwise, return O B S O L E T E :

Figure 6. Checking Entry Status

check the existence of an old entry when performing in-
sert, update or delete. Thus, the RUM-tree may insert an ob-
ject that already exists in the index or deletelupdate an ob-
ject that never existed. However, based on the above algo-
rithms, regardless of whether sanity checking is performed
or not, the RUM-tree will always return only the correct lat-
est insertlupdate values to queries. A related issue ofpkan-
torn entries is addressed in Section 3.3.2.

3.3. Garbage Cleaning

The RUM-tree employs a Garbage Cleaner to limit the
number of obsolete entries in the tree and to limit the size of
UM. The garbage cleaner deletes the obsolete entries lazily
and in batches. Deleting lazily means that obsolete entries
are not removed immediately; Deleting in batches means
that multiple obsolete entries in the same leaf node are re-
moved at the same time.

3.3.1. Cleaning Tokens A cleaning token is a logical to-
ken that traverses all leaf nodes of the RUM-tree horizon-
tally. The token is passed from one leaf node to the next
every time when the RUM-tree receives a certain number
of updates. Such number is termed the i~lspectio~l interval
and is denoted by I. The node holding a cleaning token in-
spects all entries in the node and cleans its obsolete entries,
and then passes the token to the next leaf node after I up-
dates. To locate the next leaf node quickly, the leaf nodes of
the RUM-tree are doubly-linked in cycle. In addition, each
RUM-tree node maintains a pointer to its parent node. This
is for the purpose of adjusting the RUM-tree in a bottom-up
manner after the obsolete entries in a leaf node are removed.

Figure 8 gives the pseudo code of the cleaning proce-
dure. Every entry in the inspected leaf node is checked by
CheckStntu,s() given in Figure 6, and is deleted from the
node if the entry is identified as obsolete. When an entry
is removed, Nold of the corresponding UM entry is decre-
mented by one. When Nold reaches zero, indicating that
no obsolete entries exist for this object, the UM entry is
deleted. In occasional cases, the leaf node may underflow
due to the deletion of obsolete entries. In this situation,
the remaining entries of the leaf node are reinserted to the
RUM-tree using the standard R-tree insert algorithm. If the
leaf node does not underflow, the MBR of the inserted leaf
node and the MBRs of its ancestor nodes are adjusted.

Algorithm MemoBasedInsert(aid, newLacatian)

I. newTuple = (aid, newLacatian);
2. stamp <- StampCaunter; Increment StampCaunter;
3. Insert newTuple to the RUM-tree;
4. Let ne be the inserted leaf entry for newTuple,

ne.aid <- aid, ne.stamp <- stamp;
5. Search aid in Update Memo U Ai.

If no entry is found, insert (aid, stamp, 1) to UM;
Otherwise, let umne be the found UM entry;
um.ne.Slatest <- stamp; Increment umne.No1d ;

Figure 4. Insert/Update in the RUM-tree

Algorithm MemoBasedDelete(aid)

• stamp <- StampCaunter; Increment StampCaunter;
• Search aid in Update Memo UAI.

If no entry is found, insert (aid, stamp, 1) to UM;
Otherwise, let umne be the found UM entry;
um.ne.Slatest. <- stamp; Increment um.ne.No1d ;

Figure 5. Delete in the RUM-tree

tion. The special update does not actually go through the R
tree. It only affects the UM entry for the object to be deleted,
if exists, by changing Sfatest to the next value assigned by
the stamp counter, and incrementing N o1d by I. In the case
when no UM entry for the given object exists, a new UM en
try is inserted whose Sfotest is set to the next stamp number
and Nold is set to I. In this way, all entries for the given ob
ject will be identified as obsolete and consequently will get
removed by the garbage cleaner.

3.2.3. Search Figure 3(b) illustrates the processing of spa
tial queries in the RUM-tree. As the obsolete entries and the
latest entry for one object may co-exist in the RUM-tree,
the output satisfying the spatial predicates is a superset of
the actual answers. In the RUM-tree, UM is utilized as afil
ter to purge false answers, i.e., UM filters obsolete entries
out of the answer set. By adding such an additional filter
step, any existing query processing algorithms in other R
tree variants can apply directly to the RUM-tree. The RUM
tree employs the algorithm given in Figure 6 to identify a
leaf entry as latest or obsolete. The main idea is to com
pare the stamp of the leaf entry with the Slatest of the cor
responding UM entry. Recall that Slatest of a UM entry is
always the stamp of the latest entry of the corresponding ob
ject. If the stamp of the leaf entry is smaller than Slatest of
the UM entry, the leaf entry is obsolete for the object; oth
erwise it is the latest entry for the object. In the case that
no corresponding UM entry exists, the leaf entry is the lat
est entry.

Discussion. Sanity checking can be done at a higher
level before invoking the index. The RUM-tree does not

Algorithm CheckStatus(leafEntry)

I. Search leafEntry. aid in UM. If no entry is found, return
LATEST; Otherwise, let ume be the found UM entry;

2. If (leafEntry. stamp == Ume.Slatest), return LATEST;
Otherwise, return OBSOLETE:

Figure 6. Checking Entry Status

check the existence of an old entry when performing in
sert, update or delete. Thus, the RUM-tree may insert an ob
ject that already exists in the index or delete/update an ob
ject that never existed. However, based on the above algo
rithms, regardless of whether sanity checking is performed
or not, the RUM-tree will always return only the correct lat
est insert/update values to queries. A related issue of phan
tom entries is addressed in Section 3.3.2.

3.3. Garbage Cleaning

The RUM-tree employs a Garbage Cleaner to limit the
number of obsolete entries in the tree and to limit the size of
UM. The garbage cleaner deletes the obsolete entries lazily
and in batches. Deleting lazily means that obsolete entries
are not removed immediately; Deleting in batches means
that multiple obsolete entries in the same leaf node are re
moved at the same time.

3.3.1. Cleaning Tokens A cleaning token is a logical to
ken that traverses all leaf nodes of the RUM-tree horizon
tally. The token is passed from one leaf node to the next
every time when the RUM-tree receives a certain number
of updates. Such number is termed the inspection interval
and is denoted by I. The node holding a cleaning token in
spects all entries in the node and cleans its obsolete entries,
and then passes the token to the next leaf node after I up
dates. To locate the next leaf node quickly, the leaf nodes of
the RUM-tree are doubly-linked in cycle. In addition, each
RUM-tree node maintains a pointer to its parent node. This
is for the purpose of adjusting the RUM-tree in a bottom-up
manner after the obsolete entries in a leaf node are removed.

Figure 8 gives the pseudo code of the cleaning proce
dure. Every entry in the inspected leaf node is checked by
CheckStat'll.sO given in Figure 6, and is deleted from the
node if the entry is identified as obsolete. When an entry
is removed, Nol d of the corresponding UM entry is decre
mented by one. When Nold reaches zero, indicating that
no obsolete entries exist for this object, the UM entry is
deleted. In occasional cases, the leaf node may underflow
due to the deletion of obsolete entries. In this situation,
the remaining entries of the leaf node are reinserted to the
RUM-tree using the standard R-tree insert algorithm. If the
leaf node does not underflow, the MBR of the inserted leaf
node and the MBRs of its ancestor nodes are adjusted.

@ - - - * @ - - - *

Token Token

Figure 7. Garbage Cleaner: Cleaning Tokens

Algorithm Clean(Lea f n.odeN)

1. For each entry e in N , if CheckStatus(e) returns
OBSOLETE,

(a) Delete e from N ;

(b) Let u m e be the UM entry for e.oid, Decrement
u,me.Nold; If ume.Nocd equals 0, delete u m e from
UM;

2. If the number of entries in N is less than A ~ I N E N T R I E S .
reinserl the remaining entries of N into the RUM-tree; 0 th-
erwise. adjust the MBRs of N and N ' s ancestors in a bottom-
up manner;

Figure 8. Cleaning A Leaf Node

To speed up the cleaning process, multiple cleaning to-
kens may work in parallel in the garbage cleaner. In this
case, each token serves a subset of the leaf nodes. Figure 7
illustrates a RUM-tree with two cleaning tokens. Token A
inspects Nodes 5 to 8 while Token B inspects Nodes 1 to
4. Tokens move either with the same inspection interval or
with different inspection intervals. Note that each cleaning
token incurs additional disk accesses to the cleaning proce-
dure. Hence, there is a tradeoff between the cleaning effect
and the overall cost.

We define the garbage ratio (gr) of the RUM-tree and
the i~~spection ratio (ir) of the garbage cleaner as follows.
The garbage ratio of the RUM-tree is the number of ob-
solete entries in the RUM-tree over the number of indexed
moving objects. The garbage ratio reflects how clean the
RUM-tree is. A RUM-tree with a small garbage ratio ex-
hibits better search performance than a RUM-tree with a
large garbage ratio.

The inspection ratio ir of the garbage cleaner is defined
as the number of leaf nodes inspected by the cleaner over
the total number of updates processed in the RUM-tree dur-
ing a period of time. The inspection ratio represents the
cleaning frequency of the cleaner. A larger inspection ra-
tio results in a smaller garbage ratio for the RUM-tree. As-
sume that a RUM-tree has m cleaning tokens t l to t,, and
that tk 's inspection interval is Ik for 1 <k<m, then ir of the
cleaner is calculated as:

C'+C'+.. .+L
2r = 11 1 2 I " ,

T h e f o to l n ~ ~ ~ n h e r o f u p d a t ~ s li
- - I+L+ . . . + l

11 1 2 I", (1)
- - E (if I, = I, = . . . =I,, =

I I)

The cleaning token approach has the following impor-
tant property.

Property 1: Let Ot be the set of obsolete entries in
the RUM-tree a t time t. After every leaf node has been vis-
ited and cleaned once since t, all entries in Ot are re-
moved out of the RUM-tree.

Property 1 holds no matter whether there are new in-
sertstupdates during the cleaning phase or not. Note that if
some entries become obsolete due to new insertstupdates,
these newly introduced obsolete entries are not contained
in Ot. The proof of Property 1 is straightforward, because
when a leaf node is visited by the garbage cleaner, all obso-
lete entries in the leaf node will be identified and cleaned.

3.3.2. Phantom Inspection In this section, we address the
issue of cleaningpha1zto17i entries in the RUM-tree. A phan-
tom entry is a UM entry whose ATord is larger than the exact
number of obsolete entries for the corresponding object on
the RUM-tree. Such an entry will never get removed from
the UM because its Nold never returns to zero. Phantom en-
tries are caused by performing operations on objects that
do not exist in the RUM-tree, e.g.. updatingtdeleting an ob-
ject that does not exist in the RUM-tree. A special case is
when insertihg a new object to the RUM-tree'.

The RUM-tree employs a P h a ~ ~ t o ~ i i Inspecti011 proce-
dure to detect and remove phantom entries. According
to Property I in Section 3.3.1, we have the follow-
ing lemma.

Lemma 1. Let c be the value of the stamp counter at time
t. Afrer evely leaf node has been visited and cleaned olice
si11ce t, a UM entry whose SlatCst is less than c is a pha11-
to171 entry.
Otherwise, if such a UM entry is not a phantom en-
try, by Property 1, it should have been removed out of UM
after every leaf page has been visited and cleaned. There-
fore, Lemma 1 holds.

Based on Lemma 1 , the phantom inspection procedure
works periodically. The current value of the stamp counter
is stored as c. After the cleaning tokens traverse all leaf
nodes once, the procedure inspects UM and removes all UM
entries whose Slatest is less than c. Finally, c is updated for
the next cycle's inspection. In this way, all phantom entries
will be removed after one cycle of cleaning.

1 Recall that in the RUM-tree, an insert is handled in the same way as
an update. Inserting an entry incurs a new UM entry anyway.

Figure 7. Garbage Cleaner: Cleaning Tokens

Figure 8. Cleaning A Leaf Node

Algorithm Clean(leafnodeN)

1. For each entry e in N, if CheckStatus(e) returns
OBSOLETE,

(a) Delete e from N;

(b) Let 'lime be the UM entry for e.oid, Decrement
'lime.No1d : If 'lime.Nold equals 0, delete 'lime from
UM;

2. If the number of entries in N is less than Jill INENT R / ES,

reinsert the remaining entries of N into the RUM-tree; Oth
erwise, adjust the MBRs of Nand N's ancestors in a bottom
up manner;

(I)

++_..+ J~Il,r =
The total 1l"mber of 1Jpdate8 U

l+l+ ... +~
h 12 1mT (if h = 12 = ... = 1m = 1)

The cleaning token approach has the following impor
tant property.

Recall that in the RUM-tree, an insert is handled in the same way as
an update. Inserting an entry incurs a new UM entry anyway.

Property 1 holds no matter whether there are new in
serts/updates during the cleaning phase or not. Note that if
some entries become obsolete due to new inserts/updates,
these newly introduced obsolete entries are not contained
in Ot. The proof of Property 1 is straightforward, because
when a leaf node is visited by the garbage cleaner, all obso
lete entries in the leaf node will be identified and cleaned.

3.3.2. Phantom Inspection In this section, we address the
issue of cleaning phantom entries in the RUM-tree. A phan
tom entry is a UM entry whose Nold is larger than the exact
number of obsolete entries for the corresponding object on
the RUM-tree. Such an entry will never get removed from
the UM because its N o1d never returns to zero. Phantom en
tries are caused by performing operations on objects that
do not exist in the RUM-tree, e.g., updating/deleting an ob
ject that does not exist in the RUM-tree. A special case is
when insertifig a new object to the RUM-tree].

The RUM-tree employs a Phantom Inspection proce
dure to detect and remove phantom entries. According
to Property I in Section 3.3.1, we have the follow
ing lemma.

Property 1: Let Ot be the set of obsolete entries in
the RUM-tree at time t. After every leaf node has been vis
ited and cleaned once since t, all entries in Ot are re
moved out of the RUM-tree.

Lemma 1. Let c be the value of the stamp counter at time
t. After evelY leaf node has been visited and cleaned once
since t, a UM entry whose Slatest is less than c is a phan
tom entry.
Otherwise, if such a UM entry is not a phantom en
try, by Property 1, it should have been removed out of UM
after every leaf page has been visited and cleaned. There
fore, Lemma 1 holds.

Based on Lemma 1, the phantom inspection procedure
works periodically. The current value of the stamp counter
is stored as c. After the cleaning tokens traverse all leaf
nodes once, the procedure inspects UM and removes all UM
entries whose Slatest is less than c. Finally, c is updated for
the next cycle's inspection. In this way, all phantom entries
will be removed after one cycle of cleaning.

[AJ----
Token

1Hl----
Token

To speed up the cleaning process, multiple cleaning to
kens may work in parallel in the garbage cleaner. In this
case, each token serves a subset of the leaf nodes. Figure 7
illustrates a RUM-tree with two cleaning tokens. Token A
inspects Nodes 5 to 8 while Token B inspects Nodes 1 to
4. Tokens move either with the same inspection interval or
with different inspection intervals. Note that each cleaning
token incurs additional disk accesses to the cleaning proce
dure. Hence, there is a tradeoff between the cleaning effect
and the overall cost.

We define the garbage ratio (gr) of the RUM-tree and
the inspection ratio (ir) of the garbage cleaner as follows.
The garbage ratio of the RUM-tree is the number of ob
solete entries in the RUM-tree over the number of indexed
moving objects. The garbage ratio reflects how clean the
RUM-tree is. A RUM-tree with a small garbage ratio ex
hibits better search performance than a RUM-tree with a
large garbage ratio.

The inspection ratio ir of the garbage cleaner is defined
as the number of leaf nodes inspected by the cleaner over
the total number of updates processed in the RUM-tree dur
ing a period of time. The inspection ratio represents the
cleaning frequency of the cleaner. A larger inspection ra
tio results in a smaller garbage ratio for the RUM-tree. As
sume that a RUM-tree has m cleaning tokens t} to t m , and
that tk's inspection interval is I k for 1:::;k:::;m, then ir of the
cleaner is calculated as:

3.3.3. Clean Upon Touch Besides the cleaning tokens,
garbage cleaning can be performed whenever a leaf node
is accessed during an insertlupdate. The cleaning procedure
is the same as in Figure 8. As a side effect of insertlupdate,
such clean-upon-touch process does not incur extra disk ac-
cesses. When working with the cleaning tokens, the clean-
upon-touch reduces the garbage ratio and the size of UM
dramatically.

3.4. Crash Recovery

In this section, we address the recovery issue of the
RUM-tree in the case of system failure. UM is in main-
memory. When the system crashes, the data in UM is lost.
The goal is to rebuild UM based on the tree on disk upon re-
covery from failure. We consider three approaches with dif-
ferent tradeoffs between the recovery cost and the logging
cost.

Option I: Without log. In this approach, no log is main-
tained. When recovering, an empty LIM is first created.
Then, every leaf entry in the tree is scanned. If no UM
entry exists for a leaf entry, a new UM entry is inserted.
Otherwise, Slatest and Nold of the corresponding UM en-
try are updated continuously during the scan. The value of
the stamp counter before the crash can also be recovered
during the scan. The UM entries having Nold equal to zero
are removed out of UM, and the resulting UM is the orig-
inal UM before the crash. In this approach, the intermedi-
ate UM is possibly large in size depending on the number
of moving objects.

Option 11: With UM log at checkpoints. In this ap-
proach, UM and the current value of the stamp counter
are written to log periodically at checkpoints. Since UM is
small, the logging cost on average is low. When recover-
ing, the UM from the most recent checkpoint is retrieved.
Then, the UM is updated continuously in the same way
as in Option I. However, only the leaf entries that are in-
sertedlupdated after the checkpoint will be processed. The
resulting UM is a superset of the original UM due to hav-
ing ignored the removed leaf entries since the checkpoint.
This causes phalztonz entries as discussed in Section 3.3.2.
Inspecting UM will lead to the original UM after one clean
cycle.

Option 111: With memo log at checkpoints and log
of memo operations. This approach requires writing UM
to log at each checkpoint and logging any changes to it
after the checkpoint. At the point of recovery, UM at the
latest checkpoint is retrieved and is updated according to
the logged changes. Despite high logging cost, the recov-
ery cost in this option is the cheapest as i t avoids the need
to scan the disk tree.

3.5. Concurrency Control

Dynamic Granular Locking (DGL) [4] has been pro-
posed to provide concurrency in R-trees. DGL defines a
set of lockable node-level granules that can adjust dynami-
cally during insert, delete, and update operations. DGL can
directly apply to the on-disk tree of the RUM-tree. Con-
sider that the RUM-tree utilizes the standard R-tree insert
algorithm in the insert and update operations. For deletion,
garbage cleaning is analogous to deleting multiple entries
from a leaf node.

Besides the on-disk tree, the hash-based UM and the
stamp counter are also lockable resources. Each hash bucket
of UM is associated with a read lock and a write lock. A
bucket is set with the proper lock when accessed. Similarly,
the stamp counter is associated with such readtwrite locks.
The DGL and the readlwrite locks work together to guaran-
tee concurrent accesses in the RUM-tree.

4. Cost Analysis

Let N be the number of leaf nodes in the RUM-tree, E
be the size of the UM entry, ir be the inspection ratio of the
garbage cleaner, P be the node size of the RUM-tree, C be
the number of updates between two checkpoints, and A1 be
the number of indexed moving objects.

4.1. Garbage Ratio and the Size of UM

We start by analyzing the garbage ratio and the size of
UM. According to Property 1, after every leaf node is vis-
ited and is cleaned once, all obsolete entries that exist before
the cleaning are removed. In the RUM-tree, every leaf node
is cleaned once during insertslupdates. In the worst case,

obsolete entries are newly introduced in the RUM-tree.
7 7

N Therefore, the upper-bound for the garbage ratio is =.
As each obsolete entry may own an independent UM en-
try, the upper-bound for the size of UM is ?.

It is straightforward to prove that the average garbage ra-
tio is A, and that the average size of UM is e. This
result implies that the garbage ratio and the size of UM are
related to the number of leaf nodes that is far less than the
number of indexed objects. Thus, the garbage ratio and the
size of UM are kept small, and UM can reasonably fit in
main memory. With the clean-upon-touch optimization, the
garbage ratio and the size of UM can be further reduced, as
we show in Section 5.

4.2. Update Cost

We analyze the update costs for the top-down, the
bottom-up, and the memo-based update approaches. We in-

3.3.3. Clean Upon Touch Besides the cleaning tokens,
garbage cleaning can be performed whenever a leaf node
is accessed during an insert/update. The cleaning procedure
is the same as in Figure 8. As a side effect of insert/update,
such c1ean-upon-touch process does not incur extra disk ac
cesses. When working with the cleaning tokens, the clean
upon-touch reduces the garbage ratio and the size of UM
dramatically.

3.4. Crash Recovery

In this section, we address the recovery issue of the
RUM-tree in the case of system failure. UM is in main
memory. When the system crashes, the data in UM is lost.
The goal is to rebuild UM based on the tree on disk upon re
covery from failure. We consider three approaches with dif
ferent tradeoffs between the recovery cost and the logging
cost.

Option I: Without log. In this approach, no log is main
tained. When recovering, an empty UM is first created.
Then, every leaf entry in the tree is scanned. If no UM
entry exists for a leaf entry, a new UM entry is inserted.
Otherwise, Slatest and Nold of the corresponding UM en
try are updated continuously during the scan. The value of
the stamp counter before the crash can also be recovered
during the scan. The UM entries having Nold equal to zero
are removed out of UM, and the resulting UM is the orig
inal UM before the crash. In this approach, the intermedi
ate UM is possibly large in size depending on the number
of moving objects.

Option II: With UM log at checkpoints. In this ap
proach, UM and the current value of the stamp counter
are written to log periodically at checkpoints. Since UM is
small, the logging cost on average is low. When recover
ing, the UM from the most recent checkpoint is retrieved.
Then, the UM is updated continuously in the same way
as in Option I. However, only the leaf entries that are in
serted/updated after the checkpoint will be processed. The
resulting UM is a superset of the original UM due to hav
ing ignored the removed leaf entries since the checkpoint.
This causes phantom entries as discussed in Section 3.3.2.
Inspecting UM will lead to the original UM after one clean
cycle.

Option III: With memo log at checkpoints and log
of memo operations. This approach requires writing UM
to log at each checkpoint and logging any changes to it
after the checkpoint. At the point of recovery, UM at the
latest checkpoint is retrieved and is updated according to
the logged changes. Despite high logging cost, the recov
ery cost in this option is the cheapest as it avoids the need
to scan the disk tree.

3.5. Concurrency Control

Dynamic Granular Locking (DGL) [4] has been pro
posed to provide concurrency in R-trees. DGL defines a
set of lockable node-level granules that can adjust dynami
cally during insert, delete, and update operations. DGL can
directly apply to the on-disk tree of the RUM-tree. Con
sider that the RUM-tree utilizes the standard R-tree insert
algorithm in the insert and update operations. For deletion,
garbage cleaning is analogous to deleting multiple entries
from a leaf node.

Besides the on-disk tree, the hash-based UM and the
stamp counter are also lockable resources. Each hash bucket
of UM is associated with a read lock and a write lock. A
bucket is set with the proper lock when accessed. Similarly,
the stamp counter is associated with such read/write locks.
The DGL and the read/write locks work together to guaran
tee concurrent accesses in the RUM-tree.

4. Cost Analysis

Let N be the number of leaf nodes in the RUM-tree, E
be the size of the UM entry, ir be the inspection ratio of the
garbage cleaner, P be the node size of the RUM-tree, C be
the number of updates between two checkpoints, and Al be
the number of indexed moving objects.

4.1. Garbage Ratio and the Size of UM

We start by analyzing the garbage ratio and the size of
UM. According to Property 1, after every leaf node is vis
ited and is cleaned once, all obsolete entries that exist before
the cleaning are removed. In the RUM-tree, every leaf node
is cleaned once during !'i inserts/updates. In the worst case,,.r

¥,: obsolete entries are newly introduced in the RUM-tree.

Therefore, the upper-bound for the garbage ratio is ir~M'

As each obsolete entry may own an independent UM en
try, the upper-bound for the size of UM is N*E.

2r

It is straightforward to prove that the average garbage ra-
tio is 2 N IIJ , and that the averaboe size of UM is N

2
*E. This

!T* . tT

result implies that the garbage ratio and the size of UM are
related to the number of leaf nodes that is far less than the
number of indexed objects. Thus, the garbage ratio and the
size of UM are kept small, and UM can reasonably fit in
main memory. With the clean-upon-touch optimization, the
garbage ratio and the size of UM can be further reduced, as
we show in Section 5.

4.2. Update Cost

We analyze the update costs for the top-down, the
bottom-up, and the memo-based update approaches. We in-

pected number of node accesses for the top-down ap-
proach is:

Figure 9. Probability of Window Containment

vestigate the number of disk accesses under realistic sce-
narios. Practically, the internal R-tree nodes are cached in
the memory buffer. Therefore, our analysis focuses on the
disk accesses for leaf nodes. In the following discussion,
the data space is normalized to a unit square. Node under-
flow and overflow are ignored in all approaches as they hap-
pen quite rarely.

4.2.1. Cost of the Top-down Approach The cost of a
top-down update consists of two parts, namely, (1) the cost
of searching and deleting the old entry and (2) the cost of in-
serting the new entry. Unlike [I 11, we notice that an entry
can be found only in nodes whose MBRs fully con-
tain the MBR of this entry. To deduce the search cost, we
present the following lemma:
Lemma 2. In a unit square, let W,, be a window of
size z * y , and let W,,, be a window of size m * n .
When W,, and lYmn are randomly placed, the probabil-
ity that W,, contains lYm. is given by:

Proof. Assume that the position of W,, is fixed as shown
in Figure 9. Then, W,,, is contained in W,, if and only if
W,,,,'s bottom-left vertex lies in the shaded area. The size
of the shaded area is given by m.ax(z - m, 0) * max(y -
n:0). Since Wmn is randomly placed, the probability of
lY,, containing W,,, is also maz(z - m, 0) * max(y -
n , 0). For arbitrary placement of W,,, the above situation
holds. Hence we reach Lemma 2.

Assume that the MBR of the entry to be deleted is given
by a * b, where 0 5 a! b 5 1. From Lemma 2, the ex-
pected number of leaf node accesses for searching the old
entry is given by:

where zi and yi are the width and the height of the
MBR of the ith leaf node. Once the entry is found,
it is deleted and the corresponding leaf node is writ-
ten back. In addition, inserting a new entry involves one
leaf node read and one leaf node write. Therefore, the ex-

4.2.2. Cost of the Bottom-up Approach The cost of the
bottom-up approach, as we explain below, ranges from three
to seven leaf node accesses depending on the placement of
the new data.

If the new entry remains in the original node, the update
cost consists of three disk accesses: reading the secondary
index to locate the original leaf node, reading the original
leaf node, and writing the original leaf node.

When the new entry is inserted into some sibling of the
original node, the update cost consists of six disk accesses:
reading the secondary index, reading and writing the origi-
nal leaf node, reading and writing the sibling node, and writ-
ing the changed secondary index.

In the case that the new entry is inserted into any other
node, the update cost consists of seven disk accesses: read-
ing the secondary index, reading and writing the original
leaf node, reading and writing the inserted node, writing the
changed secondary index, and writing the adjusted parent
node of the inserted node.

4.2.3. Cost of the Memo-based Approach For the
memo-based approach, each update is directly inserted. In-
serting an entry involves one leaf node read and one leaf
node write. Given the inspection ratio ir. for a total num-
ber of U updates, the number of leaf nodes inspected by
the cleaner is U * 1:r. Each inspected leaf node involves one
node read and one node write. The clean-upon-touch op-
timization does not involve extra disk accesses. Therefore,
the overall cost per update in the memo-based update ap-
proach is 2(1 + i r) disk accesses.

As discussed in Section 3.4, various recovery approaches
involve different logging costs. Option I does not involve
any logging cost. Based on the upper-bound of the size of
UM derived in Section 4.1, the additional logging cost per
update in Option 11 is a. For Option 111, the additional

A'* E logging cost per update is (- + 1).

5. Experimental Evaluation

In this section, we study the performance of the RUM-
tree through experiments and compare the performance
with the R*-tree [l] and the Frequently Updated R-tree
(FUR-tree) [I 1 1.

All the experiments are running on an Intel Pentium IV
machine with CPU 3.2GHz and IGB RAM. In the experi-
ments, the number of moving objects ranges between 2 mil-
lion and 20 million objects. The object set is generated by
the Network-based Geizerator of Moviizg Objects [2]. We

Figure 9. Probability of Window Containment

vestigate the number of disk accesses under realistic sce
narios. Practically, the internal R-tree nodes are cached in
the memory buffer. Therefore, our analysis focuses on the
disk accesses for leaf nodes. In the following discussion,
the data space is normalized to a unit square. Node under
flow and overflow are ignored in all approaches as they hap
pen quite rarely.

4.2.1. Cost of the Top-down Approach The cost of a
top-down update consists of two parts, namely, (1) the cost
of searching and deleting the old entry and (2) the cost of in
serting the new entry. Unlike [11], we notice that an entry
can be found only in nodes whose MBRs fully con
tain the MBR of this entry. To deduce the search cost, we
present the following lemma:
Lemma 2. In a unit square, let Wxy be a window of
size x * y, and let W mn be a window of size m * n.
When Wxy and lVmn are randomly placed, the probabil
ity that Wxy contains lVmn is given by:

max(x - m, 0) * max(y - n, 0)

Proof. Assume that the position of Wxy is fixed as shown
in Figure 9. Then, Wmn is contained in Wxy if and only if
Wmn's bottom-left vertex lies in the shaded area. The size
of the shaded area is given by max(x - m, 0) * max(y
n,O). Since Wmn is randomly placed, the probability of
lVxy containing W mn is also max(x - m, 0) * max(y
n, 0). For arbitrary placement of Wxy , the above situation
holds. Hence we reach Lemma 2.

Assume that the MBR of the entry to be deleted is given
by a * b, where 0 ::::: a, b ::::: 1. From Lemma 2, the ex
pected number of leaf node accesses for searching the old
entry is given by:

N

lOseoTch = ~ 'L. (max(xi - a, 0) *max(Yi - b, 0))
i=l

where Xi and Yi are the width and the height of the
MBR of the ith leaf node. Once the entry is found,
it is deleted and the corresponding leaf node is writ
ten back. In addition, inserting a new entry involves one
leaf node read and one leaf node write. Therefore, the ex-

pected number of node accesses for the top-down ap
proach is:

N

lOYD = ~ 'L.(ma:r(;r; - a,O) * ma:r(y; - b,O)) + 3
;=1

4.2.2. Cost of the Bottom-up Approach The cost of the
bottom-up approach, as we explain below, ranges from three
to seven leaf node accesses depending on the placement of
the new data.

If the new entry remains in the original node, the update
cost consists of three disk accesses: reading the secondary
index to locate the original leaf node, reading the original
leaf node, and writing the original leaf node.

When the new entry is inserted into some sibling of the
original node, the update cost consists of six disk accesses:
reading the secondary index, reading and writing the origi
nalleaf node, reading and writing the sibling node, and writ
ing the changed secondary index.

In the case that the new entry is inserted into any other
node, the update cost consists of seven disk accesses: read
ing the secondary index, reading and writing the original
leaf node, reading and writing the inserted node, writing the
changed secondary index, and writing the adjusted parent
node of the inserted node.

4.2.3. Cost of the Memo-based Approach For the
memo-based approach, each update is directly inserted. In
serting an entry involves one leaf node read and one leaf
node write. Given the inspection ratio iT, for a total num
ber of U updates, the number of leaf nodes inspected by
the cleaner is U * iT. Each inspected leaf node involves one
node read and one node write. The clean-upon-touch op
timization does not involve extra disk accesses. Therefore,
the overall cost per update in the memo-based update ap
proach is 2(1 + iT) disk accesses.

As discussed in Section 3.4, various recovery approaches
involve different logging costs. Option I does not involve
any logging cost. Based on the upper-bound of the size of
UM derived in Section 4.1, the additional logging cost per
update in Option II is i::;/;'C. For Option III, the additional

logging cost per update is (i::'P~C + 1).

5. Experimental Evaluation

In this section, we study the performance of the RUM
tree through experiments and compare the performance
with the R*-tree [I] and the Frequently Updated R-tree
(FUR-tree) [11].

All the experiments are running on an Intel Pentium IV
machine with CPU 3.2GHz and 1GB RAM. In the experi
ments, the number of moving objects ranges between 2 mil
lion and 20 million objects. The object set is generated by
the Network-based Generator of Moving Objects [2]. We

use the road map of Los Angeles in the generator and nor-
malize the road map to a unit square. The extent of the ob-
jects ranges between 0 (i.e., points) and 0.01 (i.e., squares
with side 0.01). Each object issues an update periodically
with a predefined moving distance between 0 and 0.01.
For the search performance, we study the performance of
range queries. The number of the queries is fixed at 100,000
queries. The queries are square regions of side length 0.03.
The primary parameters used in the experiments are out-
lined in Table 1, where the default values are given in bold
fonts.

As the primary metric, the number of disk accesses is in-
vestigated in most experiments. As discussed in Section 4,
the internal R-tree nodes are cached in memory buffers for
all the R-tree types. For the FUR-tree, the MBRs of the leaf
nodes are allowed to extend 0.003 to accommodate object
updates in their original nodes. For the RUM-tree, we im-
plement both the original cleaning-token garbage cleaner
(denoted by the RUM-treetoken in this section) and the op-
timized clean-upon-touch cleaner (denoted by the RUM-
treetouc/, in this section). Except the experiments in Sec-
tion 5.5, Option I1 discussed in Section 3.4 for the RUM-
tree is chosen as the default recovery option.

5.1. Properties of the RUM-tree

In this section, we study the properties of the RUM-tree
under various inspection ratios and various node sizes.

5.1.1. Effect of Inspection Ratio Figure 10(a) gives the
average I10 cost for updates in the RUM-tree when the
inspection ratio increases from 0% to 100%. With the in-
crease in the inspection ratio, both the RUM-treetoken and
the RUM-treelouch receive larger VO costs due to more fre-
quent cleaning. The costs of the RUM-treetoken and of the
RUM-treetotLch are very similar. This is because the clean-
upon-touch optimization of the RUM-treetouch does not in-

4 RUM-treetok,,

?
0 3.0

2.5

2.0
0 20 40 60 80 100

lnspection Ratio (%)

18 RUM-lreetok,,

- 16 -m- RUM4reetoUch
Z 14 -
0 12 .- - g 10

L ; 6

8 "
0

0 20 40 60 80 400

lnspection Ratio (%)

(a) Update 110 (b) Garbage Ratio

Figure 10. Effect of lnspection Ratio

mance and a near-optimal garbage ratio for both the RUM-
treetokell, and the RLTM-treetoUch. If not otherwise stated,
the RUM-treetouch with a 20% inspection ratio is studied
for comparisons in the rest of the experiments.

5.1.2. Effect of Node Size In these experiments, we study
the effect of various node sizes on the RUM-tree. Fig-
ure 1 1 (a), 11 (b), and I 1 (c) give the average I10 cost, the
average CPU cost, and the garbage ratio of the RUM-trees
under different node sizes, respectively. When a node has
larger size, the average update 110 cost decreases slightly.
This is due to fewer node splitting in a larger node. The aver-
age update CPU cost increases in a larger node because the
garbage cleaner checks more entries in one node cleaning.
For the same reason, the garbage ratio decreases quickly
with the increase in the node size. Observe that the VO cost
dominates the CPU time as one VO normally takes around
10 milliseconds. Therefore, the RUM-tree prefers a large
node size over a small node size. In the rest of the experi-
ments, we fix the node size at 81 92 bytes.

volve additional cleaning cost besides the cost of cleaning
tokens. Figure 10(b) gives the garbage ratios of the RUM- 5.2- Performance with Various Moving ~istances
trees under the same parameters. The garbage ratio of either
the RUM-treetoken or the RUM-treetouch decreases rapidly In this section, we study the performance of the R*-tree,
when the inspection ratio increases to 20%. Observe that the the FUR-tree, and the RUM-tree when the changes between
inspection ratio of 20% achieves rather good update perfor- consecutive updates (referred to as ll~ovilzg distalzce) vary

from 0 to 0.0 1.
PARAMETERS
Number of objects
Moving distance between updates
Extent of objects
Node size (bytes)
Inspection Ratio of RUM-tree

VALUES USED
2M, 2M-20M
0.01,o-0.0 1

0,o-0.01
1024,2048,4096,8192

20%,0%-100%

5.2.1. Update Cost Figure 12(a) gives the update I10
costs for the three R-tree variants. The R*-tree exhibits the
highest cost in all cases due to the costly top-down search.
The update cost of the FUR-tree increases rapidly with the
increase in objects' moving distance. In this case, more ob-
jects move far from their original nodes and require top-
down insertions. The update cost of the RUM-tree is steady

Table 1. Experiment Parameters and Values being only 22% of the cost of the R*-tree, and only 40% to - -

70% of the cost of the FUR-tree.

Figure 10. Effect of Inspection Ratio

5.2. Performance with Various Moving Distances

In this section, we study the performance of the R*-tree,
the FUR-tree, and the RUM-tree when the changes between
consecutive updates (referred to as moving distance) vary
from 0 to 0.0 I.

----6- RUM~lreetoken

~ RUM..f.reetouch

(b) Garbage Ratio

2

o0~~20b:;;:=l40==".0--"'.0-""00

Inspection Ratio ('Yo)

20

I.
I.

~14
o 12

~ 10

~ .
~ .
~ 4

(a) Update I/O

2.5

--t:r- RUM-treetoken

4.5 _ RUM-treetouch

5.0

2.00L-~20~~40~-.~0~-.~0-~'O.

Inspection Ratio ('Yo)

4.0

~ 3.5
0.

i2
Q 3.0

mance and a near-optimal garbage ratio for both the RUM
treetoken and the RUM-treetouch. If not otherwise stated,
the RUM-treetouch with a 20% inspection ratio is studied
for comparisons in the rest of the experiments.

5.1.2. Effect of Node Size In these experiments, we study
the effect of various node sizes on the RUM-tree. Fig
ure II(a), II(b), and II(c) give the average I/O cost, the
average CPU cost, and the garbage ratio of the RUM-trees
under different node sizes, respectively. When a node has
larger size, the average update I/O cost decreases slightly.
This is due to fewer node splitting in a larger node. The aver
age update CPU cost increases in a larger node because the
garbage cleaner checks more entries in one node cleaning.
For the same reason, the garbage ratio decreases quickly
with the increase in the node size. Observe that the I/O cost
dominates the CPU time as one I/O normally takes around
10 milliseconds. Therefore, the RUM-tree prefers a large
node size over a small node size. In the rest of the experi
ments, we fix the node size at 8 I92 bytes.

use the road map of Los Angeles in the generator and nor
malize the road map to a unit square. The extent of the ob
jects ranges between 0 (i.e., points) and 0.01 (i.e., squares
with side 0.0 I). Each object issues an update periodically
with a predefined moving distance between 0 and 0.01.
For the search performance, we study the performance of
range queries. The number of the queries is fixed at 100,000
queries. The queries are square regions of side length 0.03.
The primary parameters used in the experiments are out
lined in Table I, where the default values are given in bold
fonts.

As the primary metric, the number of disk accesses is in
vestigated in most experiments. As discussed in Section 4,
the internal R-tree nodes are cached in memory buffers for
all the R-tree types. For the FUR-tree, the MBRs of the leaf
nodes are allowed to extend 0.003 to accommodate object
updates in their original nodes. For the RUM-tree, we im
plement both the original cleaning-token garbage cleaner
(denoted by the RUM-treetoken in this section) and the op
timized clean-upon-touch cleaner (denoted by the RUM
treetouch in this section). Except the experiments in Sec
tion 5.5, Option II discussed in Section 3.4 for the RUM
tree is chosen as the default recovery option.

In this section, we study the properties of the RUM-tree
under various inspection ratios and various node sizes.

5.1.1. Effect of Inspection Ratio Figure 10(a) gives the
average I/O cost for updates in the RUM-tree when the
inspection ratio increases from 0% to 100%. With the in
crease in the inspection ratio, both the RUM-treetoken and
the RUM-tree/ouch receive larger I/O costs due to more fre
quent cleaning. The costs of the RUM-treetoken and of the
RUM-treetotich are very similar. This is because the c1ean
upon-touch optimization of the RUM-treetouch does not in
volve additional cleaning cost besides the cost of cleaning
tokens. Figure IO(b) gives the garbage ratios of the RUM
trees under the same parameters. The garbage ratio of either
the RUM-treetoken or the RUM-treetouch decreases rapidly
when the inspection ratio increases to 20%. Observe that the
inspection ratio of 20% achieves rather good update perfor-

5.1. Properties of the RUM-tree

PARAMETERS VALUES USED
Number of objects 2M, 2M~20M
Moving distance between updates 0.01, 0~0.01
Extent of objects 0, 0~0.01
Node size (bytes) 1024,2048,4096,8192
Inspection Ratio of RUM-tree 20%, O%~IOO%

Table 1. Experiment Parameters and Values

5.2.1. Update Cost Figure 12(a) gives the update I/O
costs for the three R-tree variants. The R*-tree exhibits the
highest cost in all cases due to the costly top-down search.
The update cost of the FUR-tree increases rapidly with the
increase in objects' moving distance. In this case, more ob
jects move far from their original nodes and require top
down insertions. The update cost of the RUM-tree is steady
being only 22% of the cost of the R*-tree, and only 40% to
70% of the cost of the FUR-tree.

3.5 eza RUM-treqoken
9

8 RUM-lrsstoken

3.0 R " M - t r q ~ u c h
7

2.5

m
0 6 -

w
w

2.0
P

a 5

4 1.5 k 4 -
P e 3

1.0
0 2

0.5 1

0.0
1024 2048 4096 8192 0 1024 2048 4096 8192 O 1024 2048 4096 8192

Node Size (bytes) Node She (bytes) Node Size (bytes)

(a) Update 110 (b) Update CPU (c) Garbage Ratio

Figure 11. Effect of Node Size

5.2.2. Search Cost The search performance of the three
indexing types along various moving distances is given in
Figure 12(b). The R*-tree exhibits the best search perfor-
mance, as its structure is adjusted continuously by the top-
down updates. For the FUR-tree, the search cost exhibits a
peak when the moving distance reaches 0.002. At that point,
most of leaf nodes are able to enclose the object updates in
the original nodes by expanding the node MBRs. Thus, the
FUR-tree is not adjusted globally for optimal search per-
formance. After that point, more updates are inserted in a
top-down manner, thus the FUR-tree structure is more com-
pact. The RUM-tree exhibits around 10% higher search cost
than the R*-tree. This is mainly due to a smaller fanout of
the RUM-tree leaf nodes to include more information in the
leaf entries.

5.2.3. Overall Cost Figure 12(c) gives a comprehensive
view of the performance comparison. In this experiment,
we vary the ratio of the number of updates over the number
of queries from 1 : 100 to 10000: 1. When the ratio increases,
the RUM-tree gains more performance achievement. At the
point 10000: 1, the average cost of the RUM-tree is only
43% of the FUR-tree and 23% of the R*-tree. This ex-
periment demonstrates that the RUM-tree is more applica-
ble than the R*-tree and the FUR-tree in dynamic environ-
ments.

5.2.4. Size of Auxiliary Structure Figure 12(d) compares
the sizes of the auxiliary structures employed by the FUR-
tree and the RUM-tree. For the FUR-tree, each object owns
a corresponding entry in the secondary index, which re-
sults in a huge indexing structure. For the RUM-tree, UM
is upper-bounded and can be kept small in size. For better
visualization, we only show the size of UM in the rest of ex-
periments.

5.3. Performance with Object Extent

In previous experiments, the object set consists of point
objects. In this section, we study the performance of the
R-tree variants with different object sizes. In these exper-
iments, the indexed objects are squares and their side length
(referred to object extent) varies from 0 to 0.01.

5.3.1. Update Cost Figure 13(a) gives the average update
110 cost of the three R-tree variants. The update cost of the
R*-tree grows with the object extent. As a larger extent re-
sults in larger node MBRs, the R*-tree needs to search more
nodes to locate the object to be updated. For the FLR-tree,
the update cost decreases along with the increase in the ob-
ject extent. This is because the update is more likely to be
able to remain in the same leaf node when the MBRs of the
nodes become larger. The update cost of the RUM-tree is
around 14% to 25% that of the R*-tree, and is around 43%
to 6870 that of the FUR-tree. The RUM-tree exhibits stable
update performance as the memo-based update approach is
not affected by object extents.

5.3.2. Search Cost The search performance of the R-trees
with various object extents is given in Figure 13(b). The R*-
tree achieves the best performance followed by that of the
FUR-tree. The search cost of the RUM-tree is around 12%
higher than that of the R*-tree.

5.3.3. Overall Cost Figure 13(c) gives a comprehensive
view of the performance comparison when the object ex-
tent is set as 0.01. Again, we study the performance under
various ratios of updates over queries. Comparing with Fig-
ure 12(c), the performance of the FUR-tree and the R*-tree
are both affected by the extents of the indexed objects. To
the contrary, the performance of the RUM-tree is not af-
fected by object extents. The RUM-tree outperforms both

3.5

1024 2048 4096
Node Size (bytes)

(a) Update I/O

8192

_0.9
"0
S 0.8
u1! 0.7

i 0.6

g 0.5

,.! 0.4..
~ 0.3

~ 0.2

.§ 0.1

~ 0.0
U

12221 RUM4reetoken

_ RUM4reE!touch

1024 2048 4096
Node Size (bytes)

(b) Update CPU

8192

.2 6

~ 5

~4..
of! 3..
t:l 2

IlZ2I RUM-tr88token
_ RUM....rgetouch

(e) Garbage Ratio

Figure 11. Effect of Node Size

5.2.2. Search Cost The search performance of the three
indexing types along various moving distances is given in
Figure 12(b). The R*-tree exhibits the best search perfor
mance, as its structure is adjusted continuously by the top
down updates. For the FUR-tree, the search cost exhibits a
peak when the moving distance reaches 0.002. At that point,
most of leaf nodes are able to enclose the object updates in
the original nodes by expanding the node MBRs. Thus, the
FUR-tree is not adjusted globally for optimal search per
formance. After that point, more updates are inserted in a
top-down manner, thus the FUR-tree structure is more com
pact. The RUM-tree exhibits around 10% higher search cost
than the R*-tree. This is mainly due to a smaller fanout of
the RUM-tree leaf nodes to include more information in the
leaf entries.

5.2.3. Overall Cost Figure 12(c) gives a comprehensive
view of the performance comparison. In this experiment,
we vary the ratio of the number of updates over the number
of queries from 1: I00 to 10000: I. When the ratio increases,
the RUM-tree gains more performance achievement. At the
point 10000: 1, the average cost of the RUM-tree is only
43% of the FUR-tree and 23% of the R*-tree. This ex
periment demonstrates that the RUM-tree is more applica
ble than the R*-tree and the FUR-tree in dynamic environ
ments.

5.2.4. Size of Auxiliary Structure Figure 12(d) compares
the sizes of the auxiliary structures employed by the FUR
tree and the RUM-tree. For the FUR-tree, each object owns
a corresponding entry in the secondary index, which re
sults in a huge indexing structure. For the RUM-tree, UM
is upper-bounded and can be kept small in size. For better
visualization, we only show the size ofUM in the rest of ex
periments.

5.3. Performance with Object Extent

In previous experiments, the object set consists of point
objects. In this section, we study the performance of the
R-tree variants with different object sizes. In these exper
iments, the indexed objects are squares and their side length
(referred to object extent) varies from 0 to 0.01.

5.3.1. Update Cost Figure 13(a) gives the average update
I/O cost of the three R-tree variants. The update cost of the
R*-tree grows with the object extent. As a larger extent re
sults in larger node MBRs, the R*-tree needs to search more
nodes to locate the object to be updated. For the FUR-tree,
the update cost decreases along with the increase in the ob
ject extent. This is because the update is more likely to be
able to remain in the same leaf node when the MBRs of the
nodes become larger. The update cost of the RUM-tree is
around 14% to 25% that of the R*-tree, and is around 43%
to 68% that of the FUR-tree. The RUM-tree exhibits stable
update performance as the memo-based update approach is
not affected by object extents.

5.3.2. Search Cost The search performance of the R-trees
with various object extents is given in Figure 13(b). The R*
tree achieves the best performance followed by that of the
FUR-tree. The search cost of the RUM-tree is around 12%
higher than that of the R*-tree.

5.3.3. Overall Cost Figure 13(c) gives a comprehensive
view of the performance comparison when the object ex
tent is set as 0.01. Again, we study the performance under
various ratios of updates over queries. Comparing with Fig
ure 12(c), the performance of the FUR-tree and the R*-tree
are both affected by the extents of the indexed objects. To
the contrary, the performance of the RUM-tree is not af
fected by object extents. The RUM-tree outperforms both

30

20
0

43 R.-bes

10 X FUR-bee + RUM-bee

0 1 . 1 1 1 1 1 1 . 1 0 1 1 1 3 1 1 1 1 . c
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Number of Objects (in Millions) Number of Objects (in Millions)

4.5 - -4- Recovery Option I
t Recovery Option II

4,0 .-++-- Recovery Option Ill

2.0 1
0 5 10 15 20

Inspection Ratio (O h)

(a) Updale 110 (b) Search 110

Figure 15. Update I10 with Log Options

IObj Enant.0 Yonw Dl" =&H Nurnbar010b) =1WJ

200

1 100 110 1 1 10 1 100 1 low 1100W 1

U of Updates U 01 Quenes Number of Movlng Objects (In Mlll~ons)

(c) Overall 110 (d) Size of Memo

Figure 14. Performance with Num. of Obj.

ure 14(c) when the number of objects is fixed at 20 million.
The ratio of the number of updates to the number of queries
varies from 1 : 100 to 10000: 1. The RUM-tree outperforms
the other two R-tree variants when the ratio is larger than
1 : 1. When the ratio reaches 10000: 1, the average cost of the
RUM-tree is only 50% of that of the FUR-tree, and is only
13% of that of the R*-tree.

5.4.4. Size of UM In Figure 14(d), we study the size of
UM of the RUM-tree when the number of objects scales up
to 20 million objects. The size of UM increases linearly with
the number of indexed objects. This is because the garbage
ratio of the RUM-tree is not affected by the number of ob-
jects. This property guarantees that the size of UM is scal-
able in terms of the size of the RUM-tree.

5.5. Log and Recovery

In this section, we study the logging costs and the recov-
ery costs for the different options in Section 3.4. For Op-
tion I1 and 111, one checkpoint is logged every 10,000 up-
dateslinserts.

5.5.1. Update Cost under Logging Figure 15 gives the
overall VO cost per update when the RUM-tree works with

different logging options. Option I has the lowest update
cost as no log is maintained. The cost of Option I1 is only
slightly higher than that of Option I where Option I1 occa-
sionally writes UM to the log. Option III has the highest
cost that is around 50% higher than the other two options,
as it logs every memo change.

5.5.2. Recovery Cost Table 2 gives the number of disk ac-
cesses when recovering UM in the case of system failure.
Option I incurs the largest cost. This is because the inter-
mediate UM is too large to fit in memory, hence results in
an excessive number of disk accesses. The recovery cost of
Option I1 is significantly lower than Option I. Option I1 re-
trieves UM at the last checkpoint, and scans every disk node
once. Option I achieves the best performance by only re-
trieving logged data. considering the tradeoff between the
logging cost and the recovery cost, we use Option I1 as the
choice in our previous experiments.

5.6. Throughput under Concurrent Accesses

Figure 16 gives the throughput of the RUM-tree and the
R*-tree. The throughput of the FUR-tree is not compared
as there is insufficient knowledge about concurrency con-
trol in the FUR-tree. In these experiments, 100 threads up-
date and query the R-tree variants concurrently. We vary the
percentage of updates from 0% (i.e., queries only) to 100%
(i.e., updates only). Our experiments indicate that the RUM-
tree is more suitable for concurrent accessing than the R*-
tree. The RUM-tree and the R*-tree have similar through-
put when all transactions are queries. With the increase in
the ratio of updates, the R*-tree suffers lower throughput

Option I I Option I1 I Option I11
2008,000 1 7,218 1 1 1

Table 2. The Number of 110s for Recovery

O2L~.~.~.---c"'O~'2,----J-,.,----J-,,~,~.-=20
Number of Objects (in Millions)

o2~~'--:-.--:-.---c",0,..---:;,2:--:-,.,----J-'.~'::-. -=20
Number of Objects (in MIllions)

.....-.*.....

1
1..----.1--;--.- --=':=-: :

o 5 10 15 20

Inspection Ratio (%)

4.5 ---l!.- Recovery Option I
---.- Recovery Option II

4.0 ..-lIE-- Recovery Option III

-<>- R*.-b"ee
~FUR...uee

_RUM·tree

30

40

J5

10

/0

...~.~/~O""·""'~·
.0'

30
-0- Ir~tree

~FUR·tree

25 _ RUM.lree

20
i 15 .~O·~~···

~ ~.O~~·

Q10

(a) Update 1/0 (b) Search I/O

Figure 15. Update I/O with Log Options

Figure 14. Performance with Num. of Obj.

5.5. Log and Recovery

Figure 16 gives the throughput of the RUM-tree and the
R*-tree. The throughput of the FUR-tree is not compared
as there is insufficient knowledge about concurrency con
trol in the FUR-tree. In these experiments, 100 threads up
date and query the R-tree variants concurrently. We vary the
percentage of updates from 0% (i.e., queries only) to 100%
(i.e., updates only). Our experiments indicate that the RUM
tree is more suitable for concurrent accessing than the R*
tree. The RUM-tree and the R*-tree have similar through
put when all transactions are queries. With the increase in
the ratio of updates, the R*-tree suffers lower throughput

different logging options. Option I has the lowest update
cost as no log is maintained. The cost of Option II is only
slightly higher than that of Option I where Option II occa
sionally writes UM to the Jog. Option III has the highest
cost that is around 50% higher than the other two options,
as it logs every memo change.

5.5.2. Recovery Cost Table 2 gives the number of disk ac
cesses when recovering UM in the case of system failure.
Option I incurs the largest cost. This is because the inter
mediate UM is too large to fit in memory, hence results in
an excessive number of disk accesses. The recovery cost of
Option II is significantly lower than Option 1. Option II re
trieves UM at the last checkpoint, and scans every disk node
once. Option I achieves the best performance by only re
trieving logged data. Considering the tradeoff between the
logging cost and the recovery cost, we use Option II as the
choice in our previous experiments.

5.6. Throughput under Concurrent Accesses

(d) Size of Memo

o0~2-----:-'----:--'---:.~,0::-::'2---:'-:-:'--:'::-'--:".::-::20---=22
Number of Moving Objects (in Millions)

-e- RUM·tree
'00

500

~

~40D
III

::!. 300

~
~ 200

E
~'OO

-o-R*-tr'ee
~FUR·tree

_RUM...uee

1:.100 1:10 1:1 10:1 100:1 1000:110000:1

'# 0(. UpdateS' : # of Queries

(c) OverallI/O

30

(Obj. Extent'" 0 MDving Did. = 0.01 Nurnbllr of OIlj. =20M)
40

In this section, we study the logging costs and the recov
ery costs for the different options in Section 3.4. For Op
tion II and III, one checkpoint is logged every 10,000 up
dates/inserts.

ure 14(c) when the number of objects is fixed at 20 million.
The ratio of the number of updates to the number of queries
varies from I: 100 to 10000: 1. The RUM-tree outperforms
the other twOR-tree variants when the ratio is larger than
1: I. When the ratio reaches 10000: 1, the average cost of the
RUM-tree is only 50% of that of the FUR-tree, and is only
13% of that of the R*-tree.

5.4.4. Size of UM In Figure 14(d), we study the size of
UM of the RUM-tree when the number of objects scales up
to 20 million objects. The size of UM increases linearly with
the number of indexed objects. This is because the garbage
ratio of the RUM-tree is· not affected by the number of ob
jects. This property guarantees that the size orUM is scal
able in terr~s of the size of the RUM-tree.

5.5.1. Update Cost under Logging Figure 15 gives the
overall I/O cost per update when the RUM-tree works with

Table 2. The Number of I/Os for Recovery

: ou
t- 0 20 40 60 80 100

Percentage of Object Updates (%)

Figure 16. Throughput

while the RUM-tree exhibits higher throughput. The rea-
son is that an update requires fewer locks than a query in
the RUM-tree, while it is not the case for the R*-tree.

6. Conclusion

For R-tree updates, given the object id and the object's
new value, the most costly part lies in searching the loca-
tion in the R-tree of the objects to be updated. In contrast to
the former update approaches, we presented a memo-based
approach to avoid the deletion I10 costs. In the proposed
RUM-tree, object updates are ordered temporally according
to the processing time. By maintaining the update memo,
more than one entry of an object may coexist in the RUM-
tree. The obsolete entries are deleted lazily and in batch
mode. Garbage cleaning is employed to limit the garbage
ratio in the RUM-tree and confine the size of UM. The
RUM-tree along with the garbage cleaner outperforms sig-
nificantly other R-tree variants in the update performance,
while yielding similar search performance. We believe that
the memo-based update approach has potential to support
frequent updates in many other indexing structures, for in-
stances, B-trees, quadtrees and Grid Files.

References

[I] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The RY-Tree: An Efficient and Robust Access Method for
Points and Rectangles. In SIGMOD, 1990.

[2] T. Brinkhoff. A Framework for Generating Network-Based
Moving Objects. Geolnfon~iatica, 6(2), 2002.

[3] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets with SETI. In Proc. of the Coi$ on In-
izovative Data Systenis Research, CIDR, 2003.

[4] K. Chakrabarti and S. Mehrotra. Dynamic granular locking
approach to phantom protection in r-trees. In ICDE, 1998.

[5] R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change Toler-
ant lndexing for Constantly Evolving Data. In ICDE, 2005.

[6] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-
tial Searching. In SIGMOD, 1984.

[7] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunop-
ulos. Efficient Indexing of Spatiotemporal Objects. In EDBT.
pages 251-268, Prague, Czech Republic, Mar. 2002.

[8] 1. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-
tree using Fractals. In VLDB, pages 50&509, 1994.

[9] G. Kollios, D. Gunopulos, and V. J. Tsotras. On lndexing
Mobile Objects. In PODS, 1999.

[lo] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Data Ma~iagenient, MDM, 2002.

[I I] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB, 2003.

[I21 M. A. Nascimento and J. R. 0 . Silva. Towards historical R-
trees. In Proc. of the ACM Synip. on Applied Coiiiputiizg,
SAC, pages 235-240, Feb. 1998.

[I31 D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Ap-
proaches in Query Processing for Moving Object Trajecto-
ries. In VLDB, pages 395406, Sept. 2000.

[I41 K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. In SSTD, pages 59-
78, Redondo Beach, CA, July 2001.

[I51 S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query Indexing and Velocity
Constrained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. IEEE Trar7soctions on Coniput-
ers, 51(10):1124-1 140, 2002.

[I61 C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-
Tree: An Efficient Self-Adjusting Index for Moving Objects.
In Proc. of the Workshop on Algorithriz Engineering and Ex-
periiiienmtioiz, ALENEX, pages 178-193, Jan. 2002.

[I 71 N. Roussopoulos and D. Leifker. Direct spatial search on pic-
torial databases using packed R-trees. pages 17-3 I , 1985.

[IS] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. In ICDE, 2002.

[I91 S. Saltenis and C. S. Jensen. lndexing of now-relative spatio-
bitemporal data. The VLDB Journal, I I (1):l-I 6, 2002.

[20] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
lndexing the Positions of Continuously Moving Objects. In
SIGMOD, 2000.

[21] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In VLDB,
pages 507-5 18, 1987.

[22] Y. Tao and D. Papadias. Efficient Historical R-trees. In SS-
DBM, pages 223-232, July 2001.

[23] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal
Access Method for Timestamp and Interval Queries. In
VLDB, 2001.

[24] Y. Tao, D. Papadias, and J. Sun. The TPRx'-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB, 2003.

[25] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-
Temporal lndexing for Large Multimedia Applications. In
Proc. of the IEEE Conference on Multiiitedia Collzl>utirzg arid
Sysreiiis, ICMCS, June 1996.

-·0·- W-tree
__ RUM-tree

8000
u
'"~
~ 6000
.2
t>..
~ 4000
l!
t:.i'00] ---o---~ ~ --~ - ,

I- 0 20 40 60 80 100

Percentage of Object Updates (%)

Figure 16. Throughput

while the RUM-tree exhibits higher throughput. The rea
son is that an update requires fewer locks than a query in
the RUM-tree, while it is not the case for the R *-tree.

6. Conclusion

For R-tree updates, given the object id and the object's
new value, the most costly part lies in searching the loca
tion in the R-tree of the objects to be updated. In contrast to
the former update approaches, we presented a memo-based
approach to avoid the deletion I/O costs. In the proposed
RUM-tree, object updates are ordered temporally according
to the processing time. By maintaining the update memo,
more than one entry of an object may coexist in the RUM
tree. The obsolete entries are deleted lazily and in batch
mode. Garbage cleaning is employed to limit the garbage
ratio in the RUM-tree and confine the size of UM. The

RUM-tree along with the garbage cleaner outperforms sig
nificantly other R-tree variants in the update performance,
while yielding similar search performance. We believe that
the memo-based update approach has potential to support
frequent updates in many other indexing structures, for in
stances, B-trees, quadtrees and Grid Files.

References

[I] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles. In SIGMOD, 1990.

[2] T. Brinkhoff. A Framework for Generating Network-Based
Moving Objects. Geolnfomwtica, 6(2), 2002.

[3] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large
Trajectory Data Sets with SETl. In Proc. of the Con! on In
novative Data Systems Research, CIDR,2003.

[4] K. Chakrabarti and S. Mehrotra. Dynamic granular locking
approach to phantom protection in r-trees. In ICDE, 1998.

[5] R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change Toler
ant Indexing for Constantly Evolving Data. In ICDE, 2005.

[6] A. Guttman. R-Trees: A Dynamic Index Structure for Spa
tial Searching. In SIGMOD, 1984.

[7] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunop
ulos. Efficient Indexing of Spatiotemporal Objects. In EDBT,
pages 251-268, Prague, Czech Republic, Mar. 2002.

[8] l. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R
tree using Fractals. In VLDB, pages 50G-509, 1994.

[9] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing
Mobile Objects. In PODS, 1999.

[10] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile
Data Management, MDM, 2002.

[II] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB,2003.

[12] M. A. Nascimento and J. R. O. Silva. Towards historical R
trees. In Proc. of the ACM Symp. on Applied Computing,
SAC, pages 235-240, Feb. 1998.

[13] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Ap
proaches in Query Processing for Moving Object Trajecto
ries. In VLDB, pages 395-406, Sept. 2000.

[14] K. Porkaew, 1. Lazaridis, and S. Mehrotra. Querying Mobile
Objects in Spatio-Temporal Databases. In SSTD, pages 59
78, Redondo Beach, CA, July 2001.

[15] S. Prabhakar, Y. Xia, D. V. KaIashnikov, W. G. Aref,
and S. E. Hambrusch. Query Indexing and Velocity
Constrained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. IEEE Transactions on Comput
ers, 5 I(I 0):1124-1140, 2002.

[16] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR
Tree: An Efficient Self-Adjusting Index for Moving Objects.
In Proc. of the Workshop on Algorithm Engineering and Ex
perimentation, ALENEX, pages 178-193, Jan. 2002.

[17] N. Roussopoulos and D. Leifker. Direct spatial search on pic
torial databases using packed R-trees. pages 17-31, 1985.

[18] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for
Location-Based Services. In ICDE, 2002.

[19] S. Saltenis and C. S. Jensen. Indexing of now-relative spatio
bitemporal data. The VLDB Journal, 11(1):1-16,2002.

[20] S. SaItenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In
SIGMOD,2000.

[21] T. K. SeIlis, N. RoussopouIos, and C. Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In VLDB,
pages 507-518,1987.

[22] Y. Tao and D. Papadias. Efficient Historical R-trees. In SS
DBM, pages 223-232, July 2001.

[23] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal
Access Method for Timestamp and Interval Queries. In
VLDB,2001.

[24] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB,2003.

[25] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio
Temporal Indexing for Large Multimedia Applications. In
Proc. ofthe IEEE Conference on Multimedia Computing and
Systems, ICMCS, June 1996.

	Purdue University
	Purdue e-Pubs
	2005

	R-trees with Update Memos
	Xiaopeng Xiong
	Walid G. Aref
	Report Number:

