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ABSTRACT 
Revisions are an essential cllaracteristic of large-scale soft- 
ware development. Software systems often undergo many re- 
visions during their lifetime because new features are added, 
bugs repaired, abstractions simplified and refactored, and 
performance improved. When a revision: even a minor one: 
does occur: the  changes it induces must be tested to  ensure 
that  assumed invariants in the original are not violated. In 
order to  avoid testing components that are unchanged across 
revisions: impact analysis is often used t o  identify those code 
blocks or functions that. are  affected by a. change. 

In this paper, we present a new solution to this general 
problem tha t  uses dynamic progranlming on inst.rumented 
traces of different program binaries to  identify longest com- 
mon subsequences in the  strings generated by these traces. 
Our formulation not only allo\\~s 11s to perform impact anal- 
ysis, but can also be used t o  detect the  smallest set of loca- 
tions within these functions where the effect of the changes 
actually manifest. 

Sieve is a tool that  incorporates these ideas. Sieve is un- 
obtrusive, requiring no programmer or compiler involvement 
to  guide its behavior. We have tested Sieve on multiple ver- 
sions of open-source C programs and find tha t  the  accuracy 
of impact analysis is improved by 10 - 30% compared to ex- 
isting state-of-the-art implementations. hlore significantly, 
Sieve can identify the regions \\here the changes manifest: 
and discovers that  lor the vast majority of impacted lunc- 
tions: the locus of change is limited t o  often less than three 
lines of code. These results lead us to  conclude tha t  Sieve 
can play a beneficial role in program testing and software 
maintenance. 

1. INTRODUCTION 
Revisions to  an existing piece of software can occur for a 

variety of reasons. These include the addition of new fea- 
tures and functionality, code restructuring t o  improve per- 
formance, or refactoring for improved maintainability. Re- 
gardless of the reasons that cause a revision, test,ing the 
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effects of its changes is important. Revisions are rarely in- 
tended to violate backward compatibility; existing function- 
ality and invariants should thus not be affected as a result 
of changes tha t  occur between two versions of a program. 
Quite often: however, this dictum does not hold. Changing 
a set of components in a program can sometimes result in 
unwanted changes in other components, leading t.o software 
defects and bugs. As a result, expensive test regimes are re- 
quired 171. Recent work on isolating and correcting soft\vare 
bugs 19: 14, 16; 22, 151 provide efficient strategies for test- 
ing a single instance of a program with respect t o  desired 
invariants, but they do not easily generalize t o  comparing 
changes across multiple program versions. 

Mie focus our attention on identifying similarities across 
program versions. \We do so by using test results on older 
versions t o  automatically identify regions in newer versions 
tha t  are affected by the changes tha t  characterize their dif- 
ferences; it is precisely these regions tha t  merit comprehen- 
sive reviexv and testing. We state  this problem more formally 
as follo\\~s: 

"Given  two versions of  a program: i s  there a n  efficient 
mechan i sm  to  dynamically detect the functions affected i n  
the  newer  version by modifications made  t o  the older? More- 
over, can we precisely ident i fy  the  regions i n  the affected 
funct ions  wh,ere the  effect o f  these modifications manifest?' 

Our focus subsumes various dynamic impact. analysis tech- 
niques that  have been proposed previously. Execute-after 
sequences 121, path impact analysis 1131 and coverage impact 
analysis 1191 all attempt to  identify functions tha t  are po- 
tentially affected by a. program change using program traces 
and test data. For example, in 121: Apiwattanapong et. 
al. describe an efficient and precise dynamic impact anal- 
ysis based on the following thesis: "if a function follows a 
modified function in a t  least one execution sequence; it is af- 
fected." The  algorithm used t o  detect the affected functions 
has similar precision as path impact analysis but is more 
efficient. At the other extreme: the execute-after sequence 
approach is as  efficient as coverage impact analysis, but is 
more precise. 

Ren et. al. present a tool for change impact analysis of 
Java programs in 1201. Their approach analyzes two ver- 
sions of a. program, and decomposes their difference into a. 
set of atomic changes. The  impact of changes between the 
versions is reported in terms of affected tests whose execu- 
tion behavior is influenced by these changes. 

While existing designs for impact analysis are significant 
first steps: they provide only a partial solution to the prob- 
lems we consider. Outside of the conservative approxima- 
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ABSTRACT
Revisions are an essential characteristic of large-scale soft
ware development. Software systems often undergo many re
visions during their lifetime because new features are added
bugs repaired, abstractions simplified and refactored, and
performance improved. \\lhen a revision. even a minor one.
does occur, the changes it induces must be tested to ensur~
that assumed invariants in the original are not violated. In
order to avoid testing components that are unchanged across
revisions, impact analysis is often used to identify those code
blocks or functions that are aH'eded by a change.

In this paper, we present a new solution to this general
problem that uses dynamic programming on instrumented
traces of different program binaries to identify longest com
mon subsequences in the strings generated by these traces.
Our formulation not only a]Jows us to perform impact anal
ysis, but can also be used to detect the sma]]est set of loca
tions within these functions where the effect of the changes
actua]]y manifest.

Sieve is a tool that incorporates these ideas. Sieve is un
obtrusive, requiring no programmer or compiler involvement
to guide its behavior. \\le have tested Sieve on multiple ver
sions of open-source C programs and find that the accuracy
of impact analysis is improved by 10 - 30% compared to ex
isting state-of-the-art implementations. 1\lore significantly,
Sieve can identify the regions where the changes manifest,
and discovers that for the vast majority of impacted func
tions, the locus of change is limited to often less than three
lines of code. These results lead us to conclude that Sieve
can play a beneficial role in program testing and software
maintenance.

1. INTRODUCTION
Revisions to an existing piece of software can occur for a

variety of reasons. These include the addition of new fea
tures and functionality, code restructuring to improve per
formance, or refactoring for improved maintainability. Re
gardless of the reasons that cause a revision, testing the
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effects of its changes is important. Revisions are rarely in
tended to violate backward compatibility; existing function
ality and invariants should thus not be affected as a result
of changes that occur between two versions of a program.
Quite often, however, this dictum does not hold. Changing
a set of components in a program can sometimes result in
unwanted changes in other components, leading to software
defects and bugs. As a result, expensive test regimes are re
quired 17]. Recent work on isolating and correcting software
bugs 19, 14, 16, 22, 15] provide efficient strategies for test
ing a single instance of a program with respect to desired
invariants, but they do not easily generalize to comparing
changes across multiple program versions.

We focus our attention on identifying similarities across
program versions. V>le do so by using test results on older
versions to automatica]]y identify regions in newer versions
that are affected by the changes that characterize their dif
ferences; it is precisely these regions that merit comprehen
sive review and testing. We state this problem more forma]]y
as fo]]ows:

"Given two versions of a program, is there an efficient
mechanism to dynamically detect the functions affected in
the newer version by modifications made to the older? More
over. can we precisely. identify the regions in the affected
functions where the effect of these modifications manifest?"

Our focus subsumes various dynamic impact analysis tech
niques that have been proposed previously. Execute-after
sequences [2], path impact analysis [13] and coverage impact
analysis [19] a]] attempt to identify functions that are po
tentia]]y affected by a program change using program traces
and test data. For example, in [2], Apiwattanapong et.
a!. describe an efficient and precise dynamic impact anal
ysis based on the following thesis: "if a function fo]]ows a
modified function in at least one execution sequence, it is af
fected." The algorithm used to detect the affected functions
has similar precision as path impact analysis but is more
efficient. At the other extreme, the execute-after sequence
approach is as efficient as coverage impact analysis, but is
more precise.

Ren et. al. present a tool for change impact analysis of
Java programs in [20]. Their approach analyzes two ver
sions of a program, and decomposes their difference into a
set of atomic changes. The impact of changes between the
versions is reported in terms of affected tests whose execu
tion behavior is influenced by these changes.

While existing designs for impact analysis are significant
first steps, they provide only a partial solution to the prob
lems we consider. Outside of the conservative approxima-



tions used to determine the set of affect,ed functions; current 
solutions are unable t o  ident,ify precisely the regions in a. 
newer version of a program that  are affected by changes to 
an older version. To achieve this degree of precision requires 
accurate tracking of program execution. For example, func- 
tions in an execution sequence that  are invoked after a call 
t o  a modified function may nonetheless be totally unaffected 
by the modifications made. Even with precise knowledge 
about a program execution's control and data-flow behav- 
ior, new techniques are still required t o  use this information 
effectively to identify t,he regions within impacted functions 
tha t  are aKected by changes. 

The design of our approach is motivated by solutions to 
similar proble~ns in computational biology. h4utations are 
a common phenomena in biological systems. Intuitively, we 
imagine multiple versions of a program as analogous to a 
collections of mutations from an original source. One pop- 
ular way to perform protein matching for the purpose of 
identifying mutations is t o  abstract it to  the problem of 
finding an optimal alignment between two prot-eins by using 
dynamic programining. The optimal alignment problem is 
a dual of the popular longest common subsequence prob- 
lem 161. Dynamic programming vis-a-vis the longest. com- 
mon subsequence problem is a powerful tool, and more effec- 
tive than simple string matching because it  helps to identify 
the minimum set of locations that cause a mismatch between 
two strings. In contrast, string matching always provides a 
boolean response. Dynamic programming also provides flex- 
ibility t o  define the cost function for alphabet (mis)matches. 

Based on this intuition, as a first step to detect and iso- 
late variations in program versions, we abstract a program 
as a sequence of memory reads and writes. Test input is 
fed into two versions and the trace of memory operations 
is collected using binary instrumentation. A trace is a se- 
quence of <Operation, Value> tuples, where Operation is 
either a read or \\,rite to  memory and Value is the value 
read from or written int,o memory. The  trace is analogous 
t o  a string and the tuple analogous t o  an alphabet. Com- 
paring two functions that exist in two program versions is 
equivalent t o  comparing the subsequence of the trace cor- 
responding t o  the two functions under comparison. Based 
on a user-defined cost function, the Levenstein [lo] distance 
is calculated and the gaps 13) in the comparison recorded. 
(The Levenstein dist,ance between two strings is defined as  
the shortest sequence of edit operations that  lead from one 
string t o  the ot,her.) By repeating the process for multiple 
test inputs, cunlulative information on the gaps present in 
the older version relative t o  the newer version is obtained. 
By reverse engineering the tuples to the corresponding re- 
gions in the source, information on the affected locations 
within an impacted function is obtained. If the Levenstein 
distance between the two functions is zero, then we regard 
the function in the newer version as unaffected by changes 
in the older version. 

We have implemented a tool called Sieve tha t  uses the 
above techniques for identifying regions of change across 
program versions. In our current implementation, the cost 
of an alphabet match is zero while the cost of a gap in- 
sertion is greater than zero. While more sophisticated cost 
functions can be developed based on program context, we 
find tha t  even using this simple cost function leads t o  high 
eficacy. Over a range of benchmarks, the results of our 
experiments show a reduction of 10-30% in the number of 

functions that  are marked as impacted compared t o  impact 
analysis based on execute-after sequences. Furthermore, we 
also observe that  the majority of affected functions across 
all benchmarks have small regions where changes manifest; 
typically the size of these regions is three lines or less. The 
significance of the latter result is that  Sieve simplifies the 
task of determining if changed behavior in a. revision is in- 
tended or accidental, and facilitates devising test suites t o  
validate desired properties on revisions. 

Sieve does not generate false positives: if a function in 
a later version is marked as  impacted, there are indeed re- 
gions within that  function that are influenced by changes 
made to the older version. However, Sieve can produce false 
negatives, i.e., functions which are actually affected can be 
undetected due t o  the quality of the test inputs. In this 
regard, it shares the limitations as other dynamic profile or 
test-driven techniques. 

1.1 Our Contributions 
This paper makes the following technical contributions: 

1. N e w  Mechanism:  We propose a new mechanism 
to abstract program behavior Our technique consid- 
ers program execution in terms of memory reads and 
writes, and use dynamic programming t o  detect vari- 
ations across two different (binary) program versions. 
No a przorz information t o  help ~dentify changes across 
program versions is needed. 

2. Improved  I m p a c t  Analysis :  Our technique auto- 
matically detect,s functions in a newer version that are 
(un)affected by the modifications made to an older ver- 
sion. The  precision of our approach is based on the 
quality of the test inputs, as is the case with many 
comparable designs and testing methodologies. 

3. Ident i fy ing  C h a n g e d  Regions:  We identify the re- 
gions of code in affected functions a t  which the changes 
t o  the source manifest in the program. 

4. Sieve: We have implemented a tool using our ap- 
proach that  has been tested on a number of realistic 
open-source C programs. Sieve uses binary program 
instrumentation and dynamic programming on mem- 
ory traces derived from instrumented programs. No 
annotation of program sources or compiler enhance- 
ments are required t o  use it. 

2. MOTIVATION 
h4aintaining programmer-defined invariants in large-scale 

software systems is challenging as the system undergoes re- 
visions. It  is often the case that  when a component in such 
a system changes, other components are affected as well; 
sometimes unintentionally. Determining what these com- 
ponents are, and where their behavior changes, is the fo- 
cus of this paper. By identifying and localizing the targets 
of a revision, more focussed test suites can be constructed, 
and programmers can more easily determine whether an in- 
tended change indeed occurred, or whether an unintended 
change was benign or errorleous. 

Some common modifications to a function include adding 
new variables, renaming or deleting existing variables, chang- 
ing the interface of the function by adding or deleting param- 
eters, changing return values. inlining function calls, making 

tions used to determine the set of affected functions, current
solutions are unable to identify precisely the regions in a
newer version of a program that are affected by changes to
an older version. To achieve this degree of precision requires
accurate tracking of program execution. For example, func
tions in an execution sequence that are invoked after a call
to a modified function may nonetheless be totally unaffected
by the modifications made. Even with precise knowledge
about a program execution's control and data-flow behav
ior, new techniques are still required to use this information
effectively to identify the regions within impacted functions
that are affected by changes.

The design of our approach is motivated by solutions to
similar problems in computational biology. Mutations are
a common phenomena in biological systems. Intuitively, we
imagine multiple versions of a program as analogous to a
collections of mutations from an original source. One pop
ular way to perform protein matching for the purpose of
identifying mutations is to abstract it to the problem of
finding an optimal alignment between two proteins by using
dynamic programming. The optimal alignment problem is
a dual of the popular longest common subsequence prob
lem [6]. Dynamic programming vis-a-vis the longest com
mon subsequence problem is a powerful tool, and more effec
tive than simple string matching because 1t helps to identify
the minimum set of locations that cause a mismatch between
two strings. In contrast, string matching always provides a
boolean response. Dynamic programming also provides flex
ibility to define the cost function for alphabet (mis)matches.

Based on this intuition, as a first step to detect and iso
late variations in program versions, we abstract a program
as a sequence of memory reads and writes. Test input is
fed into two versions and the trace of memory operations
is collected using binary instrumentation. A trace is a se
quence of < Operation, Value> tuples, where Operation is
either a read or write to memory and Value is the value
read from or written into memory. The trace is analogous
to a string and the tuple analogous to an alphabet. Com
paring two functions that exist in two program versions is
equivalent to comparing the subsequence of the trace cor
responding to the two functions under comparison. Based
on a user-defined cost function, the Levenstein [10] distance
is calculated and the gaps [3] in the comparison recorded.
(The Levenstein distance between two strings is defined as
the shortest sequence of edit operations that lead from one
string to the other.) By repeating the process for multiple
test inputs, cumulative information on the gaps present in
the older version relative to the newer version is obtained.
By reverse engineering the tuples to the corresponding re
gions in the source, information on the affected locations
within an impacted function is obtained. If the Levenstein
distance between the two functions is zero, then we regard
the function in the newer version as unaffected by changes
in the older version.

vVe have implemented a tool called Sieve that uses the
above techniques for identifying regions of change across
program versions. In our current implementation, the cost
of an alphabet match is zero while the cost of a gap in
sertion is greater than zero. Vlhile more sophisticated cost
functions can be developed based on program context, we
find that even using this simple cost function leads to high
efficacy. Over a range of benchmarks, the results of our
experiments show a reduction of 10-30% in the number of

functions that are marked as impacted compared to impact
analysis based on execute-after sequences. Furthermore, we
also observe that the majority of affected functions across
all benchmarks have small regions where changes manifest;
typically the size of these regions is three lines or less. The
significance of the latter result is that Sieve simplifies the
task of determining if changed behavior in a revision is in
tended or accidental, and facilitates devising test suites to
validate desired properties on revisions.

Sieve does not generate false positives: if a function in
a later version is marked as impacted, there are indeed re
gions within that function that are influenced by changes
made to the older version. However, Sieve can produce false
negatives, i.e., functions which are actually affected can be
undetected due to the quality of the test inputs. In this
regard, it shares the limitations as other dynamic profile or
test-driven techniques.

1.1 Our Contributions
This paper makes the following technical contributions:

1. New Mechanism: We propose a new mechanism
to abstract program behavior. Our technique consid
ers program execution in terms of memory reads and
writes, and use dynamic programming to detect vari
ations across two different (binary) program versions.
No a priori information to help identify changes across
program versions is needed.

2. Improved Impact Analysis: Our technique auto
matically detects functions in a newer version that are
(un )affected by the modifications made to an older ver
sion. The precision of our approach is based on the
quality of the test inputs, as is the case with many
comparable designs and testing methodologies.

3. Identifying Changed Regions: We identify the re
gions of code in affected functions at which the changes
to the source manifest in the program.

4. Sieve: We have implemented a tool using our ap
proach that has been tested on a number of realistic
open-source C programs. Sieve uses binary program
instrumentation and dynamic programming on mem
ory traces derived from instrumented programs. No
annotation of program sources or compiler enhance
ments are required to use it.

2. MOTIVATION
Maintaining programmer-defined invariants in large-scale

software systems is challenging as the system undergoes re
visions. It is often the case that when a component in such
a system changes, other components are affected as well,
sometimes unintentionally. Determining what these com
ponents are, and where their behavior changes, is the fo
cus of this paper. By identifying and localizing the targets
of a revision, more focussed test suites can be constructed,
and programmers can more easily determine whether an in
tended change indeed occurred, or whether an unintended
change was benign or erroneous.

Some common modifications to a function include adding
new variables, renaming or deleting existing variables, chang
ing the interface of the function by adding or deleting param
eters, changing return values, inlining function calls, making



external state changes, or modifying function logic. Some 
of these changes, for example, variable renaming or inlin- 
ing, ha.ve no effect on other functions in most cases; on 
the other hand, modifying program logic or making exter- 
nal state changes can affect other fiinct,ion behavior. Since 
testing is an expensive process, focussing test cases on those 
function components changed as a consequence of this lat- 
ter category is beneficial. Even here, changing a function's 
logic may not necessarily lead to observable change in the 
function's callers. 

As an analogy, when comparing genes from mutations of 
a species, it is useful to detect exactly where a mismatch 
happens. This knowledge can give the biologist further in- 
sight into the characteristics of the mutation. Similarly, in 
our case: it is useful for a programmer to detect the loca- 
tions a t  which changes to an older version lead to different 
behavior in the newer one. Armed with this knowledge, 
the programmer can use various slicing techniques [I; 231, 
for example, to comprehend the behavior of the new ver- 
sion isolated with respect to these changed regions. Sieve 
provides this degree of functionality. Our technique is 
similar to solutions for related problems in the area of com- 
putational biology. hlIore specifically, sequence alignments 
of novel sequences with previously characterized genes can 
help in characterizing proteins [3]. The approach adopted to 
detect sequence alignments is dynamic programming. The 
problem of finding a maximum length subsequence of two or 
more strings is defined as the longest common subsequence 
problem. The solution t,o this problem [6] is a popular ap- 
plication of dynamic programming. Finding the minimum 
edit distance between any two strings is a dual to the longest 
common subsequence problem. A space is introduced into 
an alignment to compensate for insertions and deletions in 
one sequence relative to another is defined as a gap 131. 

For example, given two strings aabcabcd and abacbd, the 
longest common subsequence is aacbd. One possible a.lign- 
ment for the example given above is as follows: a-abcabcd 
and aba-c-b-d. The edit distance in this case is four assum- 
ing unit cost for insertions and deletions. The optimality of 
an alignment is dependent on the cost function used which 
can be defined in many ways. In this paper, we consider a 
simple notion of optimality. Gaps in an alignment have unit 
cost, while all other alphabets have zero cost. Thus an opti- 
mal alignment is one that has the smallest number of gaps; 
observe that for any pair of strings, there maybe many such 
optimal alignments. The flexibility in defining cost based on 
the application context is an important characteristic that 
makes it useful for applications in sequence alignment. As 
we describe below, we also make use of this flexibility in our 
approach. 

3. SIEVE 

3.1 Example 
A motivating example is given in Figure 1. We show 

two program fragments, one labeled old,  and the other new. 
Both funct,ions perform similar actions involving traversing 
a.nd printing elements of an input list. However, new adds 
a new temporary cell, and subsequent,ly deletes it before 
returning. Assuming d e l e t e 2 2  rom-lis t  is implemented 
correctly, the behavior of the two functions is exactly the 
same with respect t o  their callers. 

Using our approach, memory traces associated with the 

void main(){ void main(){ 

o ld ( s )  ; new (s) ; 
f ( s )  ; f ( s )  ; 
g ( s )  ; g ( s )  ; 
h(s )  ; h ( s )  ; 
. . .  . . .  

1 
void old(L1ST *s){ void new(L1ST *s){ 

LIST * t ;  LIST * r ,  *p; 
r = (LIST *)malloc(LIST); 

t = ?,->next; p  = s->next;  
s->next = r ;  

whi le (s  != NULL){ for ( r ->next  = p ;  
r ! =  NULL;r=r->next){ 

p r i n t  ( s - h a l l ;  p r i n t  (s->val) ; 
s = s->next;  

1 1 
s = de l e t ex - f  rom-lis t  ( s )  ; 

i f  ( t ->va l  > NUM) i f  (p->val > NUM) 
p r i n t ( " e r r o r " ) ;  p r i n t  ( "e r ror" )  ; 

I 1 

Figure  1: Example  of functions f rom two  versions 

invocation of these functions on the same test input are first 
obtained. Si~ppose the list referenced by s contains pointers 
to cells {x,y:z): where x holds 10: y holds 15: and z holds 
20. Furthermore, assume reference y is supplied as the ar- 
gument to these functions in the test cases. The memory 
trace generated is shown in Figure 2. 

Trace Element: <Operation,Value> 
Op : Read(R) ,Write(W) 
Value : 32 b i t  value 

q : new c e l l  a l l oca t ed  by malloc i n  new 

old: <R, z>, <W, z>,  <R, 15>, <R, z>, 
<W, z>,  <R, 20>, <R, NULL>, <W, NULL>, <R, 20> 

new: <W, q>, <R, z>,  <W, z>, <R, q>, 
<W, q>, <R, 15>, <R, z>, <W, z>, <R,  20>, 
<R, NULL>, <W, NULL>, <R, y>, <W, y>, <R, 20> 

Figure  2: Merrlory Trace  associated w i t h  t h e  func- 
t ions in Figure  1 

By applying d,vnamic programming, we can match these 
these traces to get an optimal alignment. The alignment is 
shown in Figure 3. The gaps are represented by a hyphen. 

Consequently, the regions in the actual source can also be 
aligned. Figure 1 roughly  present,^ this alignrrient I .  For 
example, the statement s->next = r in new does not have 
a corresponding staterrlent in old.  This is called a gap in 
sequence alignment. Similarly, other gaps are present for 
the newly allocated cell, and the call t,o d e l e t e - r f  rom-lis t .  
Renaming variables (e.g.,t is renamed as p), restructuring 
the code (e.g., the while  loop is rewritten as f o r  loop): etc., 
do not trigger an alignment mismatch because their effects 
remain unchanged. 

If this were the only change in the program, our approach 
would identify functions new and d e l e t e 2 3  rom-lis t  as po- 

'Note that s=s->next is aligned with r=r ->next ,  though 
not shown aligned in the figure. 

Figure 1: Example of functions from two versions

old: <R, z>, <W, z>, <R, 15>, <R, z>,
<W, z>, <R, 20>, <R, NULL>, <W, NULL>, <R, 20>

Figure 2: Memory Trace associated with the func
tions in Figure 1

new; <W, q>, <R, z>, <W, z>, <R, q>,
<W, q>, <R, 15>, <R, z>, <W, z>, <R, 20>,
<R, NULL>, <W, NULL>, <R, y>, <W, y>, <R, 20>

s = delete..r_froID_list (s);
if (p->val > NOM)

print("error");

new(s);
fCs) ;
g(s);
h(s) ;

void new (LIST *s){
LIST *r, *p;
r = (LIST *)malloc(LIST);
p = s->next;
s->next = r;
for(r->next = p;

r 1= NULL;r=r->next){
print(s->val);

void mainO{

print(s->val);
s = s->next;

if(t->val > NOM)
print("error");

t = s->next;

old(s);
f (s) ;
g(s);
h(s) ;

while(s != NULL){

void main () {

void old (LIST *s){
LIST *t;

invocation of these functions on the same test input are first
obtained. Suppose the list referenced by s contains pointers
to cells {x,y,z}, where x holds 10, y holds 15, and z holds
20. Furthermore, assume reference y is supplied as the ar
gument to these functions in the test cases. The memory
trace generated is shown in Figure 2.

By applying dynamic programming, we can match these
these traces to get an optimal alignment. The alignment is
shown in Figure 3. The gaps are represented by a hyphen.

Consequently, the regions in the actual source can also be
aligned. Figure 1 roughly presents this alignment 1. For
example, the statement s->next = r in new does not have
a corresponding statement in old. This is called a gap in
sequence alignment. Similarly, other gaps are present for
the newly allocated cell, and the call to delete_r...frOID_list.
Remlming variables (e.g.,t is renamed as p), restructuring
the code (e.g., the while loop is rewritten as f or loop), etc.,
do not trigger an alignment mismatch because their effects
remain unchanged.

If this were the only change in the program, our approach
would identify functions new and delete..r...from_list as po-

INote that s=s->next is aligned with r=r->next, though
not shown aligned in the figure.

Traee Element: <Operation, Value>
Op : Read(R),Write(W)
Value : 32 bit value

q : new cell allocated by malloe in new

3. SIEVE

3.1 Example
A motivating example is given in Figure 1. We show

two program fragments, one labeled old, and the other new.
Both functions perform similar actions involving traversing
and printing elements of an input list. However, new adds
a new temporary cell, and subsequently deletes it before
returning. Assuming delete..r...from_list is implemented
correctly, the behavior of the two functions is exactly the
same with respect to their callers.

Using our approach, memory traces associated with the

external state changes, or modifying function logic. Some
of these changes, for example, variable renaming or inlin
ing, have no effect on other functions in most cases; on
the other hand, modifying program logic or making exter
nal state changes can affect other function behavior. Since
testing is an expensive process, focussing test cases on those
function components changed as a consequence of this lat
ter category is beneficial. Even here, changing a function's
logic may not necessarily lead to observable change in the
function's callers.

As an analogy, when comparing genes from mutations of
a species, it is useful to detect exactly where a mismatch
happens. This knowledge can give the biologist further in
sight into the characteristics of the mutation. Similarly, in
our case, it is useful for a programmer to detect the loca
tions at which changes to an older version lead to different
behavior in the newer one. Armed with this knowledge,
the programmer can use various slicing techniques [1, 23],
for example, to comprehend the behavior of the new ver
sion isolated with respect to these changed regions. Sieve
provides this degree of functionality. Our technique is
similar to solutions for related problems in the area of com
putational biology. 1'dore specifically, sequence alignments
of novel sequences with previously characterized genes can
help in characterizing proteins [3]. The approach adopted to
detect sequence alignments is dynamic programming. The
problem of finding a maximum length subsequence of two or
more strings is defined as the longest common subsequence
problem. The solution to this problem [6] is a popular ap
plication of dynamic programming. Finding the minimum
edit distance between any two strings is a dual to the longest
common subsequence problem. A space is introduced into
an alignment to compensate [or insertions and deletions in
one sequence relative to another is defined as a gap 13].

For example, given two strings aabcabcd and abacbd, the
longest common subsequence is aaebd. One possible align
ment [or the example given above is as follows: a-abcabcd
and aba-c-b-d. The edit distance in this case is four assum
ing unit cost for insertions and deletions. The optimality of
an alignment is dependent on the cost function used which
can be defined in many ways. In this paper, we consider a
simple notion of optimality. Gaps in an alignment have unit
cost, while all other alphabets have zero cost. Thus an opti
mal alignment is one that has the smallest number of gaps;
observe that for any pair of strings, there maybe many such
optimal alignments. The flexibility in defining cost based on
the application context is an important characteristic that
makes it useful for applications in sequence alignment. As
we describe below, we also make use of this flexibility in our
approach.



old: -, <R,  z > ,  <W, z > ,  - ,  -, <R,  15>,  
<R,  z > ,  <W, z > ,  <R, 20>,  <R,  NULL>, <W, NULL>, 
- - <R,  20> 

new: <W, q> ,  <R,  z> ,  <W, z > ,  <R ,  q>,  
<W, q>,  <R ,  15>,  <R, z > ,  <W, z > ,  
<R,  20>,  <R,  NULL>, <W, NULL>, <R, y> ,  
<W, y> ,  <R,  20> 

F i g u r e  3: Al ignmen t  for  t h e  t r a c e s  s h o w n  i n  Fig- 
ure 2. T h e  g a p  cos t  is  5 .  

tentially affected. In contrast, pat,h impact analysis 1131: for 
example, uses the program's call graph and the syntactically 
changed functions as  markers; it would identify all functions 
that  are executed after new in any test case as  impacted. For 
example, functions f , g and h would be recorded as affected 
by these cha.nges. 

3.2 Implementation 
Sieve is a tool that consists of two components viz., an 

irtstrumentatiori module and a comparison module. Both 
components operate over program binaries. The binaries, 
representing a program and its revision, are instrumented 
using PIN [17]: and execute on the same test input. The ef- 
fect of the instrumentation yields memory traces on selective 
operations. These traces are then compared using dynamic. 
programming, and optimally aligned depending on the user 
defined cost function. A block diagram of this process is 
given in Figure 4. 

Instrumentation 1 Instrumentation LiL-riti 
Cost function 

Affected functions Regions in Affected functions 

F i g u r e  4: B lock  D i a g r a m  for  Sieve. 

Gaps in the alignment help detect operations performed 
by the newer version absent in the older version and vice 
versa. Accumulating this information over all test inputs 
provides the set of affected regions in the newer version. 
Sieve employs a number of optimizations and heuristics, de- 
scribed below, t o  make comparison of complete traces prac- 
tical on realistic inputs. If there are no gaps present in such 
a comparison over all test inputs, Sieve declares the func- 
tions to be unaffected. Otherwise, it. identifies the affected 
regions (in the form of line numbers) in the newer version. 
A detailed algorithm is given in Figure 5. The  procedures 
I N S T R U ~ ~ E N T  and DYNAMIC referenced in the algorithm are 
given in Figures 6 and 9 respectively. 

3.3 Instrumentation Tool Using PIN 

p r o c e d u r e  COMPARE 
D I n p u t  B,: Older version of a. program binary 
D I n p u t  B,: Newer version of a program binary 
D I n p u t  T: Set of test inputs 
D O u t p u t  S: Set of function t.uples < f,: f,. > 

where j, and f,, exactly match 
D O u t p u t  L: Set of < 1 :  f,,. > tuples, where 

f,, is a function in the newer version, 
I is a line number in f, 

1 L C { )  
2 F,,lrl is a set of function names referenced in R, 
3 F,,,,,, is a set of function names references in B ,  
4 S + {< f o J , : f n  >; V f ,  E Foi,~.VfTl E F71eZLi) 
5 fo r  each t E T 
6 M, +- INSTRU~.IEIYT(B,, t) 
'7 &I,, INSTRU~IENT(B,,  : t )  
8 for  each tuple < f ,  E F,r,l, f,, E F, ,,,, > 
9 Mfo +- Data associated with jo 
10 Mf,, + Data associated with f,, 
11 z + D Y N A ~ I I C ( A / ~ ~ , :  n,,,) 
12 if /ZI> 0 t h e n  S t S -  < fo:f,, > 
13 L - - L U Z  

F i g u r e  5:  C o m p a r i n g  t w o  vers ions  of a p rog ram.  

We use PIN [17], a dynamic binary instrumentation tool, 
for instrumentation purposes. PIN supports a rich set of 
abstract operations that  can be used to analyze applications 
a t  the instruction level without detailed knowledge of the 
underlying instruction set. PIN uses dynamic compilatior~ 
techniques t o  instrument executables while they are running. 
The PIN API provides a. number of operations useful for our 
purposes. For example, the call INS-IsMemoryRead(1ns) can 
be used to query whether an instruction is a. memory read or 
not. For any instruction in a binary compiled with a debug 
option, PIN provides a procedure that  takes the address of 
the instruction and outputs the line number and file in the 
source that  generated the instruction. We have used these 
operations in implementing Sieve's instrumentation module. 

Instrumentation code can be inserted a t  desired locations 
in the binary. For our current implementation, we track all 
heap related operations ignoring other instructions, includ- 
ing reads or writes to the stack. Stack related operations 
are ignored for two reasons: (i) the changes in the newer 
version with respect to  the stack operation is likely to even- 
tually manifest itself as  a change in some heap operation a t  
some other location. Of course, the downside t o  this ap- 
proximation is that  the programmer may sometimes need 
to ba.cktra.ck from the heap operation where a change is no- 
ticed t o  the actual stack operation instruction that  caused 
the change; (ii) not tracking stack accesses reduces the over- 
all time for instrumentation, which is the primary overhead 
in our experiments (see Section 4): as  well as the time taken 
for dynamic programming. As part of future work, we in- 
tend to explore ways t o  instrument stack related instructions 
without incurring excessive cost: and to calculate the  trade- 
off between precision and performance. 

The instrumentation module takes as input the binary 
and the list of functions in the binary that  need to be in- 
strumented. When the binary is executed on a given test 

~-----Test Input ---------,

Figure 4: Block Diagram for Sieve.

3.3 Instrumentation Tool Using PIN

Figure 5: Comparing two versions of a program.

procedure COlvIPARE
I> Input Eo: Older version of a program binary
I> Input En: Newer version of a program binary
I> Input T: Set of test inputs
I> Output S: Set of function tuples < fa, fn >

where fa and fn exactly match
I> Output L: Set of < I, f" > tuples, where

fn is a function in the newer version,
I is a line number in fn

1 L<--{}
2 Fold is a set of function names referenced in Eo
3 F"cw is a set of function names references in E"
4 S <-- {< fo,f" >, Vfo E Fold,Vf" E Fnew }
5 for each t E T
6 A10 <-- INSTRUl\IENT(Eo , t)
7 NI" <-- INSTRUMENT(En , t)
8 for each tuple < fa E Fold, f" E F"EW >
9 Mfa ,- Data associated with fa
10 M fn <-- Data associated with f"
11 Z <-- DYNAl\lIc(Mfo, A1f ,,)

12 if jZ[> 0 then S <-- S - < fo,f" >
13 L <-- L U Z

We use PIN [17], a dynamic binary instrumentation tool,
for instrumentation purposes. PIN supports a rich set of
abstract operations that can be used to analyze applications
at the instruction level without detailed knowledge of the
underlying instruction set. PIN uses dynamic compilation
techniques to instrument executables while they are running.
The PIN API provides a number of operations useful for our
purposes. For example, the call INS_IsMemoryRead (Ins) can
be used to query whether an instruction is a memory read or
not. For any instruction in a binary compiled with a debug
option, PIN provides a procedure that takes the address of
the instruction and outputs the line number and file in the
source that generated the instruction. We have used these
operations in implementing Sieve's instrumentation module.

Instrumentation code can be inserted at desired locations
in the binary. For our current implementation, we track all
heap related operations ignoring other instructions, includ
ing reads or writes to the stack. Stack related operations
are ignored for two reasons: (i) the changes in the newer
version with respect to the stack operation is likely to even
tually manifest itself as a change in some heap operation at
some other location. Of course, the downside to this ap
proximation is that the programmer may sometimes need
to backtrack from the heap operation where a change is no
ticed to the actual stack operation instruction that caused
the change; (ii) not tracking stack accesses reduces the over
all time for instrumentation, which is the primary overhead
in our experiments (see Section 4), as well as the time taken
for dynamic programming. As part of future work, we in
tend to explore ways to instrument stack related instructions
without incurring excessive cost, and to calculate the trade
off between precision and performance.

The instrumentation module takes as input the binary
and the list of functions in the binary that need to be in
strumented. When the binary is executed on a given test

Regions in Affected functionsAffected functions

ney: <W, q> , <R, z> , <W, z> , <R, q> ,
<W, q> , <R, 15> , <R, z> , <W, z> ,
<R, 20>, <R, NULL> , <W, NULL> , <R, y>,
<W, y>, <R, 20>

Figure 3: Alignment for the traces shown in Fig
ure 2. The gap cost is 5.

old: - <R, z>, <W, z>, -, -, <R, 15>,
<R, z>, <W, z>, <R, 20>, <R, NULL>, <W, NULL>,

<R, 20>

Gaps in the alignment help detect operations performed
by the newer version absent in the older version and vice
versa. Accumulating this information over all test inputs
provides the set of affected regions in the newer version.
Sieve employs a number of optimizations and heuristics, de
scribed below, to make comparison of complete traces prac
tical on realistic inputs. If there are no gaps present in such
a comparison over all test inputs, Sieve declares the func
tions to be unaffected. Otherwise, it identifies the affected
regions (in the form of line numbers) in the newer version.
A detailed algorithm is given in Figure 5. The procedures
INSTRU!vIENT and DYNAMIC referenced in the algorithm are
given in Figures 6 and 9 respectively.

tentially affected. In contrast, path impact analysis [13], for
example, uses the program's call graph and the syntactically
changed functions as markers; it would identify all functions
that are executed after new in any test case as impacted. For
example, functions f, g and h would be recorded as affected
by these changes.

3.2 Implementation
Sieve is a tool that consists of two components viz., an

instrumentation module and a comparison module. Both
components operate over program binaries. The binaries,
representing a program and its revision, are instrumented
using PIN [17], and execute on the same test input. The ef
fect of the instrumentation yields memory traces on selective
operations. These traces are then compared using dynamic
programming, and optimally aligned depending on the user
defined cost function. A block diagram of this process is
given in Figure 4.



557 v o i d  compressBlock(EState* s ,  Boo1 i s _ l a s t _ b l o c k )  

p rocedu re  INSTRUA~ENT 
D I n p u t  B: Binary t o  be instrumented 
D I n p u t  t :  Input to the binary 
D O u t p u t  Ad: List of tuples < o: T : :  1 :  f >: where 

o is the operation (read or \\~rit.e) 
v is the value 
1 is the line number in the source 
f is the function 

1 M - 0  
2 Execute the binary B on input t using P I N .  
3 for  each instruction I executed 
4 if I is n o t  a. memory read or ~~7rit.e t h e n  cont inue  
5 if I is a memory read t h e n  o + R else o + W 
6 v t Value being read or written t o  memory 
7 1 c Line number of I in the source 
8 f t Function immediately enclosing I 
9 n4 + M + { O , V , L , ~ )  
10 r e t u r n  A4 

F i g u r e  6: I n s t r u m e n t i n g  a p r o g r a m  b i n a r y  us ing  621 3 
P I N .  

622 > 

input with dynamic instrumentation: a list of tuples is gen- 
erated. The  elements in the tuple include the type of oper- 
ation (read or write), its 32 bit value (read or \vritten), the 
line number and the function in alhich the instruction \\,as 
generated. A precise description of this process is given in 
Figure 6. 

Figure 7 shows a program fragment from the compress. c 
program in the bzip2 benchmark. Incl~lding comments, 
there are approximately 55 lines in the funclion compressBlock. 
hIost of the lines shown in the figure perform heap related 
operations. By instrumenting bzip2 on a test sample, we 
obtain the d&a related t o  compressBlock shown in Fig- 
ure 8. A single line in the source code can map to multiple 
heap related assembly instructions as  shown in the figure. 
(The numbers shown in the left of the figure correspond to 
line numbers in the source.) The same function in a. newer 
version of bzip2 was syntactically different from the one 
shown above due to renaming of variables, function names 
and adding new variables. However, in both versions: the 
operations and values generated were the same. 

3.4 Comparison Tool Using Dynamic Program- 
ming 

The comparison module(see Figure 9) operates over traces 
generated by instrumenting the binaries t o  be compared as  
they execute on the same input. To provide an analogy. if 
the trace is considered a string, the equivalence of an alpha- 
bet in the string here is a tuple < Operation, Value>. A dy- 
namic programming table is constructed with an extra row 
and column uv front. The  extra row and column contains 
values equivalent t o  the column and row indices respectively. 
While more sophisticat,ed cost functions can be defined. as a 
first step: the current implementation has a very simple cost 
function. The  cost a t  any box, d i j  is calculated as follows. 
If alphabets i and j are equal: i.e., the tuples are equivalent, 
then the cost d i j ,  computed in line 10 of Figure 9. is the 
minimum of d i - l j - l ;  d i - l j  + 1 and dij-1 + 1. After filling 
up all the values in the table, a traversal from the end of 

F i g u r e  7: E x a m p l e  of i n s t rumen ta t i on .  

the table ( the last row and last column) through the boxes 
responsible for the values in the current box, computed in 
line 10a. gives the alignment of the two traces. 

To illustrate how the comparison module works, we pro- 
vide a sample from the wget benchmark. Figure 10 shows an 
extract of functlon make-connection from file connect. c in 
wget. Syntactically. thls function is the same in the two ver- 
sions (1.6 and 1.7) we consider. Since this function appears 
in a low-level networking module. we would expect it t o  be 
reasonably insulated from changes to higher-level modules 
in the application When run on a sample test input we 
obtain a sequence of < operatzon. value> tuples as follows: 

W  d, R d ,  R O ,  R d ,  R d  

and 

W d ,  R d ,  R O ,  R d ,  R O  

Lines 87, 88. 90. 99 and 106 in versions 1.6 and 1.7 resvec- . . . 
tively constitute the set of heap-related operations for this 
function. As before, W  denotes a write operation, R  denotes 
a read operation, and d represents a memory location. 

As is evident from Figure 10, DEBUGP is the cause for the 
difference. The  definition of DEBUGP for both versions is 
shown in Figure 11 and Figure 12. As can be observed from 
these definitions, a new conditional variable opt .debug was 
added and this variable was set t o  0. This results in a read 
of 0 in the newer version as compared t o  the unconditioned 
read of *sock in the previous version. 

3.5 Heuristics 
Given memory traces of length in and n for two versions, 

the time complexity of dynamic programming is O ( m n )  . 
Thus, even traces of modest. length (approximately 15K) 
can considerably slow down the comparison process. Indeed: 
for some applications, there are a several million reads or 
write operations to memory. To make our approach scalable, 

592 bsPutUlnt32 ( s, s->blockCRC );

605 bsW ( s, 24, s->origPtr );

608 }
612 if (is_Iast_block)

if(s->nblock > 0) {
BZ_FINALISE_CRC(s->blockCRC);
s->combinedCRC = (s->combinedCRC«I) I

(s->combinedCRC»31);
s->combinedCRC -= s->blockCRC;
if (s->blockNo > 1) s->numZ = 0;
if (s->verbosity >= 2)

572
574 s->zbits = (UChar*) (&«UlntI6*)s->arr2) [s->nblock]);
577 if (s->blockNo 1) {

563
564
566

582 bsPutUChar ( s, (UChar) ('0' + s->blockSizel00k) );
583 }
585 if (s->nblock > 0)

557 void compressBlock(EState* s, Bool
558 {
559
561
562

procedure INSTRUr\lENT
I> Input B: Binary to be instrumented
I> Input t: Input to the binary
I> Output Iv[: List of tuples < 0,11, I, f >, where

o is the operation (read or write)
11 is the value
l is the line number in the source
f is the function

1 M<-{}
2 Execute the binary B on input t using PIN.
3 for each instruction I executed
4 if I is not a memory read or write then continue
5 if I is a memory read then 0 <- ReIse 0 <- W
6 11 <- Value being read or written to memory
7 l <- Line number of I in the source
8 f <- Function immediately enclosing I
9 M <- M + {0,11,l,f}
10 return ili[

617 bsPutUlnt32 ( s, s->combinedCRC );
618 if (s->verbosity >= 2)

Figure 6: Instrumenting a program binary using
PIN.

621
622 }

input with dynamic instrumentation, a list of tuples is gen
erated. The elements in the tuple include the type of oper
ation (read or write), its 32 bit value (read or written), the
line number and the function in which the instruction was
generated. A precise description of this process is given in
Figure 6.

Figure 7 shows a program fragment from the compress. c
program in the bzip2 benchmark. Including comments,
there are approximately 55 lines in the function compressBlock.
I\10st of the lines shown in the figure perform heap related
operations. By instrumenting bzip2 on a test sample, we
obtain the data related to compressBlock shown in Fig
ure 8. A single line in the source code can map to multiple
heap related assembly instructions as shown in the figure.
(The numbers shown in the left of the figure correspond to
line numbers in the source.) The same function in a newer
version of bzip2 was syntactically different from the one
shown above due to renaming of variables, function names
and adding new variables. However, in both versions, the
operations and values generated were the same.

3.4 Comparison Tool Using Dynamic Program
ming

The comparison module(see Figure 9) operates over traces
generated by instrumenting the binaries to be compared as
they execute on the same input. To provide an analogy, if
the trace is considered a string, the equivalence of an alpha
bet in the string here is a tuple < Operation, Value>. A dy
namic programming table is constructed with an extra row
and column up front. The extra row and column contains
values equivalent to the column and row indices respectively.
While more sophisticated cost functions can be defined, as a
first step, the current implementation has a very simple cost
function. The cost at any box, dij is calculated as follows.
If alphabets i and j are equal, i.e., the tuples are equivalent,
then the cost dij , computed in line 10 of Figure 9, is the
minimum of d i - 1j - 1 , di - 1j + 1 and dij - 1 + 1. After filling
up all the values in the table, a traversal from the end of

Figure 7: Example of instrumentation.

the table (the last row and last column) through the boxes
responsible for the values in the current box, computed in
line lOa, gives the alignment of the two traces.

To illustrate how the comparison module works, we pro
vide a sample from the wget benchmark. Figure 10 shows an
extract of function make_connection from file connect. c in
wget. Syntactically, this function is the same in the two ver
sions (1.6 and 1.7) we consider. Since this function appears
in a low-level networking module, we would expect it to be
reasonably insulated from changes to higher-level modules
in the application. When run on a sample test input, we
obtain a sequence of < operation, value> tuples as follows:

W d, R d, R 0, R d, R d

and

W d, R d, R 0, R d, R 0

Lines 87, 88, 90, 99 and 106 in versions 1.6 and 1.7 respec
tively constitute the set of heap-related operations for this
function. As before, Wdenotes a write operation, R denotes
a read operation, and d represents a memory location.

As is evident from Figure 10, DEBUGP is the cause for the
difference. The definition of DEBUGP for both versions is
shown in Figure 11 and Figure 12. As can be observed from
these definitions, a new conditional variable opt. debug was
added and this variable was set to O. This results in a read
of 0 in the newer version as compared to the unconditioned
read of *sock in the previous version.

3.5 Heuristics
Given memory traces of length m and n for two versions,

the time complexity of dynamic programming is O(mn).
Thus, even traces of modest length (approximately 15K)
can considerably slow down the comparison process. Indeed,
for some applications, there are a several million reads or
write operations to memory. To make our approach scalable,



63 make_connection(int *sock,char *hostname,unsigned short port) { 
. . .  

559 CMPL $Ox00 0x00000044(eax) R 6d3 87 if ((*sock = socket (AF-INET, SOCK-STREAM, 01) == -1) 
561 MOVL 0x00000260(eax) eax R cf5c545 88 return CONSOCKERR; 

561 MOVL eax 0x00000260(edx) W f30a3aba 90 if (opt.bind-address != NULL) 

562 MOVL 0x00000264(eax) eax 
562 MOVL eax 0x00000264(edx) 
563 MOVL 0x00000260(eax) eax 
563 XORL 0x00000264(edx) eax 
563 MOVL eax 0x00000264(ecx) 
564 CMPL $Ox01 0x0000026c(eax) 
566 CMPL $Ox01 0x00000268(eax) 
574 MOVL 0x00000044(eax) eax 
574 ADDL 0x00000014(edx) eax 
574 MOVL eax 0x0000002c(ecx) 
577 CMPL $Ox01 0x0000026c(eax) 
582 MOVZBL 0x00000270 (eax) eax 
585 CMPL $Ox00 0x00000044(eax) 
592 MOVL 0x00000260(eax) eax 
605 MOVL 0x0000001c(eax) eax 
617 MOVL Ox00000264(eax) eax R f30a3aba 
618 CMPL $Ox01 0x00000268(eax) R 0 

F igure  8: Ins t rumen ta t ion  o u t p u t  for  t h e  funct ion  
i n  F igure  7: Line number ,  Assembly  ins t ruc t ion ,  op- 
e r a t i on  (R/W), a n d  va lue  r ead  f r o m  o r  w r i t t e n  i n to  
memory.  

p rocedure  D Y N A ~ I I C  
D I n p u t  R: h4emory trace with older version 
D I n p u t  C: Memory trace with newer version 
D O u t p u t  U: Set of tuples < 1:  .f >: where 

1 is the line number in the source 
f is the function 

1 U - 0  
2 f o r i + l t o ( R I + l  
3 f o r j + l t o I C I + l  
4 i f i = O t h e n d i , + j  
5 e l s e i f j = O t h e n d , , t i  
6 else 
7 p + user defined penalty 
8 if R[i-11.0 = C[j-11.0 a n d  

R[i-1.I.v = C[j-l1.v t h e n  
9 P + O  
10 dij + min(di-lj-l+p, di- l j+l:  dij-l+l) 
10a zij + any(diagona1, left, top) based on the result of 
11 w h i l e ( i # O o r j # O ) d o  
12 if zij = diagonal t h e n  
13 i t i - l : j + j - 1  
14 else if zij = t op  t h e n  
15 li + U U < C[j].l;C[j]. f >; j + j - 1 
16 else U t U U  < -R[i].l,C[j].f >: i t i - 1 
17 while(i # 0) d o  
18 U + U U  < -Rli].l,Clj].f >: i t i - 1 
19 while(j # 0) d o  
20 U - U U  < C[j].l,C[j]. f >: j + j - 1 
21 r e t u r n  U 

. . .  
99 if(connect(*sock,(struct sockaddr *)&sock-name,sizeof(sock-name))) 

. . .  
106 DEBUGP(("Created fd \%d.\n8', *sock 1 ) ;  

F igu re  10: P r o g r a m  f ragment  of function 
make-connection in  connect. c f r o m  wget. 

/ *  Print X if debugging is enabled; a no-op otherwise. */  
#ifdef DEBUG 
# define DEBUGP(x) do { debug-logprintf x; 3 while(0) 
#else / *  not DEBUG */  
# define DEBUGP(x) DO-NOTHING 
#endif /*not DEBUG * /  

Figure  11: Definition of D E B U G P  i n  wget.h (ver- 
sion 1.6). 

we employ a heuristic that performs dynamic programming 
piecemeal to smaller substrings. 

The heuristic is based on the following observation. If 
two functions are unrelated, then their memory traces are 
likely to yield large gaps as an alignment is computed. If the 
functions are related, i.e., one is a version derived from the 
other, then there are likely to be relatively few gaps in the 
alignment of their respective traces: in other words. there is 
likely to be sufficient locality to apply dynamic programming 
on the strings yielded by subtraces to yield a good, if not 
necessarily optimal, alignment. 

hlore precisely, our heuristic works as follows: 

1. Obtain a prefix of fixed length r from both traces. 

2. Apply dynamic programming on the prefixes obtained. 

3. Find the farthest location in each prefix respectively 
after which there is no alignment between the prefixes. 

4. Obtain a prefix of r starting from these locations re- 
spectively from each trace and repeat the process from 
Step 2. 

We use the example from Section 2 to explain the heuris- 
tic. Recall that the two strings being compared are aabcabcd 
and abacbd. Fix T to be three. In the first step: prefixes aab 
and aba are extracted. Aligning these prefixes, we get aab- 
and -aba. In the next step, we extract cab from the first 
string and acb from the second string. Aligning the prefixes, 
we get -cab and ac-b. Subsequently, we extract cd and d 

/* Print X if debugging is enabled; a no-op otherwise. * /  
#if def DEBUG 
# define DEBUGP(x) do {if (opt .debug) {debug-logprintf x;))while (0) 
#else / *  not DEBUG * /  
# define DEBUGP(x1 DO-NOTHING 
#endif / *  not DEBUG */  

Figure  9: D y n a m i c  P r o g r a m m i n g  F igu re  12: Definition of D E B U G P  i n  wget .h (ver- 
sion 1.7). 

559 CMPL $OxOO Ox00000044(eax)
561 MOVL Ox00000260(eax) eax
561 MOVL eax Ox00000260(edx)
562 MOVL Ox00000264(eax) eax
562 MOVL eax Ox00000264(edx)
563 MOVL Ox00000260(eax) eax
563 XORL Ox00000264(edx) eax
563 MOVL eax Ox00000264(ecx)
564 CMPL $Ox01 Ox0000026c(eax)
566 CMPL $Ox01 Ox00000268(eax)
574 MOVL Ox00000044(eax) eax
574 ADDL Ox00000014(edx) eax
574 MOVL eax Ox0000002c(ecx)
577 CMPL $Ox01 Ox0000026c(eax)
582 MOVZBL Ox00000270(eax) eax
585 CMPL $OxOO Ox00000044(eax)
592 MOVL Ox00000260(eax) eax
605 MOVL Ox0000001c(eax) eax
617 MOVL Ox00000264(eax) eax
618 CMPL $Ox01 Ox00000268(eax)

R 6d3
R cf5c545
VI f30a3aba
R 0
VI 0
R f30a3aba
R 0
VI f30a3aba
R 1
R 0
R 6d3
R a6589008
VI a6589dae
R 1
R 9

R 6d3
R f30a3aba
R 247
R f30a3aba
R 0

63 make_connection(int *sock,char *hostname,unsigned short port)

87 if «*sock ~ socket (AF_INET, SOCK_STREAM, 0)) ~~ -1)
88 return CONSOCKERR;
90 if (opt. bind_address !~ NULL)

99 if(connect(*sock,(struct sockaddr *)&sock_name,sizeof(sock_name)))

106 DEBUGP«"Created fd \%d.\n", *sock ));

108 }

Figure 10: Program fragment of function
make_connection in connect. c from wget.

/* Print X if debugging is enabled; a no-op otherwise. *1
#ifdef DEBUG
# define DEBUGP(x) do { debug_logprintf x; } while(O)
#else j* not DEBUG *j
# define DEBUGP(x) DO_NOTHING
#endif I*not DEBUG *1

Figure 11: Definition of DEBUGP in wget.h (ver
sion 1.6).

Figure 8: Instrumentation output for the function
in Figure 7: Line number, Assembly instruction, op
eration (RjW), and value read from or written into
memory.

procedure DYNAMIC

c> Input R: l'vlemory trace with older version
c> Input C: Memory trace with newer version
c> Output U: Set of tuples < l, f >, where

I is the line number in the source
j is the function

1 U (--- {}
2 for i (--- 1 to I R I + 1
3 for j (--- 1 to I C I + 1
4 if i = 0 then dij (--- j
5 else if j = 0 then d ij (--- i
6 else
7 p (--- user defined penalty
8 if R[i-l].o = C[j-I].o and

R[i-l].v = C[j-l).v then
9 p(---O
10 dij (--- min(di - 1j - 1 +P, d i - 1j +l, dij - 1+1)
lOa Zij (--- any(diagonal, left, top) based on the result of 10
11 while(i =I- 0 or j =I- 0) do
12 if Zij = diagonal then
13 i(---i-l,j(---j-l
14 else if Zij = top then
15 U (--- U U < C[j].I,C[j].j >, j (--- j - 1
16 else U (--- U U < -R[i].I,C[j].j >, i (--- i-I
17 while(i =I- 0) do
18 U (--- UU < -R[i].I,CIJ]·j >, i (--- i-I
19 while(j =I- 0) do
20 U (--- UU < C[j].I,C[j].J >, j (--- j - 1
21 return U

Figure 9: Dynamic Programming

we employ a heuristic that performs dynamic programming
piecemeal to smaller substrings.

The heuristic is based on the following observation. If
two functions are unrelated, then their memory traces are
likely to yield large gaps as an alignment is computed. If the
functions are related, i.e., one is a version derived from the
other, then there are likely to be relatively few gaps in the
alignment of their respective traces; in other words, there is
likely to be sufficient locality to apply dynamic programming
on the strings yielded by subtraces to yield a good, if not
necessarily optimal, alignment.

More precisely, our heuristic works as follows:

1. Obtain a prefix of fixed length r from both traces.

2. Apply dynamic programming on the prefixes obtained.

3. Find the farthest location in each prefix respectively
after which there is no alignment between the prefixes.

4. Obtain a prefix of r starting from these locations re
spectively from each trace and repeat the process from
Step 2.

We use the example from Section 2 to explain the heuris
tic. Recall that the two strings being compared are aabcabcd
and abacbd. Fix r to be three. In the first step, prefixes aab
and aba are extracted. Aligning these prefixes, we get aab
and -aba. In the next step, we extract cab from the first
string and acb from the second string. Aligning the prefixes,
we get -cab and ac-b. Subsequently, we extract cd and d

1* Print X if debugging is enabled; a no-op otherwise. *1
#ifdef DEBUG
# define DEBUGP(x) do {if (opt.debug) {debug_logprintf x;}}while (0)
#else j* not DEBUG *j
# define DEBUGP(x) DO_NOTHING
#endif 1* not DEBUG *1

Figure 12: Definition of DEBUGP in wget.h (ver
sion 1.7).



and align them as cd and -d respectively. The  final align- 
ment is aab-cabcd and -abac-b-d. Compare this alignment 
with the alignment (a-abcabcd and aba-c-b-d) obtained 
in Section 2 using the normal process Coincidentally. in 
this case we have also obtained an optimal allgnmenl (1.e.. 
an alignment with the smallest number of gaps) using our 
heuristic. In general the alignment obtained through this 
heuristic is not always optimal. However, we show in Sec- 
tion 4 tha t  this heuristic performs surprisingly well for all 
the benchmarks we consider. 

4. EVALUATION 

4.1 Experimental Setup 
We have examined Sieve using two versions of the fol- 

lowing software packages: bz ip2  151: bunzip2 [5]: gawk [8]: 
htmldoc 1121 and wget [21]. All these programs are written 
in C. The details on the versions used for the benchmarks, 
the lines of code, the number of functions and other param- 
eters are  given in Table I .  We explain the significance of 
the other columns below. The  test cases used for the bench- 
marks are either randomly generated or are from standard 
test suites available for them. 

We perform our tests on Linux 2.6.11.10 (Gentoo release 
3.3.4-rl) system running on a Intel(R) Pentium(R) 4 CPU 
3.00GHz with 1GB memory. The  version of the PIN [l'i] 
tool used was a special release 1819 (2005-04-15) for Gentoo 
Linux. The sources were compiled using GCC version 3.3.4. 

4.2 Results 
To improve the analysis time of the current implementa- 

tion, a list of functions tha t  need t o  be instrumented and 
the pair of functions t o  be considered for comparison are 
also provided The  number of memory reads and writes. the 
associated values yielded. and the line in the source responsl- 
ble for such an action is given as output of the instrumented 
program executed under PIN. By pDerformlng this process for 
both versions. we have two traces of heap reads and writes. 
and corresponding information tha t  is prov~ded as input to  
the  comparison module. 

Unless otherwise stated, the results are obtalned using 
blocks of size equal to 50 ( ~ . e . ,  the length r defined in the 
heuristic in Section 3.5) in the  dynamic programming pro- 
cess. On performing the whole process as  mentioned above 
for each test case. we obtain the regions (in the form of 
line numbers) in the newer version that  differ from the older 
version. 

Our experimental results allow us to  answer the following 
questions about our approach: 

If a function is impacted, what regions in the function 
are affected? 

Is there any reduction in the number of impacted func- 
tions reported using our approach compared to state- 
of-the-art techniques? 

How does the heuristic of varying the block size affect 
the accuracy and performance of our approach? 

What  are the performance overheads viz., memory and 
time taken associated with our technique? 

Figure 13(a) characterizes functions found in the bench- 
marks with respect t o  the number of heap read and write 

instructions they perform For example. in bzip2, roughly 
45% of all functions perform fe\ver than six operat~ons t o  
the heap. and in wget roughly 15%) of all functions perform 
more than 18 operat,ions involving t,he heap. 

Figure 13(b) presents, for those functions in a newer ver- 
sion impacted by a change, the  size of the affected regions 
within those functions. For example, in bzip2, we observe 
that. over 60'% of all impacted functions have changes lim- 
ited t o  three or fewer lines of code. Indeed, for all the ap- 
plications in our benchmark suite, greater than 50% of all 
impacted functions have fewer than three lines of code im- 
pacted by a change and 80% have fewer than 10 lines of code 
changed. 

Figure 13(c) shows the cun~ulative effect of Figures 13(a) 
and 13(b). It  gives details on the percentage of code within 
impact.ed functions that  are influenced by changes due to  
revisions between versions. For example, in gawk, roughly 
20% of all impacted functions had changes tha t  affected less 
than 15% of their code. On the  other hand, in bunzip2 
nearly 75% of all impacted funct.ions had changes that  were 
manifest within less than 30% of their code size. 

Figure 14: The percentage of functions that were 
found to be not impacted by our approach as com- 
pared to path impact anaIysis. 

Fiaure 14 vresents the reduction in the number of func- - 
tlons found to be impacted using our approach as compared 
to a state-of-the-art impact analysis 121. The number of im- 
pacted functions identified by our approach range from 24 
for bunzip2 to 298 for gawk 

To quantify Sleve's utllity, we implemented path impact 
analysis as described in [2] for C programs. Typically, 
the functions are compared across versions and marked as 
(un)changed. A funct~on that  follows a changed function in 
any execution is labeled as affected. A reduction from 10% 
to 30% In the size of the impacted set was observed across 
our benchmark set when comparing our technique wlth this 
strategy. 

The implication of this result is tha t  the focus of regression 
testing can be improved because the set of impacted func- 
tions tha t  must be examined, i.e.. the set of functions tha t  
truly exhibit different runtime behavior across revisions ob- 
served by our inst.rumentation mechanism: is reduced com- 
pared t o  impact, analyzes tha t  do not leverage this degree of 
precision. 

In Table 1: we provide the specifics of our benchmarks 
and the results obtained using our technique. The number 
of lines of code varies from 9K to 65I< with the number 

and align them as cd and -d respectively. The final align
ment is aab-cabcd and -abac-b-d. Compare this alignment
with the alignment (a-abcabcd and aba-c-b-d) obtained
in Section 2 using the normal process. Coincidentally, in
this case we have also obtained an optimal alignment (i.e.:
an alignment with the smallest number of gaps) using our
heuristic. In general the alignment obtained through this
heuristic is not always optimal. However: we show in Sec
tion 4 that this heuristic performs surprisingly well for all
the benchmarks we consider.

4. EVALUATION

4.1 Experimental Setup
We have examined Sieve using two versions of the fol

lowing software packages: bzip2 [5], bunzip2 [5], gawk [8],
htrnldoc [12] and wget [21]. All these programs are written
in C. The details on the versions used for the benchmarks:
the lines of code, the number of functions and other param
eters are given in Table 1. Vie explain the significance of
the other columns below. The test cases used for the bench
marks are either randomly generated or are from standard
test suites available for them.

We perform our tests on Linux 2.6.11.10 (Gentoo release
3.3.4-rl) system running on a Intel(R) Pentium(R) 4 CPU
3.00GHz with 1GB memory. The version of the PIN [17]
tool used was a special release 1819 (2005-04-15) for Gentoo
Linux. The sources were compiled using GCC version 3.3.4.

4.2 Results
To improve the analysis time of the current implementa

tion, a list of functions that need to be instrumented and
the pair of functions to be considered for comparison are
also provided. The number of memory reads and writes: the
associated values yielded, and the line in the source responsi
ble for such an action is given as output of the instrumented
program executed under PIN. By performing this process for
both versions: we have two traces of heap reads and writes:
and corresponding information that is provided as input to
the comparison module.

Unless otherwise stated, the results are obtained using
blocks of size equal to 50 (i.e., the length r defined in the
heuristic in Section 3.5) in the dynamic programming pro
cess. On performing the whole process as mentioned above
for each test case, we obtain the regions (in the form of
line numbers) in the newer version that differ from the older
version.

Our experimental results allow us to answer the following
questions about our approach:

• If a function is impacted, what regions in the function
are affected?

• Is there any reduction in the number of impacted func
tions reported using our approach compared to state
of-the-art techniques?

• How does the heuristic of varying the block size affect
the accuracy and performance of our approach?

• What are the performance overheads viz., memory and
time taken associated with our technique?

Figure 13(a) characterizes functions found in the bench
marks with respect to the number of heap read and write

instructions they perform. For example: in bzip2, roughly
45% of all functions perform fewer than six operations to
the heap, and in wget roughly 15% of all functions perform
more than 18 operations involving the heap.

Figure 13(b) presents, for those functions in a newer ver
sion impacted by a change, the size of the affected regions
within those functions. For example: in bzip2, we observe
that over 60% of all impacted functions have changes lim
ited to three or fewer lines of code. Indeed, for all the ap
plications in our benchmark suite, greater than 50% of all
impacted functions have fewer than three lines of code im
pacted by a change and 80% have fewer than 10 lines of code
changed.

Figure 13(c) shows the cumulative effect of Figures 13(a)
and 13(b). It gives details on the percentage of code within
impacted functions that are influenced by changes due to
revisions between versions. For example, in gawk, roughly
20% of all impacted functions had changes that affected less
than 15% of their code. On the other hand: in bunzip2
nearly 75% of all impacted functions had changes that were
manifest within less than 30% of their code size.

Figure 14: The percentage of functions that were
found to be not impacted by our approach as com
pared to path impact analysis.

Figure 14 presents the reduction in the number of func
tions found to be impacted using our approach as compared
to a state-of-the-art impact analysis [2]. The number of im
pacted functions identified by our approach range from 24
for bunzip2 to 298 for gawk.

To quantify Sieve's utility, we implemented path impact
analysis as described in [2] for C programs. Typically,
the functions are compared across versions and marked as
(un)changed. A function that follows a changed function in
any execution is labeled as affected. A reduction from 10%
to 30% in the size of the impacted set was observed across
our benchmark set when comparing our technique with this
strategy.

The implication of this result is that the focus of regression
testing can be improved because the set of impacted func
tions that must be examined: i.e.: the set of functions that
truly exhibit different runtime behavior across revisions ob
served by our instrumentation mechanism: is reduced com
pared to impact analyzes that do not leverage this degree of
precision.

In Table 1, we provide the specifics of our benchmarks
and the results obtained using our technique. The number
of lines of code varies from 9K to 65K with the number



Table  1: Benchmark Information and Results (Time in seconds). 

Benchmark 

bzip2 
bunzip2 
gawk 
htmldoc 

,,. - 
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(a) Total heap reads/writ,e instructions per (b) Impacted heap readslwrite instructions (c) Percentage of an impacted function 
function per function changed 

Figure  13: Histogram (a) shows t h a t  most  functions in these  benchmarks  perform a non-trivial number  
of heap-related operations.  His togram (b)  shows t h a t  for approximate ly  65 % of t h e  functions in  every  
benchmark,  t h r e e  o r  fewer lines wi th in  these  functions are impacted;  His togram (c) is a combination of (a)  
a n d  (b).  I t  shows t h e  percentage  of change t h a t  occurs wi th in  impacted  functions. 

Old 
1 Version 

0.9.5d 
0.9.5d 
3.1.3 
1.8.23 

of functions varying from 100 to 500 approximately. The 
1engt.h of the trace represents the number of reads and writes 
to the heap in thousands of instructions. The longest trace 
observed was approximately 6 million for bzip2. The aver- 
age memory used while significant is not problematic. This 
is expected for many dynamic analysis scenarios because 
precise information on heap operations is being gathered. 
The percentage of affected regions is also provided in the 
table. The static percentage reveals that a sizeable fraction 
of the newer version of a benchmark program is impacted by 
changes to t.he older, even though Fig 13 demonstrates that 
the absolute number of lines where the changes manifest is 
small in the majority of the cases. The dynamic percentage 
shows that in some cases (e.g., htmldoc), these changes are 
exercised often. 

The time taken for our technique is composed of the in- 
strumentation time of the binary and execution time of com- 
parison module. It is obvious from the table that the main 
performance bottleneck is associated with instrumentation 
time. There are two reasons for the inefficiency of the instru- 
mentation process. The first is because we use a dynamic 
binary instrumentation tool as opposed to static instrumen- 
tation. Therefore for each test case, time is taken to in- 
sert appropriate instrumentation code. We believe the time 
taken for t.his approach can be significantly reduced using 
alternative instrumentation strategies. Furthermore: Sieve 
currently tracks all heap related operations. This number 
can also play an important role in increasing instrumenta- 
tion time. A correlation is present between the length of the 
trace and instrumentation time. For example, wget has a 
shorter trace and thus significantly smaller instrumentation 

wget 1.6 

time compared to bzip2. One way to reduce the number of 
heap operations tracked is to discard those operations found 
in regions already known t.o have been affected from previous 
test runs. In a.ny case, the time taken for dynamic program- 
ming, the heart of our approach, is only a small fraction of 
the instrumentation time. 

As discussed in Section 3.5, the accuracy and performance 
of our approach varies based on the block size (the prefix T 

in the heuristic description). Figure 15(a) shows the time 
taken for dynamic programming for different block sizes for 
each benchmark. Since the instrumentation time is indepen- 
dent of the block size, it IS not shown in the figure. With 
decrease in the block size, the time taken to complete also 
decreases. However, a t,radeoff exists between the perfor- 
mance and accuracy with respect to block size. As can be 
observed from Figure 15(b): the accuracy of our approach 
gradually decreases with decrease in block size. In the figure, 
the number of functions in the newer version that exactly 
match with their older counterparts is given. The num- 
ber of impacted functions of our approach is the difference 
between the number of impacted functions using a generic 
impact analysis arid the number of functions that exactly 
match. Based on the above results, we use blocks of size 50 
for our experiments as it provides efficient execution times 
without sacrificing accuracy. 

New 
Version 

1.0.2 
1.0.2 
3.1.4 
1.8.24 

5. LIMITATIONS 

1.7 

We discuss two limitations in the current version of Sieve. 

LoC 

(in K) 
9 
9 

41 
65 

Aliasing: In our current implementation, we do not con- 
sider the memory addresses from which values are being 

28 

Total 
Functions 

107 
107 
522 
24 6 
313 

Longest 
Tra.ce (lo3) 

6099 
1839 
3598 
1399 
158 

Total 
Tests 
107 
107 
133 
138 
207 

Instr. 
Time 
2600 
1341 
1408 
1474 
954 

Analysis 
Time 
591 
181 
88 

646 
17 

hlemory 
(in MB) 

351 
89 
670 
84 
16 

%affected 
Static 
25.4 
26.6 
41.7 
48.4 
44.4 

Dynamic 
31.8 
13.6 
25.7 
84.1 
33.6 

Benchmark Old New LoC Total Longest Total Instr. Analysis 1..,,1emory % affected
Version Version (in K) Functions Trace (103

) Tests Time Time (in MB) Static Dynamic
bzip2 0.9.5d 1.0.2 9 107 6099 107 2600 591 351 25.4 31.8
bunzip2 0.9.5d 1.0.2 9 107 1839 107 1341 181 89 26.6 13.6
gawk 3.1.3 3.1.4 41 522 3598 133 1408 88 670 41.7 25.7
htmldoc 1.8.23 1.8.24 65 246 1399 138 4474 646 84 48.4 84.1
wget 1.6 1.7 28 313 158 207 954 17 16 44.4 33.6

Table 1: Benchmark Information and Results (Time in seconds).
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(a) Total heap reads/write instructions per (b) Impacted heap reads/write instructions (c) Percentage of an impacted function
function per function changed

Figure 13: Histogram (a) shows that most functions in these benchmarks perform a non-trivial number
of heap-related operations. Histogram (b) shows that for approximately 65 % of the functions in every
benchmark, three or fewer lines within these functions are impacted; Histogram (c) is a combination of (a)
and (b). It shows the percentage of change that occurs within impacted functions.

of functions varying from 100 to 500 approximately. The
length of the trace represents the number of reads and writes
to the heap in thousands of instru"ctions. The longest trace
observed was approximately 6 million for bzip2. The aver
age memory used while significant is not problematic. This
is expected for many dynamic analysis scenarios because
precise information on heap operations is being gathered.
The percentage of affected regions is also provided in the
table. The static percentage reveals that a sizeable fraction
of the newer version of a benchmark program is impacted by
changes to the older, even though Fig 13 demonstrates that
the absolute number of lines where the changes manifest is
small in the majority of the cases. The dynamic percentage
shows that in some cases (e.g., htmldoc), these changes are
exercised often.

The time taken for our technique is composed of the in
strumentation time of the binary and execution time of com
parison module. It is obvious from the table that the main
performance bottleneck is associated with instrumentation
time. There are two reasons for the inefficiency of the instru
mentation process. The first is because we use a dynamic
binary instrumentation tool as opposed to static instrumen
tation. Therefore for each test case, time is taken to in
sert appropriate instrumentation code. We believe the time
taken for this approach can be significantly reduced using
alternative instrumentation strategies. Furthermore, Sieve
currently tracks all heap related operations. This number
can also play an important role in increasing instrumenta
tion time. A correlation is present between the length of the
trace and instrumentation time. For example, wget has a
shorter trace and thus significantly smaller instrumentation

time compared to bzip2. One way to reduce the number of
heap operations tracked is to discard those operations found
in regions already known to have been affected from previous
test runs. In any case, the time taken for dynamic program
ming, the heart of our approach, is only a small fraction of
the instrumentation time.

As discussed in Section 3.5, the accuracy and performance
of our approach varies based on the block size (the prefix T

in the heuristic description). Figure 15(a) shows the time
taken for dynamic programming for different block sizes for
each benchmark. Since the instrumentation time is indepen
dent of the block size, it is not shown in the figure. With
decrease in the block size, the time taken to complete also
decreases. However, a tradeoff exists between the perfor
mance and accuracy with respect to block size. As can be
observed from Figure 15(b), the accuracy of our approach
gradually decreases with decrease in block size. In the figure,
the number of functions in the newer version that exactly
match with their older counterparts is given. The num
ber of impacted functions of our approach is the difference
between the number of impacted functions using a generic
impact analysis and the number of functions that exactly
match. Based on the above results, we use blocks of size 50
for our experiments as it provides efficient execution times
without sacrificing accuracy.

5. LIMITATIONS
We discuss two limitations in the current version of Sieve.

Aliasing: In our current implementation, we do not con
sider the memory addresses from which values are being
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(a)  Time taken for the dynamlc programming (b)  Number of (unaffected) functions that  ex- 
process for different block sizes actly match w.r.t. the memory trace with 

functions in the older version. 

F i g u r e  15: W i t h  dec r ea se  i n  block size,  t h e  t i m e  t a k e n  for  d y n a m i c  p r o g r a m m i n g  r educes  as s e e n  i n  (a).  
However ,  a d r o p  i n  a ccu racy  is  a l so  no t iced  for  block sizes less  t h a n  50 a s  s h o w n  i n  (b) .  

read/written. For example, multiple writes of value v into 
the same memory location in one program will be found 
equivalent t o  the same number of writes of v into consecu- 
tive (distinct) memory locations in another program. This is 
because only the operation performed and t,he value read or 
written are taken into account. in the matching process: no 
consideration is given to the locations being effected. Zhang 
and Gupta present a work around to this problem in 1241 
in a related context. We intend to investigate the applica- 
bility of their approach, as  well as other refinements t o  the 
comparison module, as part of Sieve's future development. 

I n s t r u m e n t a t i o n :  As explained earlier, instrumenting 
the programs using a dynamic instrumentation tool seems 
t.o be a bottleneck. Current,ly: for each test case, instru- 
mentation is added on the fly and the instrumented code 
is executed. The  number of times the instrumentation is 
added is directly proportional to  the number of test inputs. 
By using a static instrumentation tool, we believe that  the 
time taken for instrumentation can be significantly reduced. 

6. RELATED WORK 
In (21, Apiwattanapong et. al. proxide an  efficient and 

precise dynamic impact analysis using execute-after sequences. 
They improve on existing dynamic impact analysis approaches 
[13, 191. In  their approach. functions that  follow a modified 
function in some execution path are added t o  the impact set. 
One of their reasons for using dynamic impact analysis is to 
reduce the parts of the program that  need t o  be retested 
while performing regression testing. Ren el. al. present a 
tool for change impact analysis of Java programs in 1201. 
In their approach: a set of changes responsible for a mod- 
ified test's behavior and the set of tests that  are affected 
bv a modification are identified. The  differences between 
two versions are decomposed into a set of atomic changes 
and,  based on static or dynamic call graph sequences, the 
above mentioned details are estimated. We share obvious 
similarities with these efforts: but differ both in the mecha- 
nisms used t o  identify impacted functions, and the ability t o  
identify localized regions of change within these functions. 

h/Ioreover: because our technique operates over binary execu- 
tion, we are not reliant on program analysis of input. sources 
or programmer annotations. 

Zhang and Gupta [24] present a novel method for match- 
ing dynamic execution histories across program versions for 
detecting bugs and pirated softwares. They perform match- 
ing by looking at the control flow taken, values produced, 
addresses referenced and data dependencies exercised. In 
contrast, we abstract programs as a sequence of read and 
write operations into the heap and perform the compari- 
son of two versions using a dynamic programming approach. 
Moreover, we are interested in detecting the locations of im- 
pact within an impacted function. It is not clear if their 
method can be generalized for this purpose. 

Dynamic programming, more specifically longest common 
subsequence techniques, are used in many applications. One 
such application in software engineering is described in 141. 
The foundation of their approach is based on the t,hesis 
that  for similar bugs, the call stack also shares similari- 
ties. Therefore, by pruning unnecessary information from 
the call stack, and comparing the resulting string represen- 
tation with an  existing signature, a score can be given to the 
match using a longest common subsequence algorithm. The 
similarity between their approach and ours is restricted to 
the underlying technique and its applicability in a software 
engineering context, but does not extend t o  impact analysis 
or variation detection across program revisions. 

Trivially, tools like d i f f  can only identify the syntactic 
changes across two different program versions. hiore sophis- 
ticated tools like MOSS 1181 that  are used in detecting pla- 
giarized code fail in the presence of smartly refactored code. 
Horowitz identified the importance of tools that  can rec- 
ognize semantic changes across program versions. In [ l l ] ,  
she presents three different algorithms for comparing pro- 
gram versions by identifying various textual and semantic 
changes. Sieve is a tool specially designed for tracking se- 
mantic changes across versions and we believe gives qualita- 
tively better results than d i f f  or MOSS. Our experiments 
with binary versions of realistic programs shows that our 
method is practical. 

Many interesting techniques have been devised for bug de- 
tection in software systems [9: 14, 16, 22, 151. For example, 
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Figure 15: With decrease in block size, the time taken for dynamic programming reduces as seen in (a).
However, a drop in accuracy is also noticed for block sizes less than 50 as shown in (b).

read/written. For example, multiple writes of value v into
the same memory location in one program will be found
equivalent to the same number of writes of v into consecu
tive (distinct) memory locations in another program. This is
because only the operation performed and the value read or
written are taken into account in the matching process: no
consideration is given to the locations being effected. Zhang
and Gupta present a work around to this problem in [24]
in a related context. We intend to investigate the applica
bility of their approach, as well as other refinements to the
comparison module, as part of Sieve's future development.

Instrumentation: As explained earlier, instrumenting
the programs using a dynamic instrumentation tool seems
to be a bottleneck. Currently, for each test case, instru
mentation is added on the fly and the instrumented code
is executed. The number of times the instrumentation is
added is directly proportional to the number of test inputs.
By using a static instrumentation tool, we believe that the
time taken for instrumentation can be significantly reduced.

6. RELATED WORK
In [2], Apiwattanapong et. al. provide an efficient and

precise dynamic impact analysis using execute-after sequences.
They improve on existing dynamic impact analysis approaches
[13, 19]. In their approach, functions that follow a modified
function in some execution path are added to the impact set.
One of their reasons for using dynamic impact analysis is to
reduce the parts of the program that need to be retested
while performing regression testing. Ren et. al. present a
tool for change impact analysis of Java programs in [20].
In their approach, a set of changes responsible for a mod
ified test's behavior and the set of tests that are affected
by a modification are identified. The differences between
two versions are decomposed into a set of atomic changes
and, based on static or dynamic ca11 graph sequences, the
above mentioned details are estimated. We share obvious
similarities with these efforts, but differ both in the mecha
nisms used to identify impacted functions, and the ability to
identify localized regions of change within these functions.

Moreover, because our technique operates over binary execu
tion, we are not reliant on program analysis of input sources
or programmer annotations.

Zhang and Gupta [24] present a novel method for match
ing dynamic execution histories across program versions for
detecting bugs and pirated softwares. They perform match
ing by looking at the control flow taken, values produced,
addresses referenced and data dependencies exercised. In
contrast, we abstract programs as a sequence of read and
write operations into the heap and perform the compari
son of two versions using a dynamic programming approach.
Moreover, we are interested in detecting the locations of im
pact within an impacted function. It is not clear if their
method can be generalized for this purpose.

Dynamic programming, more specifica11y longest common
subsequence techniques, are used in many applications. One
such application in software engineering is described in [4].
The foundation of their approach is based on the thesis
that for similar bugs, the cal1 stack also shares similari
ties. Therefore, by pruning unnecessary information from
the caJ] stack, and comparing the resulting string represen
tation with an existing signature, a score can be given to the
match using a longest common subsequence algorithm. The
similarity between their approach and ours is restricted to
the underlying technique and its applicability in a software
engineering context, but does not extend to impact analysis
or variation detection across program revisions.

Trivially, tools like diff can only identify the syntactic
changes across two different program versions. More sophis
ticated tools like MOSS [18] that are used in detecting pla
giarized code fail in the presence of smartly refactored code.
Horowitz identified the importance of tools that can rec
ognize semantic changes across program versions. In [11],
she presents three different algorithms for comparing pro
gram versions by identifying various textual and semantic
changes. Sieve is a tool special1y designed for tracking se
mantic changes across versions and we believe gives qualit.a
tively better results than diff or MOSS. Our experiments
with binary versions of realistic programs shows that our
method is practical.

Many interesting techniques have been devised for bug de
tection in software systems [9, 14,16,22, 15]. For example,



in [9]: Gociefroid et .  al. present a technique t o  automati- 
cally generate tes t  cases so tha t  the  coverage o f  the  program 
is increased. In [14], t h e  source o f  the  software is mined t o  
detect commonly  occurring patterns and the  deviants are 
identified as bugs. Our work focusses on  an entirely new 
dimension - how 1.0 det.ect impacted regions in a revision 
o f  a program, which by  implication can help in detecting 
whether the  impact \\,as b y  design or accidental. W e  view 
our contribution as a complelnentary technique t o  existing 
single program bug detection techniques. 

7. CONCLUSIONS 
T h i s  paper describes Sieve: a tool t o  detect variations be- 

tween program versions. Sieve examines the  execution o f  
two  binaries on  t h e  same tes t  input  t o  yield the  affected 
functions in t h e  newer version, along wi th  t h e  regions in  
these functions where t h e  change manifests T h i s  informa- 
t ion can b e  used for debugging, and improved regression 
testing Experimental results on  a number o f  open source 
programs shows that  Sieve improves t h e  quality o f  impact 
analysis by  10-30% compared t o  existing approaches. W e  
also find tha t  affected regions tend t o  be  relatively small. 
Besides addressing t h e  limitations given in  Section 5: we 
also plan t o  explore other interesting avenues for future ~ v o r k  
including integrating Sieve w i th  existing dynamic program 
analysis and testing frame~vorks  like D A R T  [9]. 
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in [9], Godefroid et. al. present a technique to automati
cally generate test cases so that the coverage of the program
is increased. In [14]' the source of the software is mined to
detect commonly occurring patterns and the deviants are
identified as bugs. Our work focusses on an entirely new
dimension - how to detect impacted regions in a revision
of a program, which by implication can help in detecting
whether the impact was by design or accidental. We view
our contribution as a complementary technique to existing
single program bug detection techniques.

7. CONCLUSIONS
This paper describes Sieve, a tool to detect variations be

tween program versions. Sieve examines the execution of
two binaries on the same test input to yield the affected
functions in the newer version, along with the regions in
these functions where the change manifests. This informa
tion can be used for debugging, and improved regression
testing. Experimental results on a number of open source
programs shows that Sieve improves the quality of impact
analysis by 10-30% compared to existing approaches. We
also find that affected regions tend to be relatively small.
Besides addressing the limitations given in Section 5, we
also plan to explore other interesting avenues for future work
including integrating Sieve with existing dynamic program
analysis and testing frameworks like DART [9].
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