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ABSTRACT 
 

Silica aerogels are frequently employed as solid desiccants in enthalpy wheels for dehumidifying the supply stream 

in air-conditioning systems. These desiccant materials possess good moisture adsorption and desorption 

characteristics due to their porous structure. Analysis of adsorption and desorption isotherms is critical for 

performance characterization and is often performed to evaluate the capacity and transient performance of desiccant-

based dehumidification systems. The current study is focused on the adsorption and desorption isotherms of solid 

silica aerogels and silica aerogel coatings on open-cell metal-foam substrates. The sol-gel process is adopted to 

synthesize silica aerogels using different basic (ammonium hydroxide, potassium hydroxide) and acidic 

(hydrofluoric acid, steric acid, hydrogen peroxide) catalysts, with the same precipitator (tetra methyl orthosilicate-

TMOS) and solvent (methanol). Scanning electron microscopy is used to characterize the microstructure of super-

critically dried aerogels and adsorption/desorption isotherms for the different samples are obtained by the dynamic 

vapor sorption method. The steady-state moisture adsorption and desorption capacity of silica aerogels is affected by 

their porous structure, which depends on the synthesis technique used to prepare the silica aerogels. For the silica 

aerogel coatings on metal foams, the substrate structure and surface area also play an important role. The effect of 

the substrate surface area on adsorption/desorption capacity is analyzed by comparing the isotherms for solid silica 

aerogel samples, and silica aerogels coatings on flat plates and on metal foams with different pore sizes. 

 

1. INTRODUCTION 
 

Because of the importance of energy efficiency in the built environment, there is significant interest in separating the 

sensible and latent loads when conditioning air for human comfort. Separating the sensible and latent loads offers 

significant potential in energy savings and provides opportunities for improved control of temperature and humidity. 

The psychrometric process of a SSLC system is presented in Figure 1. This system consists of one vapor 

compression system and one solid desiccant wheel (enthalpy wheel). The vapor compression system provides only 

sensible cooling (point A to point B) required by the conditioned space at both elevated air temperature leaving the 

mailto:sjs@illinois.edu
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evaporator and a higher air mass flow rate. The reason for a higher air mass flow rate requirement is to compensate 

for the reduced enthalpy difference of air across the evaporator, and to maintain the capacity of sensible cooling. 

Since the vapor compression system operates above the dew point temperature of supply air and is not required to 

provide the latent cooling, the desiccant wheel is used to reduce the water vapor content in the part of the air leaving 

from the sensible evaporator. The part of the dry air from the desiccant wheel mixes with the rest of the air from the 

evaporator and is delivered to the conditioned space (point D).  

 
Figure 1: Operation of SSLC system (with enthalpy wheel) 

 

Many recent studies of SSLC system have focused on the development of solid adsorbent deployed for 

dehumidification that can provide improved sorption capacity and higher mass and heat transfer rates, as well as 

favorable equilibrium isotherms (Aristov et al., 2002, Dawoud et al., 2003, Zhang et al., 2005). Adsorption systems 

with improved performance result in substantial decreases in the initial and operating costs and in some cases make 

such dehumidification systems attractive alternatives to existing vapor compression systems for cooling and 

dehumidification. There are numbers of commercially available water sorbents used for specific sorption processes. 

The development of environmentally friendly technologies for sorption of water at different conditions coupled with 

the preparation of advanced materials with improved sorption properties, recycling possibilities and long-term use 

are enduring tasks. In general, the efficiency of hygroscopic materials in adsorbing water depends on two factors, 

i.e. the amount and the type of sorbents in use. Up to date, several water sorbents have been discovered, and they are 

classified in three main categories: first: inorganic materials (zeolites, clays and silica), second: carbon based 

adsorbents (activated carbons, graphite, carbon molecular sieves, and pre-shaped carbon fibres and nanotubes), and 

third: organic polymers. The most studied solid adsorbents for moisture removal are microporous materials 

(zeolites), activated carbon, and silica gels. The water sorption behavior of a sorbent depends on many factors such 

as the structure and the chemical composition of the nanoporous material, the presence of charged species, type of 

framework structure, and hydration level. In many cases, humidity control by adsorption meets much lower dew 

points and is less energy demanding compare to compression and condensation methods. Traditionally, highly 

hygroscopic salts such as LiBr, LiCl , KBr, CaCl2 and MgCl2 are used for humidity control via adsorption of water. 

However, a crystallization process tends to happen when the salts are used at high water concentrations. In addition, 

the high solubility of these salts in water at high humidity limits their application at certain conditions. The search 

for alternative adsorbent other than salts in water sorption to avoid the risk of salt crystallization, led to the 

evaluation of silica aerogels as one possible desiccant material (Besant and Simonson, 2003).  

 

Silica aerogels are highly porous materials with low density, low thermal conductivity, as well as large surface area. 

They have received significant attention in heat insulation (Omar et al., 2007), waste treatment (Ahmed and Attia, 

1995), drug delivery and targeting systems (Smirnova et al., 2004 a) as well as many others. Silica aerogel has 

relatively high moisture adsorption capacity because of its microporous structure of internal interlocking cavities, 

which gives a high internal surface area (up to 800 m
2
/g, or 10

8
 to 10

9
 m

2
/m

3
) (Smirnova et al., 2004 b). When the 

water vapor pressure at or near any pore region of a silica gel particle is lower than the adjacent air water vapor 

pressure, water molecules diffuse through the air to the surface and adhere to the surfaces, especially the internal 

surface of the silica gel particles. The higher the humidity of the air, then the greater the mass of the water adsorbed 

by the silica gel. Another advantage of using silica aerogel is fact that there is no chemical reaction during 

adsorption, unlike many salt absorbents which change the chemical composition and physical appearance with 

addition of moisture. Even when saturated with water vapor, silica gel still has a dry appearance with its geometry 

unchanged.  

 

http://www.sciencedirect.com/science/article/pii/S0272884212006748#bib1
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The adsorption and desorption characteristics of different silica gel samples may vary because of different 

manufacturing procedures (Zhang et al., 2005). In general, the salt adsorbents, such as calcium chloride, have better 

moisture absorbing capacity than the organic adsorbents, such as silica gel, but deliquescence occurs on the surface 

of calcium chloride granules beyond a certain adsorption level and a hydrate solution is formed). This behavior 

limits the effectiveness of salt desiccants (Zhang et al., 2005). In order to overcome this problem, desiccant 

materials based on silica aerogel have become an attractive alternative to the existing salt-based adsorbents (Pesaran 

and Mills, 1987). They have been used as a high-performance desiccant to remove water vapor from humid 

ventilation air for buildings (Besant and Simonson, 2003). There is no chemical reaction involved during adsorption 

and desorption. Even when saturated with water vapor, silica gel still has a dry appearance with its geometry 

unchanged, which is an advantage over liquid desiccant systems.  

 

The solid desiccant can be deployed by coating a solid substrate. The characteristics of the substrate, such as surface 

area and thermal conductivity, affect the moisture removal performance considerably. Therefore, an appropriate 

dehumidification performance evaluation of the desiccant coated on the substrate is important (Nawaz et al., 

2014a,b). One potential candidate for a substrate material is metal foam. There has been considerable interest in 

establishing the thermal-hydraulic performance of metal foams when used as a heat exchanger. Despite 

manufacturing and implementation issues, these materials hold promise as both heat exchangers and heat sinks 

(Nawaz et al., 2010 and 2012, Dai et al., 2012). The open porosity, low relative density, high thermal conductivity, 

large surface area per unit volume, and the ability to enhance fluid mixing can make metal foam thermal 

management devices efficient, compact, and light-weight. Two major advantages of using metal foams as substrates 

are the large surface area per unit volume and a thermal conductivity higher than that of the desiccant. A relatively 

large quantity of silica aerogel can be deployed as thin coating on the foam, and the higher thermal conductivity of 

the foam assists in removing the heat of adsorption and can provide heat for desorption (Nawaz et al., 2014 a,b). The 

adsorption and desorption characteristics of different silica gel coatings may vary because of different 

manufacturing procedures (Zhang et al., 2005). Although silica gel is frequently used as a desiccant, the transport of 

heat and moisture within the pores of silica gel particles is complex and research is ongoing. Comprehensive 

experimental studies of the physicochemical properties and some research applications of the organic and salt-based 

adsorbents have been reported by Aristov et al. (2002) and Zhang et al. (2005). These studies show that silica-

aerogel-based adsorbents have a higher adsorption capacity and can be regenerated with a lower temperature than 

the other commercially available desiccants, such as activated carbon.  

 

Despite such promising properties, conclusions as to the feasibility of these materials for dehumdification systems 

can only be drawn after detailed analysis of the adsorption and desorption performance of the silica aerogel coated 

on the substrate under realistic operating conditions. The capacity of a porous adsorbent solid in adsorption of an 

adsorbate gas is determined by the adsorption isotherm, and the mass diffusivity affects the adsorption rate. The 

steady state adsorption and desorption properties of adsorbents with different microstructures have not been widely 

reported, and this is especially true for the aerogels coated on a metal foam surfaces. The primary objective of the 

present work is to investigate the steady state adsorption/desorption capacity of different silica aerogels coated on 

metal foams by analyzing the equilibrium isotherms.  

 

 

2. PREPARATION OF SAMPLES 

 
Silica aerogel coated metal foam samples were prepared using a dip coating method. Metal foams with pore size of 

4.02 mm (5 PPI), 3.28 mm (10 PPI) and 2.58 mm (20 PPI) were used for this study. Small metal foam blocks with 

dimensions of about 8 mm were machined for coating. Wet silica gels were prepared using silicon alkoxide 

precursor, tetramethyl orthosilicate (TMOS, Si (OCH3)4). The formation of a wet gel by TMOS is presented by 

Equation (1) 

 

                                                                           (1) 

 

The kinetics of the above reaction is impracticably slow at room temperature, and often requires many days to 

complete. For this reason, acid or base catalysts are added in increase the reaction rate. The amount and type of 

catalyst used in synthesis played key roles in the microstructural and physical properties of the silica aerogel product 

as will be explained later in the paper. Acid catalysts included hydrofluoric acid and hydrogen peroxide. Basic 
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catalysts used were ammonium hydroxide and potassium hydroxide. During the gelation process, metal foam 

samples were dipped in the viscous solution and were removed at moderate speed (about 0.5 cm/s). It was important 

to perform the process an appropriate speed to try to obtain a uniform coating.  Leaving the sample in the gel 

solution for long time would cause the resulting sample to have solid gel particles in the pores.  

 

The final and most important step in making silica aerogel-coated samples is drying, where the liquid within the gel 

is removed, leaving only the linked silica network. The wet gel can be dried either by evaporation or by supercritical 

drying with CO2 or alcohols. It was observed in a previous study (Nawaz et al., 2013 and 2014 a) that when the gels 

were dried by evaporation, the resulting glass-like material (xerogel) cracked and the coating was not durable 

(Figure 2a). Instead of evaporation, if a sample was dried under supercritical conditions, the effects of surface 

tension resulting in cracking of the coating were eliminated and the final sample was more stable (Figure 2b).  

The process for the preparation of silica-aerogel-coated metal foams is summarized in the flow chart given in Figure 

3.  

 
 

Figure 2:  SEM images of silica aerogel (prepared using ammonium hydroxide catalyst) dried by (a) evaporation (b) 

supercritical drying (CO2) 

 

Figure 3:  Manufacturing of silica aerogel coated metal foams (Adopted from Brinker and Scherer, 1990 and 

modified) 

It is important to evaluate that the geometric characteristics of metal foam after coating change (Figure 4) to 

evaluate the uniformity and thickness of coating. The geometric characteristics of metal foams samples before and 

after coating are presented in Table 1. 
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Figure 4:  SEM images of 5 PPI metal foams (a) Uncoated and (b) Coated with silica aerogel (catalyst: ammonium 

hydroxide) 

Table 1. Geometric properties of coated and uncoated metal foams 

 

Type of Foam 

(PPI) 

Ligament Diameter  

(mm) 

Pore Diameter  

(mm) 

 Uncoated Coated Uncoated Coated 

5 0.50 ± 0.05 0.58 ± 0.06 4.02 ± 0.04 3.94 ± 0.05 

10 0.45 ± 0.04 0.52 ± 0.03 3.28 ± 0.04 3.21 ± 0.05 

20 0.35 ± 0.04 0.39 ± 0.04 2.58 ± 0.05 2.54 ± 0.04 

 

3. MICROSTRUCTURE ANALYSIS OF SAMPLES 
 

The catalyst used in the chemical reaction affects the microstructure of the resulting silica aerogel. In order to 

evaluate the effect of the catalyst used in the Sol-Gel process on microstructure, samples were prepared using 

different catalysts. The specimens were prepared for scanning electron microscopy. The images were taken with 

same magnification (40000x) for all specimens using a Hitachi 4800 (Hitachi High-Technologies Corporation, 

Japan) environmental scanning electron microscope at Materials Research Laboratory (MRL) at University of 

Illinois at Urbana- Champaign, IL.  The microstructures of some supercritically dried silica aerogel samples are 

presented in Figure 5. 

 

        
 

               
 

Figure 5: Microstructures of five different aerogels prepared by different catalysts  

 

It can be observed from the images of supercritically dried silica aerogel samples that the microstructure (pore size) 

depends upon the catalyst used in preparation (Sol-Gel process). Samples prepared by hydrofluoric acid as the 

Potassium hydroxide 

Ammonium hydroxide 

Hydrogen peroxide  

Hydrofluoric acid 

Steric acid 
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catalyst resulted in a more dense structure with small pores, while for sodium hydroxide as the catalyst the structure 

was highly porous and relatively less dense. It is important to note that the titanium gold sputtering process was 

avoided to preserve the original microstructure. The sputtering process is often employed in SEM to increase the 

conductivity of electrically non-conducting material (ceramics and powers) for better magnification.  

 

4. MOISTURE ADSORPTION/DESORPTION CAPACITY OF AEROGEL-COATED 

METAL FOAMS 

 
As both equilibrium and transient adsorption/desorption behavior of the desiccant are affected by the microstructure 

(pore size), it is important to determine which catalyst will result in an appropriate pore size range and hence will 

absorb/desorb more moisture at relatively faster rates compared to the others. Furthermore, as the substrate can also 

affect the adsorption/desorption rate, the effect of different types of metal foams used a substrates should be 

evaluated as well. 

 

4.1 EXPERIMENTAL APPARATUS AND METHOD 

 

For the transient response of silica aerogels as desiccants, and to determine the diffusion coefficients, a Dynamic 

Vapor Sorption (DVS Advantage, Surface Measurement System, UK) apparatus was used (Figure 6). Experiments 

were performed in which samples were suddenly exposed to a humid or dry environment (compared to the sample 

water activity) and the weight change was measured (which was converted to moisture content) as a function of time 

and ultimately used to calculate the diffusion coefficients. 

 

The DVS apparatus is equipped with mass flow controllers for mixing wet and dry nitrogen gas and controlling the 

relative humidity, and a vapor measurement sensor to monitor the resultant relative humidity and a microbalance to 

determine the response of the samples. The apparatus has a dry carrier gas (nitrogen), and precise control of the ratio 

of saturated and dry carrier gas flows was enabled with mass flow control combined with the use of real-time vapor 

concentration monitoring for water. A known concentration of water vapor then flowed over a sample suspended 

from a recording ultra-microbalance, which was used to measure the weight change of the sample caused by 

adsorption or desorption of the vapor molecules.  

 

Figure 6: Apparatus for dynamic vapor sorption experiments (Surface Measurement System, UK) 1-Dry gas,2-gas 

for mixture,3-vapor mixture,4-mass flow controllers,5-vapor generator module,6-camera,7-sample,8-reference,9-

humidity sensor,10-microbalance 

 

The temperature of the entire system was selected and precisely controlled under closed loop conditions to ensure 

that the solute vapor pressure at the sample is constant. The good sensitivity and precision of the DVS enables the 

use of very small sample sizes (typically 1 to 30 mg), thus allowing equilibrium to be reached quickly, and sample 

sizes smaller than 2 g were used to ensure accuracy. The instrument was fully programmable and controlled by 

software through a smart operator interface. All experiments were conducted at a temperature equal to 25
o
C. 
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3.2 DETERMINATION OF SORPTION/DESORPTION ISOTHERMS 

The DVS sorption automatic operation (SAO) method was used to set both the desired percent relative humidity 

steps and the equilibrium criterion. First, each sample was equilibrated to 0 %RH using an equilibrium criterion of a 

change in mass over time (dm/dt) of no greater than 0.0005% for 5 consecutive minutes. After this equilibrium 

criterion was reached at 30%RH, the relative humidity was increased automatically to the target value (40%) and 

equilibrated using the same dm/dt criterion (0.0005% for 5 consecutive minutes). The relative humidity was 

increased with an increment of 10%. After reaching the equilibrium at 90%, the relative humidity was decreased to 

20 %RH using a dm/dt criterion (0.0005% for 5 consecutive minutes) with a decrement of 10 %. Sample mass data 

and sample and reference chamber relative humidity and temperature data were automatically collected every 60 s. 

A new sample was used for each relative humidity and temperature experimental run. A silica aerogel sample in the 

shape of small cylinder (Figure 7) was placed on a DVS quartz round bottom sample pan (13 mm in diameter). Total 

gas flow was parallel to the sample surface and was set at 500 cm
3
/min for all experiments. Duplicate runs were 

done for each sample. 

 

Figure 7: Mass variation of the sample due to step change in relative humidity 

3.3 EFFECT OF CATALYST USED IN SOL-GEL PROCESS ON SORPTION/DESOPRTION ISOTHERMS 

The adsorption capacity for silica aerogels depends on their microstructure, which is affected by the catalyst used in 

the Sol-Gel process. A representative adsorption/desorption isotherm is presented in Figure 8. It is obvious that the 

equilibrium isotherm is of type IV, as classified by IUPAC (Rouquerol et al., 1999). The adsorption and desorption 

isotherm don’t follow the same path and there is a hysteresis, which exists due to the capillary condensation.   

 

Figure 8: Hysteresis in adsorption and desorption isotherms  

Adsorption and desorption isotherms for five different type of silica aerogel are presented in figure 9a and 9b. All 

isotherms are of type IV and the hysteresis exists for all of them. Aerogel prepared by hydrofluoric acid and by 

ammonium hydroxide has the maximum moisture retention capacity which can be upto 150 % of the mass of the dry 
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sample at 90 % relative humidity when the equilibrium is reached. While the silica aerogel prepared by hydrogen 

peroxide and potassium hydroxide can retain moisture only about 80 % of the mass of the dry sample under same 

conditions. The sorption desorption isotherms are also an indicator of the surface area of the microstructure. Hence 

based on the equilibrium isotherms data it can be concluded that silica aerogel prepared by hydrofluoric acid and 

ammonium hydroxide as catalysts have the largest surface area among the five samples prepared by different 

catalysts.  

 

Figure 9: (a) Adsorption and (b) desorption isotherms of different silica aerogels 

3.4 EFFECT OF TEMPERATURE ON SORPTION/DESORPTION ISOTHERMS 

Moisture adsorption and desorption capacity of the desiccant materials is affected by pressure and temperature. The 

equilibrium isotherms are always presented with appropriate temperature. Desiccant used for dehumidifying 

application in HVAC applications typically don’t go through huge temperature difference. However still it is 

important to account for the change based on the temperature. Adsorption and desorption isotherms for silica aerogel 

prepared by hydrofluoric acid at three different temperatures are presented in Figure 10. DVS equilibrium tests for 

conducted at 15 
o
C, 25 

o
C and 35 

o
C using new samples for each test. As indicated in Figure 11, the adsorption 

capacity of the desiccant increases about 15 %, when the experiment temperature is increased from 15 
o
C to 35 

o
C.  

It is expected that all other silica aerogel sample follow the same trend, that’s the capacity is increased as the 

temperature of the environment is increased.  

 

Figure 10: Effect of temperature on adsorption/desorption isotherms 

 

 

 

(a) (b) 
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3.5 EFFECT OF SUBSTRATE ON ADSORPTION/DESORPTION ISOTHERMS 

Adsorption and desorption isotherms for four different cases (silica aerogel prepared by hydrofluoric 

acid) are presented in Figures 11a and 11b respectively. Three different of substrates have been used for 

comparison and to evaluate the effect of the substrate surface area for coating. As can be observed that 

unlike the diffusivity (mass diffusion coefficient), the adsorption capacity of the desiccant depends on the 

type of substrate. As the surface area increases (1200 m
2
/m

3
 for 10 PPI metal foam, 700 m

2
/m

3
 for 5 PPI 

al foam), the adsorption capacity increases. Compared to the solid aerogel block an aerogel coating on the 

10 PPI aluminum foam can adsorb about 20 % extra moisture for the same dry mass of the desiccant at 90 

% relative humidity. It is important to note that when the silica aerogel is coated on flat aluminum plate 

the adsorption capacity increases only about 2%, which is not a very significant increase. However the 

coating on the metal foams show about 7% and 20% increase for 5 PPI and 10 PPI metal foam 

respectively. 

 

Figure 11: Effect of substrate on (a) adsorption and (b) desorption isotherms 

4. CONCLUSIONS 

 
1- The Sol-Gel process was used to prepare a variety of silica aerogels. Different types of acidic and basic 

catalysts were used in the process. The wet samples were dried using a supercritical drying process with 

CO2.  Scanning Electron Microscopy was performed to analyze the pore structure of different aerogels.  

2- It was found that the catalyst used in the process significantly affects the microstructure.  

3- Adsorption/desorption isotherms are used to characterize the adsorption capacity of desiccants. Equilibrium 

sorption and desorption experiments were conducted using the Dynamic Vapor Sorption instrument, where 

the dry or wet samples were exposed to incremental increase/decrease in environmental humidity.  

4- The resulted equilibrium isotherms indicated that adsorption capacity of the silica aerogels depends on the 

microstructure of the porous media which is affected by the catalysts used in the sol-gel process. The silica 

aerogel prepared by hydrofluoric acid and ammonium hydroxide showed the capacity of about 150 % the 

dry mass of the desiccant.  

5- All adsorption/desorption isotherms were of type IV and showed hysteresis, which was observed due the 

capillary condensation phenomena.   

6- The adsorption/desorption capacity of the desiccant is highly affect by the operation temperature. An 

increase of about 15 % was observed when the temperature was increased from 15 
o
C to 35 

o
C. 

7- The adsorption capacity of silica aerogels when coated on metal foams was found to be almost 20 % higher 

compared to the adsorption capacity of solid desiccant blocks. Hence the substrate type significantly affects 

the adsorption capacity of the coating.   

(a) (b) 
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