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Abstract

Peer-to-peer (P2P) sharing of resources, and tech­
nologies for facilitating resource sharing have wit­
nessed tremendous advances in the recent past. A.1;

these technologies become commonplace, emphasis
must be placed on the survivability of such commu­
nities in the face of non-cooperative peers (freeriders,
malicious users). While incentive-based approaches
provide possible solutions, similar problems in ecolog­
ical populations are solved by complex social interac­
tions that have evolved over the ages. Evolutionary
biology has addressed these problems and numerous
models of cooperation between selfish organisms have
been proposed to explain how factors such as altru­
ism, guilt, and the sense of justice have evolved in
spite of harsh life-or-death conditions. These studies
provide blueprints for essential computational tech­
niques in support of stable, scalable, robust, and
highly cooperative P2P communities. In this paper,
we present a range of stable models of social inter­
action, their relevance to P2P communities, the as­
sociated computational bottlenecks in the context of
P2P networks, and motivate the need for the next
generation of structured and unstructured resource
sharing networks.

1 Introduction

Conventional P2P and pseudo P2P networks such as
Napster, Gnutella, and Kazaa have enabled millions
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of users to reach across the world and share their mu­
sic collections with complete strangers in a chaotic
and somewhat inefficient manner. Even as Napster
was essentially shut down, these communities orga­
nized themselves in more chaotic, less efficient, and
exceedingly popular ways. The initial explanation for
this phenomenon seemed simple: there is collective
benefit in sharing.

The tendency to cooperate towards achieving a
common goal appears natural. Unfortunately, so is
the tendency to stop cooperating and to take advan­
tage of the benevolence of one's peers. Small com­
munities can withstand attacks by selfish members
by identifying and isolating them. The fear of being
expelled from such communities :is indeed a major de­
terrent to non-cooperation. COIlventional P2P com­
munities, however, are generally too large and the
underlying information flow mechanisms too weak,
for such deterrents to be effective. The challenge of
designing a robust P2P network therefore involves
incorporation of effective methods for identification
and elimination of non-cooperating peers. In this pa­
per, we examine the computational basis for building
a stable and scalable P2P community that is large,
maintains a h.igh degree of anonymity, and is robust
to groups of non-cooperating peers.

Issues of stability and scalability have been of prin­
cipal interest to research on P2P networks. Scal­
ability was among the first problems addressed in
the context of structured P2P networks, since fast
routing, and efficient placement and location of re-



sources arc critical performance parameters. A5 re­
source sharing becomes widespread, uncooperative
users become a threat to the integrity of such net­
works. Even if the cost of sharing a resource is
small, it can be shown (using various models of co­
operation and behavior) that a small number of non­
cooperative peers can prove fatal. This is because co­
operative peers that encounter such users tend to be­
come non-cooperative, themselves, or leave the net­
work. This reinforces negative behavior and eventu­
ally leads to the collapse of the network.

To prevent this scenario a number of incentive­
based mechanisms have been proposed. These mech­
anisms involve various forms of pricing ([1], [2]),
based on the intuition that if one accrues credit only
by sharing a resource and must expend credit to ac­
quire a resource, freeriders will be unable to attack
the network. The primary challenges associated with
architecting such networks include scalable protocols
for handling currency and robustness to collusion.
These challenges continue to be areas of active re­
search interest. One potential drawback of incentive­
based schemes is that such schemes may be less ap­
pealing to new Ilsers, who, contrary to their inten­
tions, might be perceived as non-cooperative until
they can build enough credit.

This position paper addresses an alternate ap­
proach to building stable networks. Experience with
current resource sharing networks indicates that in­
centives other than acquiring a desired resource are
not essential to the survivability of such communi­
ties. Large neb-Yorks such as Kazaa (Kazaa provides
a pricing utility, but it is optional, and most peers
choose not to use it), Gnutella, iMesh, and WinMX
appear to do well, effectively harnessing selfish be­
havior to build a cooperative base. This mechanism
is not unlike the development of altruism between or­
ganisms, which has been studied extensively in evolu­
tionary biology. In this context, Hamilton ([3]) pro­
vides an excellent example of cooperative behavior
based on entirely selfish motives. Here, the appear­
ance of herds is explained on the basis of a population
of animals trying to minimize their individual prob-
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ability that they will be attacked by a predator. A5
predators tend to attack prey that is closest to them,
animals that are preyed upon try to cluster so that
the area from which an attack can come (their cell
in the Voronoi diagram of the members of the pop­
ulation) is minimized. This comes at a cost though,
as their grazing area is minimized as well. Since the
cost of being killed is much higher than that of losing
some food, the formation of herds is favored.

In evolutionary biology such communal behavior :is
explained by units of selection attempting to maxi­
mize their benefit, even when said behavior can only
be described as suicidal at first look ([4]). Ganle
theory has been influential in this line of research
and has provided the necessary analytical tools. The
paradigm of the Repeated Prisoner's Dilemma is used
to study the success and stability of behaviors in the
presence of alternate strategies and with a scoring
model for all possible outcomes of an interaction. We
describe tIllS paradigm in more detail in Section 3,
but note that we assume that there is a cost c > 0
associated with allowing another peer to access a re­
source and a benefit b > 0 f!'OIll successfully accessing
a resource.

A score is associated with each peer bru;ed on the
outcome of the interactions he has been involved in.
Consequently, in the context of a single interaction,
it is preferable for a peer to avoid sharing so ru; to
maximize his score. When a peer enters the network
his score is set to 0, even if this is not the first time
he has entered the network. Upon termination of a
session, the p!'Obability that he will use the network
again, and the extent of use are proportional to the
score achieved during the lru;t session. In other words,
a peer that accesses a large number of resources and
who was not burdened by other peers accessing re­
sources from it, is more likely to return than a peer
who did not access any resources but served a large
number ofother peers. This is analogous to the evolu­
tionary assumption that the expected number of off­
spring an organism leaves is p!'Oportional to a score,
or fitness, it accumulates over its lifetime. A poor
strategy results in a few, if any, descendants, simi-



larly to a dissatisfied peer, who will stop using the
network or will change his strategy the next time he
joins the network.

The idea of applying game theoretic models to
P2P networks is, by no means, new. However, it
has generally been assumed that unless direct incen­
tives are employed, a network is vulnerable to non­
cooperating peers (freeriders) and can only be sup­
ported by benevolent users who do not mind sharing
their resources ([5], [6], [7]). An interesting and nat­
ural concept that can substitute incentives is that of
memory. Users ean remember the behavior of those
they have interacted with and can communicate their
experience across the network. This is a method
commonly used in other communities (for eg., eBay),
where the record of a user is published for all to sec.
This model has worked well in deterring malicious
users. A similar model has also been proposed in
the context of P2P networks ([8]). However, main­
taining a satisfactory, large history in a decentralized
manner is difficult in large networks. Furthermore,
it is difficult to sanction non-cooperative peers when
they can change their identities at no cost and effec­
tively eraEC their record. In Section 5, we discuss how
shared histories are vulnerable to collusion, miscon­
ception, and deliberate misinformation, even if prob­
lems associated with changed identities are solved.
Research in this direction, though, has derived some
strong results that can be used to architect P2P net­
works, ru; long as one remains aware of the limitations
of history-based strategies.

An alternate, scalable and powerful set of strate­
gies is based on obseruation. In Section 4, we dis­
cuss a strategy called Observer Tit-For-Tat (OTFT).
According to this strategy, users derive information
about the behavior of their co-players by observing
interactions they do not personally participate in.
When approached by a player they know has not
cooperated in the past, they ignore him. Pollock
and Dugatkin ([9]) have analyzed the performance
of OTFT and their results, when applied to P2P net­
works, show that OTFT can defeat freeriders under
a minimal set of constraints.
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We, finally, present a third class of strategies - con­
trite players (Section 5), that can correct misunder­
standings over the intentions of players or errors in
protocol implementation and execution. The main
intuition behind these strategies is remorse. A player
that has mistakenly decided not to cooperate, for
example, due to communication failure, can repair
his status by unconditionally cooperating in the next
round, demonstrating his contrition. Contrite strate­
gies alleviate the problem of vendettas when histories
are u:;ed as guides and can be as good as the latter.

The rest of tillS paper is organized as follows: in
Section 2 we briefly summarize related work; we for­
mally define notions of stability, equilibria, and op­
timality in Section 3; we present various strategies
for achieving these desired criteria in Sections 4 ­
6, along with associated overheads in P2P networks;
and finally motivate the development of technologies
in support of robust communities in Section 7.

2 Related Work

As has been mentioned, there has been some work
on applying game theory to the :;tudy of P2P net­
works. The tendency is to explicitly motivate coop­
eration by incentive mechanisms. Golle et al. ([lD
propose micropayments as the incentive. V\'hile this
is an intuitive approach, enforcing micropayments in
a secure manner is a challenging problem in itself
([10]). Lai et al. ([8]) have studied, experimentally,
the impact of shared histories. Their work is closer
in spirit to ours, since they show that cooperative en­
vironments can form without incentives. As we have
briefly discussed, and will expand on later, shared his­
tories suffer from scalability and robustness (fidelity)
problems. However, they do provide several desirable
characteristics.

V\'e cannot, and do not intend, to present a com­
prehensive list of references for related work in evo­
lutionary biology. An excellent summary of the work
in this field can be found in [11]. We would like to
note that one of the earliest modcls of selfish behav­
ior leading to cooperation was described by Trivers



in 1971 ([12]). Dawkin's work ([13]) popularized the
notion that ruthless competition is the driving force
behind every hereditary trait, including those that
are characterized as altruistic.

Finally, an interesting experiment was conducted
by Axelrod in 1984 ([14]). A tournament of com­
puter programs was conducted. The game was one
of Prisoner's Dilemma, and the goal of the experi­
ment was to see what strategies would succeed. The
result was that a strategy called Tit-For-Tat (TFT)
dominated. We will describe TFT in Section 4, but
we note that the theoretical analysis for TFT predicts
its dominance in the setting of the experiment ([15]).
Although the setting was very dilferent from that of
P2P networks, as the population was small and the
identities were persistent, the fact that competition
through automated interfaces conforms to the theo­
retical results of evolutionary biology is encouraging.

3 Stability, Equilibria and Op­
timality in P2P Networks

In this section, we discuss some of the game theoretic
concepts commonly used in evolutionary biology. A
detailed introduction of these concepts is beyond the
scope of this short paper and formal definitions can
be found in many of the papers whose results we dis­
cuss. The interaction between two users, or players, i5
modeled using the Prisoner's Dilemma game. When
a round of the game is played, each player decides
whether to cooperate or defect (as the name suggests,
the players are prisoners and declining to cooperate
with your co-player implies that one defects to the
captors). If both players cooperate, they receive a
score of R. If both defect, they receive a score of P.
If one of them cooperates, but the other defects, the
defector receives a score of T and the cooperator, a
score of S. For the game to make sense, we must have
T> R> P > S. Multiple rounds of the game can be
played and a cumulative score for each player is main­
tained. In this case, we must have 2·R > T+S. The
reason is that if T +S is larger than 2 . R, the players
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cun maximize their 5cores by alternately cooperating
and defecting and the game becomes trivial.

Nowak and Sigmund ([16]) showed that when the
players make their deci5ions alternately, so that one
of the players knows his co-players decision in the
current round before deciding, the additional condi­
tion of T - P = R - S must hold. TILis is obviously
the case in P2P networks due to the 115ymmetry of
one of the users initiating an interaction by request­
ing a resource. Moreover, if two peers decide they do
not want to allow each other to download, they have
only a negligible cost and no benefit and we can set
P = o. In this case the benefit of deceiving another
user into allowing you to access a resource, without
reciprocating, is R - S. Since the benefit S of be­
ing deceived should be negative and the benefit R of
mutual cooperation should be positive, it holds that
T > R > P > S in our adaptation of the Prisoner's
Dilemma to P2P networks. We refer to R 115 bene­
fit and S as cost, although thc latter i5 actually the
inverse of cost. We do this to be consistent with the
conventional analytical framework, which is indiffer­
ent to the sign of S.

A second useful concept is one of equilibrium.
Roughly, an equilibrium is reached when both players
do equally well. The concept makes sense only if mul­
tiple rounds of the game are played. Equilibria are
not extremely relevant to our problem for two rea­
sons. The first is that an equilibrium can be reached
when both players adopt defection as their strategy,
or, equivalently when the network is made entirely of
non-cooperative peers. The second reason is that an
equilibrium can be disturbed by an inV115ion of other
strategies. For example, a population consisting of
defectors (peers that do not cooperate with anyone)
is in an equilibrium. However, if a Humber of new
members decide to cooperate with other cooperators
and form a cluster, they can defeat the defectors.

To address these problems, the concept of evolu­
tionarily stable strategies (ESS) is introduced. Ac­
cording to Maynard Smith's definition ([17]), a strat­
egy E is ESS against a strategy E/, if the benefit
A(EIE) of adopting E in a pure E population is



strictly larger than the benefit A(E'IE) of adopting
E', DC, if A(EIE) ~ A(E'IE) and A(EIE) > A(E'IE').
The second condition ensures that an ESS cannot
be defeated by non-superior strategies that invade
in clusters. For a strategy to be useful in P2P net­
works, it must at least be ESS against ALL D (defect­
against-all strategy).

The concept of ESS formalizes the requirement for
robust strategies. However, it does not address the
need for a highly cooperative environment. Pareto­
optimal strategies are those that, when adopted by
the entire population, maximize the collective ben­
efit. We note that an ESS that always cooperates
with those that cooperate is the ideal strategy for
P2P networks, as it is robust, and, when it prevails,
all interactions are successful.

There are other properties of a strategy that can
make it desirable. If the initial population consists
largely of freeriders, it is difficult for cooperators
to contact each other and, consequently, they might
leave the network. An ESS is not guaranteed to suc­
ceed in invading a population. There is usually a
threshold on the size of the invading population for
an ESS to prevail. However, this threshold is hard
to predict. A cooperative strategy that needs a small
initial population has a better chance of prevailing.

Low implementation cost is a highly desirable fea­
ture of any strategy. Evolutionary models do not in­
corporate the cost of adopting a strategy. If memory
is part of a strategy, we would like its capacity to be
minimal. A strategy that floods the network to col­
lect information is undesirable, for obvious reasons.
The results of Section 4 are spectacular for this rea­
son, because they imply that stability can be reached,
in spite of the negligible implementation cost.

It is also desirable that a strategy can succeed UD­

der short generations. The usual assumption is that
a further round is played between two specific players
with probability w, so that the expected number of
interactions between this pair is l~W. If the popula­
tion is made of n + 1 players, the expected number
of interactions during the lifetime of a player is l~w'

However, this need not be the case, as we will see in
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Section 6. Image Scoring hru; been analyzed for the
minimum number of interactions dUl'ing the lifetime
of a player that guarantees that this strategy will
succeed. In the context of P2P networks, a shorter
lifetime implies that a new user who is hesitant, will
be easier to lure.

4 The Importance of Reputa­
tion

Tit-Far-Tat (TFT) is a simple, cooperative strat­
egy in which players cooperate when interacting with
strangers. However, once a player defects on them,
they never cooperate with him again. Let w be the
probability that two players interact in the future.
TFT can be ESS against ALL D (defectors), however,
it needs high values of w to be so. In large P2P net­
works, the probability that one encounters the same
player again is small, especially if non-cooperative
peers periodically change their identities. When a
stranger is encountered, a TFT player is willing to
pay a price to learn how the stranger behaves. If
there is a good chance of interacting with the new
player in the future and the price paid for that bit
of information is reasonable, a TFT player will be
successful. When w tends to 0, no matter how low
the price, the information collected regarding a player
is going to be worthless. Defending against ALL D
players in tIns scenario is impossible.

Pollock and Dugatkin ([9]) analyze a strategy
called Observer Tit-Far-Tat (OTFT). TIns strategy
is designed to defend against ALL D by collecting in­
formation actively and without paying the price of an
uncooperative transaction. An OTFT player behaves
like TFT towards strangers. Instead of maintaining a
private history of past interactions, however, he ob­
serves an interaction between two other players. If
the interaction is successful, he classifies the two par­
ticipants as cooperators. If not, he classifies them as
defectors, irrespective of what the reason for the fail­
ure could be. If a player that has been observed and
classified in the past tries to interact with the OTFT



player, he cooperates if the request comes from a co­
operative player and defects if the request comes from
a defector. A player classified as a defector may well
be another OTFT player that defected on someone
he perceived as a defector, but this does not mat­
ter. A number of scenarios are analyzed, where the
population is in an equilibrium, one of TFT, OTFT,
and ALL D dominate and the other two strategies
attempt to invade. We summarize these results and
extend them to the special case of P2P networks.

• Proposition 1: In a population satumted with
simple game evolutionarily stable TFT, TFT is
also evolutionarily stable against the mutation
clfUlS {OTFT, ALL D} for sufficiently high w <
1; further, some Prisoner's Dilemma games exist
which preclude OTFT invasion f01· any w > O.

The necessary condition for OTFT to invade is

A generalization of ALL D is a strategy called
ROVER ([18]). If the population is fragmented into
groups of stationary cooperative players, a ROVER
player moves from group to group, behaving as an
ALL D while he is in a specific group and leaving
when everybody in the group knows he is uncooper­
ative. In the rest of the analysis, ALL D is replaced
by its more powerful ROVER counterpart. We de­
note by q the probability that a player classified by
an OTFT player, as defector, is indeed a ROVER.
This probability is at least 1/2 and approaches 1 as
ROVEfu become more frequent.

• Proposition 2: In a population polymoryhic for
ROVER and TFT (ROVERs and TFTs coexist),
TFT resists invasion by OTFT for sufficiently
high w < 1. Howevel', the threshold for w is
lower and there are more games that do not p1'C­
elude. invasion.

The necessary condition for OTFT to invade is

(1 - q)[2R - (T + S))
w S 1 - q(P _ S) ,

which simplifies, for P2P networks, to

T-R T-R 2R-(T+S)
max{T _ p' R _ S} < w < 1- P S < 1.

For a P2P network we can set T = R - Sand
p = 0 and derive the simpler condition

S R+S
S_R<w<-S-'

which is easy to verify that it cannot hold for
B < 0 < R. This proposition states that if some­
how all the users of a P2P network played TFT,
a user that switches to OTFT would eventually
give up or change back to TFT. This, however,
does not imply that OTFT is useless. One of
the problems with TFT is that it needs to keep a
history of past interactions, whieh leads to scala­
bility problems. As we shall see, OTFT needs to
keep only a constant size memory and can elim­
inate non-cooperative peers under certain con­
straints.
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(1 - q)R
w::::;l+ qS'

This is certainly feasible and the threshold ap­
proaches 1 with q, signifying that in a popula­
tion where non-cooperative peers are a problem,
OTFT can do better than TFT.

• OTFT docs not require infinite memory, unlike
TFT. Remembering only the last observed inter­
action is enough, therefore, OTFT is more scal­
able. A larger memory helps, however it does not
change the two propositions. A positive effect of
larger memory is that a player seen defecting in
two interactions, has a much larger chance of
truly being a defector. This implies that q grows
with memory size.

• Proposition 3: OTFT is EBB when TFT is not;
moreover, in principle w can be. 0 and OTFT is
still ESB.



A new variable z is introduced for this proof. z is
the probability that someone engaged in mutual
defection is seen and remembered by a future,
yet presently unencountered, player. F'reeriders
have z = 0, but all OTFTs have the same z
value. Assume that OTFT is coded into the P2P
clients, and that a few users have been able to
alter the code to behave as freeriders. The con­
dition for OTFT to be EBS is

S z Rw> ---- - --. ---
R-S l-z R-S·

Since w = 0, the condition for OTFT to be ESS
in the P2P setting reduces to

S
z>S_R'

We make a further assumption on the Prisoner's
Dilemma for P2P networks. We assume that the
benefit of accessing a resource is larger than the
cost of allowing another user to access a resource.
This implies that R > -S and tlle stability con­
dition is always satisfied if z > 1/2.

• Proposition 4: FOT' sufficiently high z < 1,
OTFT requires less initial clustering than TFT
to invade a population saturated with ALL D.

This is an important result, since it can be shown
that a scattered and small population of OTFTs
can invade any network overwhelmed by frcerid­
ers and establish a cooperative environment. vVe
introduce a new variable, c, to show this. c is the
probability that an interaction carried out by an
OTFT will be with a fellow OTFT, or the clus­
tering of OTFTs. The condition for OTFT to
successfully invade in a P2P setting is

(1 - z)S
c> - R S·

We want the right side of the inequality to be
as small as possible. If it is 0, only two OTFT
players, in principle, can eliminate a population
of freeriders, no matter how large the network is,
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as there is always a small, but positive, probabil­
ity that they will meet. The right side becomes
oonly when z = 1, however, c can be reduced if
the cost of allowing a resource access is small.

The variable z gives rise to a set of interesting pos­
sibilities. While wand c are beyond the control of the
designers of a P2P network and will approach 0 as the
network grows, there are ways to control z. Suppose
that an OTFT user A is asked by a stranger to allow
a download. A may spawn a "dummy", uncondition­
ally cooperative user B , who attempts to download
from the stranger. If the stranger seems uncoopera­
tive to B, A will be non-cooperative to the stranger.
If the stranger is an OTFT himself, he will spawn his
own "dummy" C, which will cooperate with B. vVith
both parties assured of the other's good intentions,
the original transfer can go through. This makes
z = 1 for OTFT players. For structured P2P net­
works such as PASTRY and CHORD, an alternative
may be for a user A to store an aggregate of all his
interactions at node hash{A) (the rendezvous point
of A). This aggregate may be the result, success or
failure, of A's last interaction, or the percentage of
successful interactions to avoid manipulation of the
results. An OTFT user B contacted by A can query
hash(A) for the aggregate, and, based on this ob­
servation determine A's status. This is indeed not
dissimilar from how eBay ratings work, only, here
we need to distribute these ratings over the network.
Again, this makes z = l.

These strategies arc merely suggestions based on
a formal analysis of an easily implementable and
very natural strategy. OTFT seelllS to correspond to
Alexander's view of the prerequisite for indirect reci­
procity as "direct reciprocity occurring in the pres­
ence of interested audiences" ([19]). Admittedly, non­
cooperative peers may try to collude and deceive co­
operative players by, for example faking, successful
interactions. Cooperative players may respond by
finding ways to make their observations more accu­
rate. This "arms race" is a common phenomenon
in nature, especially among predator and prey. The
positive aspect of this is that freeriders must expend



more resources. If the cost of allowing a resource ac­
cess is small, freeriders will benefit from converting
to cooperative strategies.

5 Repentance and Error Cor­
rection

Boerlijst et at. ([20]) examine the problem of cooper­
ation in a model that allows mistakes to happen and
be corrected. Suppose that a user has assigned all
the burden of enforcing a cooperative strategy to the
P2P client. There are two things regarding the be­
havior of the client that could go wrong. Either the
software has an error and occasionally refuses to co­
operate when it is suppmmd to, or, due to a network
error it misunderstands the intentions of a coopera­
tive player and refuses to cooperate. These errors are
not detected by the user, who might have been able
to resolve the misWlderstanding. If the cooperative
players use a TFT-like strategy in which a player is
blacklisted if he refuses to cooperate, a simple errol'
of this nature may lead to an incorrect vendetta. If
the network supports shared histories, as in [8]' the
result for users whose transactions incurred such er­
rors can be dramatic, with large parts of the network
being informed of their defection and refusing to ever
cooperate with them. To alleviate such problems,
Boerlijst ct al. describe and analyze a set of error­
correcting strategies.

We start with the simplest of these strategies, Con­
trite Tit-For-Tat (cTFT). cTFT a..'lsumes there is a
standing associated with each player. A player starts
with good standing, but loses it if he defects on a
player with good standing. cTFT players behave just
like TFT players, until an error occurs. If a cTFT
player accidentally defects on a player of good stand­
ing, he loses his good standing. In the next round,
the cTFT player with bad standing cooperates un­
conditionally with a co--player, however, the co-player
defects without losing his standing. After this round
of repentance, the cTFT will recover to a good stand·
ing. As shown by Sugden ([21]), cTFT is as good as
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TFT for invading a population of defectors and it is
ESS in a broader sense than that discussed in Sec­
tion 3: if there is a small, but positive, probability
that a move is misimplemented, no other strategy
does better than cTFT.

The authors experiment with the behavior of mix­
tures of strategies. They conducted a set of exper­
iments where they set 8 = 0, P = 1, R = 3 and
T = 5.5. The effect of these payoff values is that
there is a high temptation to defect. The strategies
used were ALL D, cTFT, REMORSE (another er­
ror correcting strategy that cooperates if and only
if it was in bad standing in the previolls round or
both players cooperated), and GlUM (a strategy that
starts as cooperative, but turns into ALL D the first
time it encounters a defection). All simulations start
with an ALL D population. A small probabilitY of
mutating to another strategy allows the appearance
of cooperative strategies. Each time, cTFT and RE­
MORSE eliminated the Wlcooperative strategies and
established a highly cooperative environment.

Finally, a strategy called Prudent PAVLOV
(pPAVLOV) is discllS::ied. Two pPAVLOV players
will cooperate indefini.tely, if there arc no errors. If
a pPAVLOV player mistakenly defects, both players
enter a D I state and they both defect. In the next
round, a Do state is entered and they both defect
again. They resume cooperation in the next round.
pPAVLOV is ESS for P2P networks if

wR+w2 R> -8.

Assuming that the w 2 R term is negligible, we have
that pPAVLOV isESS ifw > -l In the next section
we will see a very similar stability condition emerge in
the case of incomplete histories. pPAVLOV has two
huge advantages over other strategies. The first is
that it can correct errors in both the implementation
of the strategy and in the perception of a move. The
second is that it is scalable.

Strategies based on standings are generally less
scalable because they need to tag every co--player.
pPAVLOV, on the other hand, needs to keep track
of where it stands with respect to a co-player,



only if there has been some degree of interaction.
Strangers arc assumed to be cooperative. This leads
to pPAVLOV being suckered every third round by
ALL Ds, but as long as it is ESS it does not matter,
ALL Ds are eventually eliminated. In terms of P2P
networks, a user needs to keep track of other users
only until he leaves the network. The next time he en­
ters the network, he can start with a clean slate. This
is a scalable scenario, since the history information
can be cleared when it exceeds a manageable size.
Every time the history is cleared, it is akin to a player
dying. Unfortunately, this affects the value w, as the
probability that a player will be seen again before his
record is cleared is extremely low. Since we need w to
be larger than -SIR for stability, pPAVLOV may not
be stable in a P2P setting. As network connections
become faster and cheaper, the cost of allowing a re­
source access becomes small and pPAVLOV becomes
stable. Furthermore, it could be that aftcr a certain
session length, users interact mostly with peers they
have seen recently. If this is the case, users that stay
in the network for a long time can discard informa­
tion about peers they have not heard from in a while,
without hurting their pPAVLOV strategy. Such co­
operative and persistent users can be influential in
stabilizing a cooperative network.

6 Building One's Image

Kazaa implements an interesting policy: each user
has a standing score. This score improves with each
allowcd download. Periodically a small quantity is
subtracted, so that users keep sharing. This is differ­
ent from an incentive-based mechanism, as users are
not obligated to consult their peers' standing before
deciding to cooperate with them. However, maDy of
them will be reluctant to cooperate with users in poor
standing. This standing score cannot be turned off,
unlike I(azaa's pricing policy. There are two disad­
vantages to this scoring. The first is that it needs a
trusted authority supervising each interaction so that
colluding users cannot artificially elevate their scores.
The second is that proficient users may be able to
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alter the code and become undetectable freeriders.
Despite these shortcomings, scores are a Ilseful tool
for cooperative users. Nowak and Sigmund analyze
a similar policy in the context of indirect reciprocity
and how it may have evolved.

Nowak and Sigmund first conducted experiments
on a multivalued image score metric ([22]). In thcse
experiments, players started with a score of O. Ran­
dom interactions between a recipient and a donor
changed the individual scores. If a donor refused to
cooperate, a unit was deducted from his score. If he
cooperated, a unit was added. The maximum score
was 6 and the minimum was -4. A negative score
indicated an uncooperative player. Each player de­
cided to cooperate or not, as a donor, based on a
value k, fixed during a player's lifetime and inherited
by his offspring. The strategy was to cooperate with
recipients that had a score no less than k. A negative
k indicated a cooperative strategy. A positive k, a
non-cooperative one. k = 0 indicated a discriminat­
ingly cooperative strategy, in which only those users
appearing to be freeriders are denied cooperation. A
lifetime lasted, on average, 2.5 interactions. After a
fixed number of interactions occurred between play­
ers of a generation, all players died. The next gener­
ation consisted of the previous generation's offspring.
The number of children a player left was proportional
to his fitness. Each time a player was the recipient
in a successful iuteraction, his fitness increased by
b. Each time a player was the dOllor in a success­
ful interaction, his score decreased by c, 0 < c < b.
The initial population started with a uniform mix­
ture of strategies. After just 20 generations, only
cooperative strategies were significantly represented,
with discriminating cooperators being the majority
and unconditional cooperators (k = -4) making up
the rest of the population. After 150 generations,
the few existing freeriders had eliminated all the Ull­
conditional cooperators. The freeriders, in turn, had
been eliminated by discriminating cooperators, who
became the only existing strategy.

The same experiment is repeated, however, ran­
dom mutations are introduced. The result was a



cyclical effect. Discriminating cooperators would
win, but due to mutations, less strict cooperators
would appear, leading to a short proliferation of
free riders. Discriminating cooperators would reestab­
lish a cooperative environment. A less encouraging
experiment followed. In this setting, only the recipi­
ent, the donor and ten random observers updated the
scores after an interaction. One player could have
different scores in the eyes of different players. Af­
ter 100 generations, only 15% of the population were
cooperators. This percentage fell as the population
increased.

The problem translates immediately to P2P net­
works. Maintaining perfect score information elimi­
nates freeriders, however, tlus is expensive and might
not be practical. Maintaining imperfect information
can be efficient, but is ultimately futile. A remedy
to this problem is as follows: a player has two evolu­
tionary variables k and h. He cooperates only with
players whose score is at least k and only if lus own
score is less than h. This strategy, called AND, is suc­
cessful in eliminating freeriders (players with k > 0),
even with incomplete information. However, there
is an associated price. The prevalent strategies are
reluctant to cooperate. With complete information,
the prevalent strategies were those with k ::s: 0 and
h = k + 1. The higher the mean It value, the more
cooperative the environment, but with complete in­
formation, only 55% of the interactions are success­
ful. With incomplete information, there is some un­
certainty on how accurate the information a player
possesses is and the prevalent strategies exlubited a
somewhat higher differential between hand k. Yet,
only 57% of the interactions was successful.

A compromise between eliminating freeriders and
allowing a more cooperative environment can be the
OR strategy. According to this strategy, a donor co­
operates if the recipients score is at least k or the
donor's own score is less than h. Nowak and Sig­
mund experimented with this strategy and with in­
complete information, the trend was towards coop­
erative strategies (k ::s: 0)' with It values muformly
distributed. In this case, 80% of all interactions were

successful.
The authors observe an intriguing phenomenon

during their experiments. Suppose all players adopt
a simple, k = 0 strategy, but start with a random
score. The question whether this population con­
verges to a cooperative one is non·trivial. Experimell­
tally, it is observed that there is a threshold on the
fraction of players that start with negative scores and
still the population converges to all-out cooperation.
This threshold is 0.7380294688360 .... If more play­
ers start with negative scores, the population con­
verges to a non-cooperative one. Therefore a popu­
lation in which more than 73% of the players appear
to be freeriders, although their policies are not that
of a freerider, still converges to a cooperative net­
work. This observation does not translate directly to
P2P networks, because the cooperative policies help
convergence. However, it is a good indication that a
P2P network can survive a large number of freeriders,
even without incentives.

6.1 Predictive Tools

AL'ID and OR strategies may alleviate scalability
problems by disseminating information, but they do
not solve them. In a structured P2P network, the
result of an interaction can be communicated to a
constant number of random users. However, as the
network grows, this number must also grow to en­
force cooperation. Nowak and Sigmund formally an­
alyze their Image Scoring strategy when there only
two possible scores, good and bad ([lID. Their re­
sults may help resolve the scalability bottlenecks.

It is easy to see that when there is complete in­
formation about the standings, the strategy that co­
operates only with those having a good standing is
ESS. It is also possible to derive the stability condi­
tion when score information is incomplete. Suppose
the probability that one knows the co-players score
is q. The stability condition is

c
q> b'

This is reminiscent of the stability condition for
pPAVLOV, since c is equal to -$ and b is R. This is
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also exactly identical to Hamilton's rule for altruism
through kin selection, which states that cooperation
through kin selection works whenever the coefficient
for relatedness is larger than the cost to benefit ratio
([23]). The problem in P2P networks is that if we just
try to disseminate information about the standing of
a player, the sheer size of the network will force q to
be almost O. Furthermore, if freeriders can change
identities at no cost, this inequality will never be sat­
isfied.

A solution to tIlls problem is to give up on trying
to disseminate standings information and help coop­
erative users predict the behavior of a stranger. In
real life, when we meet someone for the first time,
we try to read certain signs that clue us in on his
character. We can apply the same principle to P2P
networks. WIllIe in [11] q is assumed to be derived
from the interaction history of a player, it could be an
oracle that gives this information. Can we build such
an oracle for P2P networks? When a stranger asks
for a resource, certain characteristics can be identi­
fied. How many resources is he sharing? What is the
nature of these resources? Are there other users try­
ing to access resources from him? If not, can I access
something at random from him? If the network is fast

and the cost c is small, the prediction accuracy does
not need to be high for the cooperative strategy to
be stable. Non-cooperative peers may try to deceive
this tool, however, tIllS increases the cost of an un­
cooperative strategy and discourages such behavior.
'Ve believe that in existing, unstructured file shar­
ing networks such as Gnutella and v.,'irmIX, there are
users that implement such strategies and try to infer
the nature of a stranger. Software designed to make
their predictions more accurate and easier to arrive
at could be a powerful aid against non-cooperative
peers.

A second interesting aspect relates to the robust­
ness of this strategy. Image Scoring is ESS, but once
there arc no non-cooperative peers, the cost of keep­
ing track of the scores of other users is unnecessary.
The population can drift to a mixture of discriminat­
ing cooperators and unconditional cooperators. It is

possible to derive the dynamics of tills population in
the event of an invasion by freeriders. Suppose the
fraction of population that is made of unconditional
cooperators is p and the rest (1 - p) is made of dis­
criminating cooperators. Depending on the values of
b, c, q, and the expected lifespan, there is a thresh­
old for p above which the population cannot resist
an invasion by non-cooperators. On the other hand,
if p is below the threshold, the invasion wHl reduce
the number of unconditional cooperators and non­
cooperators will proliferate. However, in the end they
will bc eliminated. The Hew population will consist
of pi unconditional cooperators and 1 - p' discrimi­
nating cooperators, with p' being smaller than p. In
other words, after an unsuccessful invasion, the net­
work is even more adverse to non-cooperators. As
a consequence, occasional bursts of non-cooperators
should be expected as the users become complacent,
however, the network will quickly emerge to a higher
state of cooperation.

7 Concluding Remarks

The results we have derived and summarized here
represent only a fraction of the literature ill popu­
lation dynamics. Yet, a quick examination reveals
that the problem of handling non-cooperative users
can be solved without resorting to explicit incentives.
Certainly, if the information maintained at each peer
regarding the rest of the network is complete, elimi­
nating non-cooperative peers with either of the three
classes of strategies discussed in this paper is easy and
even error correction is possible. Similarly, if there is
a centralized authority that maintains scores and if
these scores cannot be tampered with, standings are
very effective. The challenge is to design P2P net­
works in which users maintain only a limited alllount
of information about the state of the network, each
user can implement the policies independently, and
stabilization to a cooperative state is guaranteed.

OTFT can be a useful strategy for large networks
in which non-cooperating peers are common. If ob­
servations are effective, this is a scalable and re-
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silient strategy. However, in a network where non­
cooperators are rare, tile cost and delay of simulating
a series of interactions can be an overkill. pPAVLOV
is more desirable in these- cases. As we have dis­
cussed, it has the property that it corrects errors in
both implementation and perception of a move. It
can be difficult to implement pPAVLOV in a scal­
able manner while keeping it ESS, however, stability
when freeriders are rare is not crucial. A combina­
tion of OTFT and pPAVLOV holds considerable ben­
efit. If non-cooperators appear only rarely, the most
desirable strategy is pPAVLOV. If pPAVLOV is not
ESS for the specific network, the frequency of non­
cooperative peers encountered will increase. If it rises
above a threshold, the client may swith to the more
expensive, bnt more resilient, OTFT strategy, un­
til non-cooperators become rare again. This process
can be made entirely transparent to the user. Im­
plementing efficiently these two strategies is an open
problem and experiments on real networks should re­
veal fascinating behavior. In theory though, OTFT,
and pPAVLOV can stabilize any network.

A successful strategy that requires the user's in­
volvement may depend on predicting the peer's be­
havior. It is hard to imagine that prediction can be
fully automated. However, providing the user with
the right tools can make it easy to employ. The ad­
vantage of prediction is that it can defend against
non-cooperators when changing ones identity has no
cost. Furthermore, it is stable even if the user decides
whetiler to change his strategy or give up the network
only after two interactions. A kind of balance on the
usage of predictive tools should also evolve. Accu­
rate tools are more expensive than inaccurate ones.
Browsing the contents of the shared folder of a peer
says a lot about his behavior, however, simply assess­
ing the number of resources he brings to the network
is faster and can be easily automated. Depending
on how expensive it is to allow a download and how
frequent non-cooperators are, users will lean towards
one of these solutions.

An uncooperative strategy that is of interest in the
context of P2P networks that are divided into groups

of users is that of the the briefly discussed ROVER
([18]). This division can be the result of a hierarchical
organization aimed at efficiency or of groups forming
on common interests. In any case, resilience against
ROVER, not just ALL D, can be a desirable property
for a cooperative strategy.

Finally, we would like to note that although in our
analysis we have assumed that the probability a peer
will meet the same peer twice and the clustering of
cooperative peers are negligible quantities, tIllS is not
necessarily the case in real networks. It is reasonable
to assume that if a user downloaded a file from a
certain peel', he will return to the same peel'. Esti­
mating these values could reveal that strategies such
as pPAVLOV, that depend on a non"negligible ow to
be ESS and scalable, can be scalable, a.<; well as ESS.
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