Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors

Lauren E. Bain
North Carolina State University, University of North Carolina

Ramon Collazo
North Carolina State University at Raleigh

Shu-han Hsu
Purdue University, Birck Nanotechnology Center, hsu21@purdue.edu

Nicole Pfiester Latham
Purdue University

Michael J. Manfra
Purdue University, Birck Nanotechnology Center, mmanfra@purdue.edu

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the Nanoscience and Nanotechnology Commons

Bain, Lauren E.; Collazo, Ramon; Hsu, Shu-han; Latham, Nicole Pfister; Manfra, Michael J.; and Ivanisevic, Albena, "Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors" (2014). Birck and NCN Publications. Paper 1598.
http://dx.doi.org/10.1016/j.actbio.2014.02.038

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Authors
Lauren E. Bain, Ramon Collazo, Shu-han Hsu, Nicole Pfiester Latham, Michael J. Manfra, and Albena Ivanisevic

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/nanopub/1598
Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors

Lauren E. Baina, Ramon Collazob, Shu-han Hsuc, Nicole Pfiester Lathamd, Michael J. Manfrac,d,e, Albena Ivanisevica,b,*

a UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
b Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
c Birck Nanotechnology Center, School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
d Department of Physics, Purdue University, West Lafayette, IN 47907, USA
e School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

\textbf{A R T I C L E I N F O}

Article history:
Received 18 November 2013
Received in revised form 17 January 2014
Accepted 21 February 2014
Available online 28 February 2014

Keywords:
Gallium nitride
Rat pheochromocytoma (PC12) cells
Surface topography
Surface chemistry
Cell differentiation

\textbf{A B S T R A C T}

The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physiologically relevant peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The preferential adhesion of cells to topographically roughened surfaces is a well-documented phenomenon\cite{1,3,4}, and can be considered in the context of the wide range of physical structures presented by the extracellular matrix (ECM) during development. These structures differ based on the functional role of the tissue under consideration, and the “ideal” surface for motivating maximal cell growth and viability generally bears structural and mechanical similarity to the tissue from which that cell line is derived\cite{5,6,7}. Recent advancements in tissue engineering and implant design have taken advantage of this observation, with the preparation of more biomimetic surfaces involving addition of a micro- or nanotexture to the substrate or device surface\cite{8}. Cells are exquisitely sensitive to a wide range of stimuli provided by their surroundings; in addition to this topographic sensitivity\cite{9,10,11}, cells are known to respond to mechanical forces\cite{12,13,14,15}, electric fields\cite{16,17,18} and – perhaps the most thoroughly investigated – chemical cues\cite{19,20,21}. These factors have been extensively studied in isolation; however, there are fewer resources documenting the combined effect of multiple factors in a specific, well-defined manner. Given the complex roles of these multiple stimuli in controlling cellular adhesion and differentiation, performing such combinatorial studies is integral for elucidating the mechanisms involved in cell development.

The conventional cell culture technique involves the seeding of cells on a flat planar surface, typically either glass or plastic. As the literature on and understanding of mechanobiology has expanded, however, the importance of micro- and nanoscale surface topographies for promoting specific cellular behaviors has been established. Identification of the features that drive said behaviors is a factor of importance for tissue engineering; as an example, stem cell differentiation can be guided solely by changing the roughness and elasticity of a surface, with cells taking on characteristics of the tissues with comparable properties\cite{5,12,22}. In addition to
straightforward variation in roughness, neural cell growth is demonstrably different on ordered vs. disordered arrays of electrospun poly(e-caprolactone) (PCL) nanofibers generated under otherwise identical conditions [23]. While the exact change in behavior due to topography depends on cell type, this represents a path through which surfaces of comparable surface roughness but variable topography can be used to influence cell growth.

Neural cells are of particular interest in considering the applications of semiconductor materials for interfacing biosystems [24]. The axonal growth cone is particularly sensitive to external stimuli, and the prominent neurite extensions provide a distinct means of assessing changes to cell response [25]. Rat pheochromocytoma (PC12) cells are a well-established model system for neurons that differentiate upon exposure to nerve growth factor (NGF) [26–28]. PC12 cell sensitivity to nanoscale structures has been confirmed on nanoscale ridges between 70 and 250 nm in width [29], and previous studies have also assessed the role of a laminin-derived peptide motif in improving PC12 cell adhesion to a semiconductor surface [30,31]. The semiconductor used in these studies, gallium nitride (GaN), has emerged as a compelling semiconductor material for interfacing with cells. Its biocompatibility [31–33], chemical stability [34] and electrical performance in ionic solutions [35] all point to the potential of GaN for developing functional devices for probing cells and biosystems. GaN has been extensively studied by the photonics community, and processes for generating nanopores [36,37] or nanowires [38,39] have been developed to improve emission characteristics for optoelectronic applications. Chemical modification schemes featuring both covalent function- alization [40,41] and identification of recognition peptides that demonstrate specific adhesion to the GaN surface [34,42] have also been established. The existence of topographic and chemical mod- ification schemes, in addition to the known favorable electrical and optical properties of GaN, provide compelling reasons to study the potential of GaN for interfacing with biological tissues and systems.

An important factor to consider with the recent boom in research coupling engineered nanostructures with biomolecules and biological environments is the dynamics of proteins interacting with the engineered surfaces. Nanoscale topographic modification has become more widespread as researchers continue evaluating the dynamics of cell–nanostructure interactions [43–46]. Semiconductor nanostructures have attracted a great deal of interest as materials for field effect transistor-based biosensors, as the reduction in bulk material allows a significantly smaller quantity of analyte to elicit the same degree of change observed in a planar bulk device [47]. With the expanding interest in nanostructure-based devices, it is increasingly important to evaluate the dynam- ics of interaction between biomolecules and nanostructured or nanotextured materials. Development of nanoscale roughened surface morphologies on GaN can have a significant effect on the water contact angle [48], with potential implications as to the wetting behavior observed when exposed to physiologic solutions and subsequent interaction between soluble proteins and the GaN surface. Local variations in surface curvature have also been demon- strated to influence the orientation of laminin, a protein associ- ated with cell adhesion, adsorbed to the surface [49]. Given the general sensitivity of cell membrane receptors to the structure and conformation of proteins, this could have significant effects on subsequent cell–surface interactions. Contradictory to these results, however, are those suggesting that nanometer scale rough- ness does not influence the amount or structure of protein on a surface [50] or that the only changes in quantity of adsorbed protein relates to the change in surface area brought on by increasing roughness [51]. Further exploration of the interactions between surface nanostructures and biomolecules will provide settlement to this discrepancy.

This study brings together both the nanoscale topographic modification of a semiconductor material and chemical modification by introduction of the isoleucine–lysin–valine–alanine–valine (IKVAV) motif, a core peptide domain of laminin. The IKVAV motif can play a role in neural adhesion and differentiation, and has been used to treat surfaces in schemes involving both physi- sorption and covalent modification [30]. By evaluating the combined effect of topography and chemistry, the effects of nanostructured GaN topography on both PC12 cell development and IKVAV peptide physisorption are catalogued.

2. Materials and methods

Chemicals were ordered from Sigma Aldrich unless otherwise specified. Rat pheochromocytoma (PC12) cells were purchased from ATCC (Manassas, VA). Type I Rat Tail Collagen was purchased from BD Biosciences (San Jose, CA). Dulbecco’s modified Eagle’s medium (DMEM), high-glucose formulation, fetal bovine serum, horse serum, 0.5% trypsin-ethylenediaminetetraacetic acid, murine nerve growth factor and penicillin–streptomycin were purchased from Invitrogen (Grand Island, NY). The peptide sequence (referred to in the text by the primary motif, “IKVAV”) was a 19-amino acid sequence, CSRRKQAASIKVAVSADR, purchased from GenScript (Piscataway, NJ).

2.1. GaN template preparation

2.1.1. GaN growth

The gallium nitride template consisted of an unintentionally doped, 1 μm thick, gallium polar gallium nitride film grown on c-plane sapphire by metalorganic chemical vapor deposition and exhibiting a smooth morphology [52]. The film was grown on a high temperature AlN layer grown on a low temperature AlN nucleation layer to control polarity. This structure yielded a gal- lium nitride film with a dislocation density of 1 × 10^6 cm^-2. The chosen growth conditions, in addition to the low sulphur substrate miscut, yielded a surface morphology dominated by growth spirals arising from screw dislocations intersecting the growing surface. Polished substrates were generated using a mechanical polishing wheel with 6 μm diamond slurry (Buehler METADI). Porous substrates were generated using an electroless wet chemical etch [36]. Briefly, surfaces were cleaned using HNO₃ prior to sputter coating with Pt islands, 1 mm in diameter. Pt-decorated surfaces were etched in a solution of 1:2:1 38% H₂O₂, 49% HF and methanol for 1 h under a 100 W UV lamp. Multiple rinses in methanol and deionized water were used to remove etch residue.

2.1.2. GaN NW growth

Samples were grown on Si(1 1 1) by plasma assisted molecular beam epitaxy (PAMBE). Prior to loading into the MBE, the Si sub- strates were cleaned by ultrasonication in acetone, methanol and isopropanol, each for 10 min, and treated with buffer oxide etch. Before growth, the substrates were outgassed at 905 °C. Temperature readings were taken with a pyrometer. The appearance of the 1 × 1 reflection high energy electron pattern at 905 °C, as well as the 7 × 7 pattern at temperatures lower than 830 °C, ensured the cleanliness of the samples. The RF plasma power was 405 W with a nitrogen flow rate of 1.3 scm. The beam equivalent pressure for Ga was 2.9 × 10⁻⁸ torr, resulting in a III/V ratio of 0.16. We em- ployed a two-step growth process. The two-step growth process had an initial nucleation temperature of 790 °C for 22.5 min, fol- lowed by a growth time of 12 h at 825 °C.

For cell culture experiments, samples were sonicated 15 min each in acetone, ethanol and deionized water. Surface cleaning
was performed by a 5 min etch in piranha (3:1 sulfuric acid to hydrogen peroxide), followed by a 10 min etch in HCl to remove surface hydroxyl groups introduced by the piranha solution. Samples were rinsed with deionized water and dried with N$_2$. Immediately prior to cell culture, samples were dipped in 70% ethanol and either exposed to UV light in the cell culture cabinet for 30 min or placed in the peptide incubation solution. Samples, 3 mm \times 3 mm in size, were incubated in a 10 µl droplet of 0.1 mM peptide for 21 h in the refrigerator in a sealed chamber; the volume used for the nanowire substrate was substantially increased (4 ml) to both accommodate the increased surface area and overcome the surface hydrophobicity. Following removal from the incubation solution, samples were rinsed with PBS and dried with N$_2$ prior to UV exposure for 30 min in the cell culture cabinet. The power and duration are not expected to damage or degrade the peptide treatment (as discussed by Jewett et al. [31]).

2.2. Cell culture

Culture medium for PC12 cells consisted of DMEM with 12.5% horse serum, 2.5% fetal bovine serum and 1% penicillin/streptomycin. Cells were kept in an incubator held at 37°C and 5% CO$_2$. Cells were passaged either once or twice after thawing prior to seeding on the GaN substrates. Three or more replicates of each type of substrate, with the exception of the nanowires, were placed in collagen-coated 24-well plates (one substrate per well). Generally, for a meaningful analysis, a population of $n > 100$ cells for each condition is counted. While cell populations were adequate with three repeats for the IKVAV-modified surfaces, the unmodified surfaces required additional substrates to attain adequate cell populations. This is accounted for in the statistical analysis (see Section 2.4 for more details). One nanowire substrate was used for each surface chemistry – unmodified and IKVAV-treated – and wafers were placed in a collagen-coated 60 mm well plate for each experiment. Cells were seeded at low density (4×10^4 cells ml$^{-1}$) to allow observation of any neuritic connections formed following nerve growth factor (NGF) exposure. After seeding, cells were given 12 h to adhere prior to replacement of the standard culture medium with DMEM containing 1% horse serum and 50 ng ml$^{-1}$ NGF. This NGF medium was replaced after 3 days of culture, and cells were fixed using Trump’s 4F:1G fixative [53] on day 6. Cells were then dehydrated via a graded ethanol series followed by critical point drying and sputter coating with Au/Pd for scanning electron microscopy (SEM).

2.3. Microscopy

Optical micrographs were collected using an Olympus BH2-UMA microscope with a Zeiss Axiocam camera at day 6 of cell culture on the GaN substrates. Images were processed using ImageJ software. Optical images were used to compile adherent cell density data. Nine images were used to make a composite for each condition prior to replacement of the standard culture medium with DMEM containing 1% horse serum and 50 ng ml$^{-1}$ NGF. This NGF medium was replaced after 3 days of culture, and cells were fixed using Trump’s 4F:1G fixative [53] on day 6. Cells were then dehydrated via a graded ethanol series followed by critical point drying and sputter coating with Au/Pd for scanning electron microscopy (SEM).

2.4. Statistical analysis

Statistical analysis was performed using SAS statistical analysis software (SAS Institute, Cary, NC). The general linearized model (GLM) for performing analysis of variance (ANOVA) on unbalanced data was used to analyze cell density data; this process accommodates unbalanced data sets, in this case the unequal number of substrates used for density analysis. A Tukey–Kramer adjustment of the least squares means with a significance level of 0.05% ($\alpha = 0.05$) was used following GLM assessment to establish significance. A two-sided ANOVA with a significance level of 0.05% ($\alpha = 0.05$) was used to compare between topographies and chemical modifications. A one-sided ANOVA followed by Tukey–Kramer adjustment, again with a 0.05% significance level, was used to compare contact angles and roughness values of the prepared GaN surfaces.

![Fig. 1. Planar (a and b), polished (c and d) and etched (e and f) GaN surfaces. (a, c, e and g) Scanning electron micrographs and (b, d and f) AFM height profiles display the morphology of the prepared surfaces. RMS roughness values are listed at the bottom left of the SEM images. (g) The nanowire substrate, taken at an angle to better depict the nanowire aspect ratios.](image-url)
3. Results

3.1. Characterization of GaN surfaces

The three primary surfaces studied – planar, etched and polished GaN – were initially characterized using atomic force microscopy (AFM) and SEM. Characterization of the nanowire (NW) substrates was limited to SEM due to the high aspect ratios of the nanostructures which prevented the collection of useful AFM data. Fig. 1 provides plan-view electron micrographs and matched-scale images taken from the AFM data, providing clear observation of the surface topographies. Corresponding surface roughness values are available for the three surface studied using AFM. Values are 3.4 ± 0.4 nm for the planar surface, 9.3 ± 3.6 for the polished surface and 11.5 ± 3.2 for the etched surface. As stated, the planar samples are not atomically flat; however, in the context of the experiment they are representative of an as-grown flat surface, and are thus designated “planar” for the remaining discussion. There is no statistical significance between the polished and etched surface according to Tukey’s studentized range test. While the planar and NW surfaces present the flat and maximally rough surfaces for this study, the compelling comparison is thus between the polished and etched cases. The surface RMS roughness values are statistically similar, but the morphology of that roughness is markedly different – unidirectional features in contrast to a more random texture. This also manifests as a significant change in contact angle, shown in Fig. 2. As can be seen in the droplet profiles, wetting behavior shifts to the more hydrophilic regime for the polished surfaces and to the more hydrophobic regime for the porous surface.

Chemical variation in the surfaces due to the surface treatments is a general concern. To confirm chemical similarity of the surfaces, Raman spectroscopy was performed. There were no noticeable differences in the Raman spectra (data available in the Supplementary information: Fig. S1); thus, any residue associated with polishing, etching, or nanowire growth is assumed to be insignificant.

3.2. Cell adhesion on topographically and chemically modified GaN

In keeping with the expected results for increased surface roughness [1], the density of adherent cells on chemically unmodified surfaces increased with RMS roughness, as shown in Fig. 3. The optical micrographs from which these data were derived are presented in the Supplementary information see Fig. S2. The particularly impressive density observed on the nanowires, however, is attributed to the increased well-plate surface area occupied by the GaN sample. As cells are introduced to the wells, they drop to the bottom and adhere to either the GaN sample or the collagen-coated well, depending on location. A larger number of cells were also introduced to the NW well; the working volume for the culture vessel used is 5 ml, whereas a 24-well plate has a working volume of 0.5 ml per well. Cells were introduced at a density of 4×10^4 cells ml$^{-1}$; the combination of a greater number of added cells and an increased surface area fraction of the total culture environment is likely responsible for this significant response.

One of the more significant changes is then in the response to modification via incubation with the IKVAV-containing peptide sequence. With the exception of the NW surface, IKVAV increases cell adhesion in all cases, with the greatest increase taking place on the polished surface. Morphological responses to IKVAV are also significant. Fig. 4 demonstrates representative cell growth on the four surfaces in the unmodified state, while Fig. 5 provides representative images of cells grown on IKVAV-modified surfaces. The most significant morphological change with IKVAV treatment occurs
on the etched surface; the number of cells differentiating with long, thin extensions increases drastically when the surface has been treated with IKVAV.

To quantify the change in morphology, three phenotypes of morphological characteristics were established. Cells were first identified as either having differentiated or not, with a lack of

Fig. 4. Scanning electron micrographs of cells on chemically unmodified GaN surfaces representative of variations in cellular morphology: (a) planar, 75 μm scale bar, (b) polished, 40 μm scale bar, (c) etched and (d) NW topographies, 50 μm scale bars.

Fig. 5. Scanning electron micrographs of cells on GaN modified with the IKVAV motif, representative of variations in cellular morphology: (a) planar, 75 μm scale bar, (b) polished, 100 μm scale bar, (c) etched, 75 μm scale bar, and (d) NW, 75 μm scale bar. Images collected with an optical microscope (provided in the Supplementary information) depict the overall increase in adherent cell density.
differentiation indicated by the cells retaining a standard round morphology associated with PC12 cells prior to NGF exposure. The concentration of NGF used for the experiment is described as having a half-maximal effect; thus, we do not expect 100% of the cell population to demonstrate differentiation. Differentiated cells can then be divided into two prominent morphologies: those having long, thin extensions, where the width of the extension is less than 20% of the cell body and the length is greater than the length of the cell body; and those having flattened, spread features, where the cell body is no longer circular in shape, spread area is at least double that of the average non-differentiated cell and extensions, if present, are greater than 20% of an average non-differentiated cell body in width. Fig. 6 provides clarification on these phenotypes; Fig. 6a has several examples of cells having thin extensions, while Fig. 6b provides a flat, spread cell with non-differentiated cells clustered on top. Fig. 6c reveals more isolated non-differentiated cells; while one exhibits small extensions, these are not substantial enough to qualify as being differentiated cells.

Using this basis for identifying cells, the relative populations of differentiated cells were then assessed. Initial consideration was given to the ability of topography or surface treatment to motivate differentiation; results displaying the percentage of differentiated cells of either morphology are provided in Fig. 7. Polished and etched surfaces demonstrate higher populations of differentiated cells without IKVAV treatment; however, there is a reduction in the relative population of differentiated cells with the addition of peptide. It is also of interest to explore the specific morphology of the differentiated cells. For the specific subset of the cell population expressing differentiation, Fig. 8 provides the percentage of cells expressing the thin neuritic extension phenotype. The most significant change is in the etched surface, which also demonstrated the lowest percentage of cells expressing the stereotypic neurite extensions prior to surface treatment. IKVAV treatment reverses this influence, returning the number of cells with thin extensions to a level comparable to the polished and planar surfaces. Cell phenotypic demographics remained largely the same for the NW surface.

4. Discussion

Cell response to physical topography is an exceedingly well established phenomenon, with initial investigations taking place during the early twentieth century [8,11,54–56]. While the improvement in cellular adhesion with the introduction of substrate roughness is not a surprise, the use of semiconductors and established processing methods for photonic devices introduces a new scheme for generating nanometer-scale roughness.

4.1. Topography and cell morphology

In the context of this experiment, the AR and NW surfaces represent the limits of surface roughness — a flat GaN surface, and a “maximally rough” surface of high aspect ratio features. It is thus worthwhile to consider the two mid-tier surfaces in the context
of behaviors observed on this “flat” and “maximally rough” surface. The etched surface resembles the NW in that the texture is disordered; there is no uniform alignment. The polished surface, by contrast, has aligned surface features; while the RMS roughness values are approximately equal, the surface morphology demonstrates significant differences. This is fairly unique in the context of available literature while many works document the effects of ridges and grooves of different dimensions on cell growth [56,57], there are fewer resources exploring the effect of variable morphologies with consistent roughness.

Comparing growth on the unmodified surfaces produces a compelling result with respect to cellular morphology. As shown in Fig. 8, the majority of the differentiated cell population on the polished surfaces exhibits the stereotypical long, thin extensions associated with neuronal development. In contrast, the etched surface demonstrates a much greater extent of cell spreading. In the context of filopodial interactions with the surface and contact guidance [11,25], this is an expected behavior – the unidirectional features of the polished surface provide troughs along which neurites can extend, with barriers on either side. By contrast, the etched surface has a more random distribution of surface features; rather than a continuous ridge for cell extensions to “follow”, the cells are left with a wider range of contact points, providing an explanation for the likelihood of cell spreading and lack of organized neurite formation.

The etched surface also features the most compelling morphological change when modified with the IKVAV peptide motif – the differentiation behavior reverses, and the number of cells with long, thin extensions more closely resembles that of the planar and polished surfaces. To explain this change, the role of laminins and the IKVAV motif can be evaluated. In addition to motivating cellular adhesion to the basal lamina, the IKVAV motif is associated with neuronal development. While two phenotypes of differentiation are observed here for PC12 cells, the conventional exhibition of differentiation is the stereotypical thin neuritic axon. Thus, it is likely that addition of the IKVAV motif is able to more strictly regulate the nature of cellular differentiation than topography alone, promoting the expected neuronal behavior over the alternate spread morphology observed on the unmodified etched surface. The functional role of IKVAV in cell adhesion may also contribute to the decrease in the percentage of differentiated cells observed in Fig. 7. Synthetic analogs to IKVAV with replacement of different residues have maintained their ability to promote cell adhesion, but upon replacement of the lysine or isoleucine residues the sequence fails to promote neurite outgrowth [58]. Given the reduction in differentiated percentage with an increase in population, the results reported here suggest that addition of the IKVAV sequence is more effective at promoting cellular adhesion than neurite outgrowth from PC12 cells in the context of this experiment.

4.2. Nanoscale topography and peptide physisorption

Physical topography has been implicated in the structural dynamics of protein adsorption to surfaces [49–51]. This observation, and the known sensitivity of cell membrane receptors to the conformation of their associated proteins, indicate the importance of tuning material surfaces to optimize the performance of any surface treatment. The influence of surface topology is evidenced by the magnitude of increase in cell density with IKVAV treatment across the four conditions. If topography did not play a role in peptide adsorption, the increase in adherent cell density would be constant across the surfaces; however, there are differences in the increased cell population, with the polished surface exhibiting a significant increase in density (p < 0.02 when comparing densities with and without IKVAV modification). This can be thought of in the context of wetting on the different surfaces. Recall the contact angle data presented in Fig. 2 – the polished surface has a significantly lower contact angle than the other surfaces, with a greater droplet spread and larger area of contact with the droplet. In the same way, during incubation, the peptide droplet during incubation spreads across the surface and is able to maximize the area of contact with the sample surface. While a comparable effect is expected for the planar surface, as this has yet to enter the hydrophobic regime, there is also an increase in surface area associated with the roughening of the polished surface. The results from the etched and NW surface also indicate an interesting wetting phenomenon – namely, introduction of the Cassie–Bennet condition. Wenzler wetting, as observed with the polished surface, involves the droplet coming into full contact with the surface, while Cassie–Bennet wetting is associated with a droplet resting on top of surface features with air filling in the interdigital space. The reduced increase (or total lack of increase, as observed in the NW case) in cell density is attributed to this lack of contact between the peptide solution and the full area of the substrate surface. A BCA assay was attempted to confirm; however, the resolution of the assay and spectrophotometric detection was inadequate to confirm any significant change among surfaces (Supplementary information, Fig. S3). The change in cellular behavior is still adequate to assert that IKVAV has adsorbed to the surface, and that the quantity of accessible IKVAV in cell–surface interactions differs by substrate.

5. Conclusion

This work in coupling physical topography and biochemical adsorption on a GaN substrate contributes to the body of work supporting the use of GaN for bio-compatible electronic or photonic devices, as well as the importance of tuning surface properties when coupling nanoscale structures with biomolecules. While topographic modification is demonstrated to influence cell growth in a manner involving the morphology as well as roughness of a surface, the influence of topography on the adsorption of proteins or peptides to the surface must be considered when performing surface modification. These factors are not entirely distinct, and generation of functional bio-inorganic interfaces will rely on a complex understanding of the dynamics of the nanostructure–biomolecule interaction.

Acknowledgments

Dr. Susan Bernacki provided assistance in cell culture techniques and maintenance of cell culture facilities. Corey Foster, Dr. Scott Jewett and Dr. Matt Makowski provided guidance in cell culture techniques and working with gallium nitride in a cell culture environment.

Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1–8 are difficult to interpret in black and white. The full colour images can be found in the online version, at http://dx.doi.org/10.1016/j.actbio.2014.02.038.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.actbio.2014.02.038.
References
[8] Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biom Eng 2004;6:41–75.