Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2003

Running Linux on Back-end Computers in The
Xinu lab

Douglas E. Comer

Purdue University, comer@cs.purdue.edu
Xuxian Jiang

Report Number:
03-012

Comer, Douglas E. and Jiang, Xuxian, "Running Linux on Back-end Computers in The Xinu lab" (2003). Computer Science Technical
Reports. Paper 1561.
http://docs.lib.purdue.edu/cstech/1561

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

RUNNING LINUX ON BACK-END
COMPUTERS IN THE XINU LAB

Douglas E. Comer
Xuxian Jiang

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD TR #03-012
May 2003

Running Linux On Back-end Computers
In The Xinu Lab

Douglas E. Comer and Xuxian Jiang

Department of Computer Sciences
Purdue University
West Lafayetle, IN 47907, USA

Abstract

The Xinu Lab at Purdue University contains equipment used for instruction and research
in operating systems and networks. In addition to conventional workstations, the lab contains a
set of back-cnd computers and facilities that automatically allocate and download the back-ends
as requested by users. The Xinu lab has been enhanced by integrating Embedded Linux into the
set of available facilities. A user can download Linux on one or more back-end computers, and
can run an application on each machine that acts as a packet source, a packet sink, or another
type of packet processor. This report describes the technical details and challenges involved in
porting Linux to the Xinu lab environment.

I. Introduction

The Xinu Lab at Purdue Universily was one of the earliest laboratories for instruction and
research in operating systems and networks. Computers in the fab are divided into two types:
froni-ends and back-ends; all computers are interconnected by networks. The front-end comput-
ers consist of conventional Unix workstalions (currently x86 architccture) that are used to create
and compilc sofllware. Each front-end system runs a standard Unix operating system (currently
Linux), and contains the usual facilities that allow users to create, compile, and link programs.
Most important, software exists that allows a user to create a completc memory image, includ-
ing all parts of an operating system. Each back-end system consists of a bare computer on
which a user can run an arbitrary memory image, incleding code for an operating system. A
back-cnd does not contain any code other than the image that a user supplics, which mcans the
image must include all low-level system details.

In addition to hardwarce, (he Xinu lab includes software Facilities that automate the alloca-
tion, downloading, and control of back-end computers. When a user needs a back-end, the user
runs a program on a front-cnd that makes a request. A server in (he lab consults a database of
back-ends, selects one that satisfies the request, and grants exclusive use of the back-end to the
user. A window on the user’s screen provides a conncection (o the back-end console. Additional
soltware allows the user to download an arbitrary image into the back-end, and control execu-
tion. Once a user finishes using a back-end, the user informs the control soltware, which allows
another user to allocate the machine. Details about the tab architecture can be found in {1]).

The name Xinu is taken from an operating system created by Comer. Xinu is a small,
clecgant, multi-threaded system that works well in an cmbedded environment. Xinu is used in
courses — students in the graduate operating systems or network courses are each given a copy
of Xinu, which they modify or extend (c.g.. replace TCP/IP protocol soltware with their own

code). Similarly, researchers often use Xinu as the basis for their work. As a consequence, the
lab facilities are designed to ensure that users can download a Xinu image into a back-end,
mnteract with the running system, and recover from catastrophic ercors. In particular, control
facilities in the lab can reclaim a back-end even if the downloaded image disables interrupts and
executes a light loop.

Although it works well as a rescarch platform, Xinu docs not offer emulation Facilities to
support commercial application software. Thus, vsers cannot casily use Xinu to run off-the-
shelf packet generators, traffic analyzers, servers, or client applications such as a web browser.
To accommodate such applications, we integrated a version of Linux into the Xinu lab facilities.
That s, we created a version of Embedded Linux that can be downloaded onto one or more
back-end computers using the standard lab facilitics.

This puper describes the Embedded Linux system used in the Xinu Lab, presents lhe
configuration, and discusses difficulties encountcred. The paper is organized as follows: Scction
2 describes the problem, statcs the constraints imposed by the Xinu lab acchitecture, and
describes related work. Section 3 gives the design goals. Section 4 contains an overview of the
sleps used to run Linux on a back-end, and Section 3 describes the memory layout used with a
Linux kernel image. Section 6 discusses the BIOS services that Linux requircs, and explains
how they are provided. Section 7 considers how space constraints impact the design of a Linux
root file system, and Section 8 concludcs the paper.

2. Lab Environment And Related Work

This section examines details of the Xinu lab environment that are relevant to Linux, and
outlines the overall design. The focus is on issues that pose challenges and difficulties. The
section also compares our design to related work.

The Xinu lab [1,2] provides lacilities for research and instruction in the areas of operating
syslems and networking. Salient features of the lab include:

* Awtomated Back-end Allocation. A user in the lab is able to request one or more
back-end computers quickly and automatically.

¢ [asrt Download. An OS image can be downloaded from a front-end computer
into a back-end computer and started in a few seconds. To facilitate high-speed
download, an idle back-end runs a monitor program that handles communication
with the downloading software.

¢ Conmmunication With Back-End Console. There exists a mechanism, including
relevant hardware and software facilities, that connccls a window on a user's
front-cnd computer to the console of a back-end computer. The window allows
the console to be used for debugging output from a back-end.

* Back-End Recovery. Because the Xinu lab is used primarcily for experimental sys-
lem software, the software running on a back-end can inadvertently stop respond-
ing to console input. The lab includes a facility to restart a back-end that has
become jammed; upon restart, the back-end loads the monitor image from a boot
lloppy, which allows the lab system to regain control.

Loading a back-end is a two-step process. When the first phase monilor code is loaded
from the floppy into memory, the back-end CPU begins cxecuting in real mode (ie., 16-bit
mode). The first phase of the bootstrap requests the sccond phase from a server. The first phase
downlioads the second phase into high-end memory (address 0x10000:0x0000). Once it has
downloaded an image, the second phase bootstrap code waits for further instructions from the
console. If a user requests that the image be run, the bootstrap code configures the CPU to

-3-

execute in protecied mode, and transfers control to the image. The image is responsible lor
moving itself to physical address 0x0000:0000 and branching to the appropriate entry point.

Whenever a new image is downloaded to a back-end, the monitor follows the same steps:
the image is placed into high memory, and the image must move itself into low memory.
Although it is efficient, the downloading scheme imposes unintentional side effects for Linux:

* Absence of BIOS services. The Interrupt Vector Table (IVT) is overwritten when
an image moves itself (0 address zero. Thus, BIOS services arc not available fol-
lowing the move. Unfortunately, Linux bootstrapping code relics on BIOS ser-
vices Lo oblain information needed for configuration. For example, Linux uses the
size of available memory to configure the kemel memory address space and a
ramdisk (provided ramdisk and initrd are enabledt).

e Switch from protected mode 1o real mode. A downloaded Xinu image always
runs in protected mode. However, Linux is designed so the initial bootstrap code
runs in [6-bir mede (i.c., real mode). Thus, before a downloaded Linux image
runs, the processor must be switched from protected mode o real mode.

* Absence of a file system. Xinu can run as an cmbedded system in which the
cntire downloaded image is self-contained without a file system. Howcver, Linux
usually requires a root file system. For Embedded Linux, the downloaded image
typically has initrd cnabled, which means that Linux must be notified of the star-
ing address and size of the root file system in a ramdisk.

* Small size and funictionally complete file system. Although back-cnd computers in
the Xinu lab are reasonably large, a version of Embedded Linux must be crafted
that is small enough to be booted quickly and sufficiently powerful to be useful in
a varicty of applications.

A variety of projects have created diskless thin clients [3, 4, 5, 6]. Unfortunately, none of
the approaches suffice for the Xinu environment because cach relies on BIOS suppott. As an
alternative, several systems use BIOS replacement. That is, the normal BIOS is replaced by a
BIOS that can be booted from & cold start [7, 8, 9]. We cannot usc such an approuch because
we cannot change the hardware BIOS.

3. Design Goals
We had three goals for the project:

* Compatible with current facilities. Becausc the lab is heavily used, it was impera-
tive that our solution preserve the cureent lab software and hardware facilities; we
had to adapt Embedded Linux to work in the existing environment.

* Uniform interface. A single interface should exist for all lab facilities. Tn paricu-
lar, a user should have the ability 1o download and boot a Xinu image or a Linux
image through the same interface.

* Minimal overhead. The overhead, including downloading and startup cost should
be minimized. The size of the Linux image is of concern because the requisite
download time is proportional to the image size.

tA ramdisk is especially useful for an embedded systern that does nol have secondary slorage.

4. Downloading Sequence

This section explains the sequence of steps required to run a Linux image on a back-cnd.
There are three basic steps:

L. Download the complete Limex image. A Linux image contains the Linux boot
code, the kemel, and a root file system. The existing lab facilities download an
entirc image in one step.

2. Execute the Linux boot code. Once a Linux image has been downloaded and
moved into a low memory address, control passes to the image, and the Linux
boot code takes the responsibility {or bootstrapping the kemel. To supply the
BIOS services that Linux needs, the BIOS is temporarily provisioned as discussed
below,

3. Execute the Linmux root code. Upon completion of the bootstrapping process, the
Linux kernel obtains control of the entire system. The kernel handles initializa-
tion and sets up the table of system calls. After initializing the system, the kemel
must locate and mount the root file system, which provides a traditional UNIX
environment to users.

5. Memory Layout

The downloader used in the lab places an image at memory address BOOTPLOC (ie.,
0x15000:0x0000), and the image must relocate itself to absolute address 0x0000. As Table |
shows, a typical Linux image contains several seguents of memory: a bootstrapping segment, a
setup segment, the kemel, and a file system segment. To accommodate future releases of tie
Linux kernel, we chose to avoid making changes to the kernel unless absolutely necessary. As a
consequence, to adapt Linux to the Xinu lab downloading environment, we added a Linux Setup
Layer (LSL) that prepates memory as required by the Linux image. In essence, LSL is a
modified and extended Xinu image that acts as an intermediary betwecn the original Xinu
bootstrap code and the Linux kernel. From the Xinu bootstrap point of view, LSL forms the
entry pomnt that must be invoked. LSL can recognize both Xinu code and a Linux image.
When it finds a Linux image, LSL arranges memory exactly as the Linux bootstrapping scgment
expects (i.e., as il the Linux image had been read from disk during a normal computer boot).
Thus, the conceplual bootstrapping steps are:

* Use the lab downloader software to load and run the LSL image.

* Download the full Linux image, which is recognized and arranged by the LSL.

* Run the Linux image o create a ramdisk.

To allow LSL 1o arrange the segments of a Linux kemel and a ramdisk root file system,
the set of segments must be combined into a single downloadable image that contains a descrip-
tion of cach segment. We added an additional scgment named LOADMAP (see Table 3) to the
beginning of the Linux image file. The LSL uses the LOADMAP segment to determine the

composition of the image (ie., the contents and size of each segment). The resulting Linux
image is composed of six segments as follows:

* BOOTSEG. The BOOTSEG segment contains the Linux kemel bootstrapping
code,

* SETUPSEG. The SETUPSEG segment contains code that establishes the Linux
kemel (c.g., it querics BIOS services to obtain the size of memory and the video
mode, and possibly relocates the Linux kemel, depending on the sizes of the ker-
nel and memory).

-5-

* PARAMSEG. The PARAMSEG segment contains parameters needed to tune the
Linux kernel.

* LOADMAP. The LOADMAP segment describes remaining segments by giving
the starting offset address from the beginning of the Linux image, the size, and the
expected runtime memory address.

* KERNEL. The KERNEL segment contains the actual Linux kemel.

* RAMDISK. The RAMDISK segment contains an initial file system, which will be
mounted as the Linux root file system.

The Linux bootstrap and startup code assumes that the system is always placed in the
same memory locations. Thus, to ensure that Linux starts correctly, LSL must arrange memory
as Linux cxpects. As Tables 1 and 2 show, there are two arrangements: one used for a small
Linux kernel and one used for a large Linux kemel.

Segment Type Starting Address Description
BOOTSEG zImage 0x9000 Linux boot code (always 512Bytes)
SETUPSEG | zlmage | 0x9020 Linux setup code (typical 2K bytes)
KERNEL zImage | 0x1000 Small Linux kemel imagc
RAMDISK ramdisk | N/A Ramdisk contents (alignment to 4096 boundary)

Table 1. Memory layout Linux uses for a sthall kernel.

Segment Type Starting Addresy Dexcription
BOOTSEG bzlmage | 0x9000 Linux boot code kemcl (always 512Bytes)
SETUPSEG | bzlmage | 0x9020 Linux setup code (typical 2K bytes)
KERNEL bzlmage | 0x10000 Large Linux kernel image
RAMDISK ramdisk | N/A Ramdisk contents (alignment to 4096 boundary)

Table 2. Memory layout Linux uscs for a large kemel.

LSL places the parameter scgment and load map in memory directly following
SETUPSEG. Table 3 lists the actual contents of memory afler LSL finishes.

Segment Type Starting Address Description
BOOTSEG bzlmage | 0x9000 Linux boot code kernel (always 512Bytes)
SETUPSEG bzImage | 0x9020 Linux sctup code (typical 2K bytes)
PARAMSEG | N/A 0x9240 Parameters passed to Linux kemel
LOADMAP N/A 0x9280 Segment address map
KERNEL bzlmage | 0x10000 Large Linux kernel image
RAMDISK ramdisk | N/A Ramdisk contents (alignment to 4096 boundary)

Table 3. Acteal memory contents when a large kemel begins.

Interestingly, the CPU mode needed to execute code varies among segments. In particu-
lar, code in the BOOTSEG segment must be exccuted in real mode, and code in other scgments
executes in protected mode. Recall that Xinu code always runs in protected mode. Thus, LSL

-6-

necds to switch to rcal mode before running the BOOTSEG code; BOOTSEG code will switch
to protected mode before running the kemel.

6. BIOS Provisioning

When it boots, the Linux kernel uses BIOS services to obtain hardware configuration
information (i.e., available memory size). Becausc the BIOS is overwritten when the image is
copied into [ow memory, LSL must reprovision the BIOS before allowing Linux to start. Table
4 shows the set of BIOS calls that Linux issues.

Interrupt Number Description Of Service
0x10 VGA services
Ox11 Equipment determination
0x13 Disk services
Ox15 Miscellaneous services (including memory services)
0x16 Keyboard scrvices

Table 4. BIOS services that Linux uses during startup.

The most critical BIOS cail consists of the service that computcs the physical memory
size. Implementations of Linux try a list of memory services that are each specified as an inter-
rupt number and specilic service within the interrupt. The startup code trics each méthod on the
list until one succeeds. If none succeeds, the startup code aborts without starting Linux.
Current versions of Linux make the following three calls: int Ox15, ax=0xe820; int Oxi3,
ax=0xe801; and inmt Ox15, ah=0x88. To satisfy Linux, our code constructs a memory table
named e820map, which corresponds to the value returned by the ax=0xe820 BIOS call. Tabie
e820map provides a map of the memory that is available tw contain the kemel, root file system,
and Linux startup code. We pass the address of the table to Linux as the result of the call,
Linux continues (o execute startup code; other BIOS services are provided stmilarly,

7. Root File System

Upon finishing the boot scquence, the Linux kemel aticmpts to [ocate and mount a root
file system. As noled above, the downloaded image contains a rumdisk, which serves as the
rool. Once the root has been mounted, additional remote file systems can be mounted using the
Network File System (NFS).

The limited memory space (32 MBytes) poses an interesling and challenging problem for
the root file system: what should be included and how should it be organized? On one hand,
the system should be sufficiently general for many purposes (e.g., a user can choose to use a
back-end for packel gencration, packet analysis, a firewall, a proxy scrver, or as a NAT box).
On the other hand, adding data files and applications to the root file system resulls in an image
that exceeds the available memory. It may seem that the best solution consists of keeping the
root file system small, and mounting a remote file system that contains auxiliary applications
and data. However, if the back-end is used for networking research, a production TCP/IP may
not be available or the added packet traffic may interfere with the experiment being conducted.

To permit flexibility without depending on NFS, we chose a modular approach. We con-
structed a set of modules that can be combined with the basic files to produce a root file system.
Before a user downloads Linux, the user must specify which of the modules to select. Figure |
tltustrates the set of six optional modules, which are each associated with a general domain or
application.

Firewall Module

Routing Module

Mintmal Linux System

Proxy Module

Figure 1. The six opticnal {ile system modules available to a user.

The Firewall Modude contains code that implements an Internct firewall subsystem. It
provides stateless or statcful packet filtering. The NAT Modide handles packet header transia-
tion necded for Nenwork Address Translation. NAT can be integrated with a firewall or used
separately. The Routing Module contains code for routing protocols, including RIP, OSPF, and
BGP; the code is taken [rom the zebra routing package. The Proxy Module provides the func-
tionality of the SOCKS proxy services. The Log Module handles maintenance of a system log
that allows postmortum analysis. The Performance Module includes the ticp application used to
measure end-to-end throughput. All of the modules depend on the underlying Minimal Linux
Sysrem, which is required for operation of Linux.

8. Conclusions

We have found Embedded Linux to be a useful tool in the lab. Applications that run
under Linux, such as ttcp, allow programmers to test network protocols without spending time
creating tools. More important, Linux can be used as a source or sink lor intcroperability test-
ing.

The approach we selected to integrate Embedded Linux into the Xinu lab environment has
proven to be both practical and efficient. The LSL software allows Linux to be downloaded
without changes to either the downloading code or the Linux startup code. Allowing a user to
select modules for a root file system provides flexibility, while keeping the resulting image
small enough to fit into memory.

Acknowledgments

We thank Gustavo Rodriguez-Rivera and Dongyan Xu for suggestions and insightful dis-
cussion.

9. References
[1] Comer, Douglas, Hands-On Networking, Prentice Hall, 2002,

[2] Comer, Douglas and John C. Lin, A Laboratory Environment For Experimenting With
Xinu, Purdue University CS Technical Report CSD-TR 96-047, January 1996.

(31
(4]
£51
(6]
[7]
(8]
(%1

LTSP website: hup:/Avww.lisp.org/

Kiosk Project website: hup:/kiosk.mozdev.org/

ELKS website: fuip:/lelks.sourceforge.net

DIET-PC website: htp:Hdiet-pc.sourceforge.net
LinuxBIOS website: heup:/Avww.acl lunl gov/linuxbios
FreeBIOS website: Mtip:/ffreebios.sourceforge.net
TinyBIOS website: hitp:/Avww.pcengines.com/tinybios. htm

	Purdue University
	Purdue e-Pubs
	2003

	Running Linux on Back-end Computers in The Xinu lab
	Douglas E. Comer
	Xuxian Jiang
	Report Number:

