
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2003

Running Linux on Back-end Computers in The
Xinu lab
Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Xuxian Jiang

Report Number:
03-012

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Comer, Douglas E. and Jiang, Xuxian, "Running Linux on Back-end Computers in The Xinu lab" (2003). Computer Science Technical
Reports. Paper 1561.
http://docs.lib.purdue.edu/cstech/1561

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

RUNNING LINUX ON BACK-END
COMPUTERS IN THE XlNU LAB

Douglas E. Comer
Xuxian Jiang

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #03·012
May 2003

Running Linux On Back-end Computers
In The Xinu Lab

Douglas E. Comer and Xuxian Jiang

Department of Computer Sciences
Purdue University

West Lafayelle, IN 47907, USA

Abstract

The Xinu Lab at Purdue University contains equipment used for instruction and research
in operating systems and nCl\vorks. In addition to conventional workstations. [he lab contains a
set of back-end computers and facilities that umomatically allocate and download the back-ends
as requested by users. The Xinu lab has been enhanced by imcgrating Embedded Linux into the
set of available facilities. A user can download Linux on olle or more back-end computers, and
can run an application on each machine that acts as a packet source, a packet sink, or another
type of packet processor. This repon describes the [Cchnical details and challenges involved in
porting Linux to the Xinu lab environment

1. Introduction

The Xinu Lab at Purdue UniversiLy was one of the earliest laboralories for instruction and
research in operating systems and networks. Computers in the lab are divided illlO Lwo types:
[milt-ends and back-ends; all computers are interconnected by networks. The front-end comput
ers consist of conventional Unix workstaLions (currently x86 architecture) that are llsed to create
and compile software. Each fronL-end system runs a standard Unix Operalillg system (currently
Linux), and contains the usual facilities that aHow users to create, compile, and link programs.
Most important. software exists that allows a user to create a complete memory image, includ
ing all parts of an operating system. Each back-end system consists of a bare computer on
which a user can run an arbitrary memory image, including code for an oreraring system. A
back-end does not contain allY code other thall the image that a user supplies, which means the
image must include all low-level system details.

In addition to hardware, the Xinu lab includes software facilities that auLomate the alloca
tion, downloading, and control of back-end computers. When a user needs a back-end, the user
runs a program on a front-end that makes a request. A server in the lab consults a dalabase of
back-ends, selects one that satisfies the request, and grants exclusivc use of the back-end to the
user. A window 011 the user's screen provides a connection to the back-end console. Additional
software allows the user to download an arbitrary image into the back-end, and control exccu
tion. Once a user finishes using a back-end, the user informs the control sortware, which allows
another user to allocate the machine. Details about the lab architecture call be found inll].

The name Xilllf is taken from an operating system created by Comer. Xinu is a small,
elegant, multi-threaded system that works well in an embcdded environment. Xillu is used in
courses - students in the graduate operating systems or network courses are each given a copy
of Xinu, which they modify or extend (e.g .. rerlace TCPI1P protocol software with their own

~ 2 -

code). Similarly, researchcrs often use Xinll as the basis for their work. As a consequence, the
lab facilities are designed to ensure that users can download a Xinu image into a back-end,
interact with the running system, and recover from catastrophic errors. In particular, control
facilities in the lab can reclaim a back-end even if the downloaded image disables imerrupts and
executes a tight loop.

Allhough it works well as a research platfonn, Xinu docs not offer emulation facilities to
suppon commercial applicalion software. Thus, users cannot easily usc Xinu [0 run off-the
shelf packet generators, traffic analyzers, servers, or client applications sllch as a web browser.
To accommodate such applications, we integrated a version of Linux inlo the Xinu lab facilities.
That is, we created a version of Embedded Linux that can be downloaded onto one or more
back-end computers using the standard lab facilities.

This paper describes the Embedded Linux system used in the Xinu Lab, presen[S the
configuration, and discusses difficulties encoulUered. The paper is organized as follows: Section
2 describes the problem, states the constraints imposed by the Xinu lab architecture, and
describes related work. Section 3 gives [he design goals. Section 4 contains an overview of the
steps used to run Linux on a back-end, and Section 5 describes the memory layout used with a
Linux kernel image. Section 6 discusses the BIOS services that Linux requires, and explains
how they are provided. Section 7 considers how space constraints impact the design of a LInux
root file system, and Section 8 concludes the paper.

2. Lab Environment And Related Work

This section examines details of the Xinu lab environmenl that arc relevant to Linux, and
outlines the overall design. The focus is 011 issues that pose challenges and difficulties. The
section also compares our design to related work.

The Xinu lab [1,2] provides facilities for research and instruction in the areas of operating
sysLems and networking. Salient features of the lab include;

• Alltomared Back-end Allocatio1l. A user in the lab is able to request one or more
back-end computers quickly and amomatically.

• FaST DOH'nIoad. An OS image can be downloaded from a front-end computer
into a back-end computer and started in a few seconds. To facilitate high-speed
download, an idle back-end runs a monitor program that handles communication
with the downloading softwarc.

• Commllnicatioll WiTh Back-Elld COl/sole. There exists a mechanism, including
relevant hardware and software facilities, that connects a window on a user's
front-end computer to the console of a back-end computer. The window allows
the console to be used for debugging output fcom a back-end.

• Back-EI/d Recovel),. Because the Xinu lab is used primarily for experimental sys
tem softwarc, the software running on a back·end can inadvertently stop respond
ing to console input. The lab includes a facility to restart a back-end that has
become jammed; upon restart, the back-end loads the monitor image from a boot
noppy, which allows the lab systcm to regain comro!.

Loading a back-end is a two-step process. When the first phase monitor code is loaded
from the floppy into memory, the back-end CPU begins exccllling in real //lode (i.e., /6-vil
lIlode). The first phase of the bootstrap requests the second phase from a server. The first phase
downloads the second phase into high-end memory (address Ox IOOOO:OxOOOO). Once it has
downloaded an image, the second phase bootstrap code waits for fu[[her instructions fcom the
console. If a user requests that the image be run, the boorstrap code configures the CPU to

- 3 -

execute in protected mode, and transfers control to the image. The image is responsible for
moving itself to physical address oxoaoo:OOOO and branching to tile appropriate entry point.

Whenever a new image is downloaded to a back-end, the monitor follows the same steps:
the image is placed into high memory, and the image musl move itself into low memory.
Although it is efficient, the downloading scheme imposes unintentional side effects for Linux:

• Absence of BIOS services. The 1I1terrujJi Vector Table (IV!) is overwritten when
an image moves itself to address zero. Thus, BIOS services arc not available fol
lowing the move. Unfortunately, Liollx bootstrapping code relics on BIOS ser
vices La obtain information needed for configuration. For examp(e, Linux uses the
size of available memory to configure the kernel memory address space and a
ramdisk (provided ramdisk and initrd are enabledt).

• Switch from protected mode 10 real mode. A downloaded Xinu image always
runs in protected mode. However, Linux is designed so the initial bomstrap code
rullS ill 16-bif lIlode (i.e., real mude). Thu1'i, before a downloaded Linux image
mns, the processor must he switched from protected mode to real mode.

• Absellce of a file system. Xinu can run as all embedded system in which the
entire downloaded image is self-contained without a me system. However, Linux
usually requires a root file system. For Embedded Linux. the downloaded image
rypically has iIJitrd enabled, which means that Linux must be notified of the star
ing address and size of the root tile system in a ramdisk.

• Small size and fwictiOlUll/y complete file ~)'ste/ll. Although back-end computers in
the Xinu lab are reasonably large, a version of Embedded Linux must be crafted
that is small enough to be booted quickly and sufficiently powerful to he useful in
a variety of applications.

A variety of projects have created diskless thin clients [3, 4, 5, GJ. Unfortunately, none of
the approaches suffice for the Xinu environment because each relies on BIOS support. As an
alternative, several systems use BIOS replacement. That is, the nonnal BIOS is replaced by a
BIOS that can be booted from a cold start [7, 8, 9]. We cannot use such an approach because
we canHot change the hardware BIOS.

3. Design Goals

We had three goals for the project:

• Compatible with currelll facilities. Because the lab is heavily used, it was impera
tive that our solution preserve the current lab software and hardware facilities; we
had to adapt Embedded Linux to work in the existing environment.

• UniJonll inrelface. A single interface should exist for all lab facilities. In particu
lar, a user should have [he ability to download and boot a Xinu image or a Linux
image through the same imerface.

• Minimal over"ead. The overhead, including downloading and startup cost should
be minimized. The size of the Linux image is of concern because the requisite
download time is proportional to the image size.

tA railldisk is .:specially useful for an embedded sy.,lcllIlhal docs nOI h:l.\'c s.:condary slora[:<:.

-4-

4. Downloading Sequence

This section explains the sequence of steps required to run a Linux: image on a back-cnd.
There arc three basic steps:

I. Dowllload the complete Lima image. A Linux image contains the Linux boot
code, the kernel, and a root file system. The existing lab facilities download an
entire image in aile step.

2. Execl/te the Lill/IX boot code. Once a Linux image has been downloaded and
moved into a low memory address, control passes to the image, and the Linux
boot code takes the responsibility for bootstrapping the kernel. To supply the
BiOS services that Linux needs, the BIOS is temporarily provisioned as discussed
below.

3. Execllte rhe Lim/x rool code. Upon completion of the bootstrapping process, (he
Linux kernel obtains control of the entire system. The kernel handles initializa
tion and sets up the table of system calls. After initializing the sys[Cm, the kernel
must locate and mount the rool file system, which provides a traditional UNIX
environment to users.

5. Memory Layout

The down loader used in the lab places an image at memory address BOOTPLOC (i.e.,
OxI5000:0xOOOO), and the image must relocate itself to absolute address OxOOOO. As Table I
shows, a typical Linux image contains several segmellls of memory: a bootstrapping segment, a
setup segment, the kernel, and a file system segment. To accommodate future releases of the
Linux kernel, we chose to avoid making changes to the kernel unless absolutely necessary. As a
consequence, to adapt Linux to the Xinu lab downloading environment, we added a UIlUX SCllfp

Layer (LSL) that prepares memory as required by the Linux image. In essence, LSL is a
modified and extended Xinu image that acts as an intermediary between the original Xinu
bootstrap code and the Linux kernel. From the Xinu bootstrap point of view, LSL forms the
entry point that must be invoked. LSL can recognize both Xinu code and a Linux image.
When it finds a Linux image, LSL arranges memory exactly as the Linux bootstrapping segment
expects (i.e., as if the Linux image had been read from disk during a normal computer boot).
Thus, the concepllml bootstrapping steps are:

• Use the lab down loader software to load and run the LSL image.

• Download the full Linux image, which is recognized and arranged by the LSL.

• Run the Linux image to create a ramdisk.

To allow LSL to arrange the segments of a Linux kernel and a ramdisk root file system,
the set of segments must be combined into a single downloadable image that contains a descrip
tion of cach segment. We added an additional segment namcd LOADMAP (see Tabfe 3) to the
beginning of the Linux image file. The LSL uses the LOADMAP segment to detennine the
composition of the image (i.e., the contents and size of each segment). The resulting Linux
image is composed of six segments as follows:

• BOOTSEG. The BOOTSEG segment contains the Linux kernel bootstrapping
code.

• SETUPSEG. The SETUPSEG segmclU contains code that establishes the Linux
kernel (e.g., it queries BIOS services to obtain the size of memory and the video
mode, and possibly relocates the Linux kernel. depending on the sizes of the ker
nel and memory).

- 5 -

• PARAMSEG. The PARAMSEG segment contains parameters needed to tune the
Linux kernel.

• LOADMAP. The LOADMAP segment describes remaining segmems by giving
the starting offset address from [he beginning of the Linux image, the size, and the
expected runtime memory address.

• KERNEL. The KERNEL segmem contains the actual Linux kernel.

• RAMDISK. The RAMDISK segment contains an initial file system, which will be
mounted as the Linux fOOl file system.

The Linux bootstrap and startup code assumes that the system is always placed ill the
same memory locations. Thus, to ensure that Linux starts correctly, LSL must arrange memory
as Linux expects. As Tables 1 and 2 show, there are two arrangemcms: one used for a small
Linux kernel and one used for a large Linux kernel.

Seo-ment

BOOTSEG
SETUPSEG
KERNEL
RAMDTSK

T c
zImage
zlmagc
zlmage
ramdisk

Startin Address

Ox9000
Ox9020
OxlOOO
N/A

Descri tion

Linux bool code (always 512Bytes)
Linux selup code (lypical 2K bytes)
Small Linux kernel image
Ramdisk contents (alignment to 4096 boundary)

Table I. Memory layout Linux uses for a small kernel.

Se ment

BOOTSEG
SETUPSEG
KERNEL
RAMDISK

Tye

bzImage
bzlmage
bzImage
ramdisk

Startino- Address

Ox9000
Ox9020
Ox 10000
N/A

Descri tion

Linux boot code kemcl (always 512Bytes)
Linux setup code (typical 2K bytes)
Large Linux kernel image
Ramdisk contents (alignment to 4096 boundary)

Table 2. Memory layoul Linux uses for a large kernel.

LSL places the parameter segment and load mar in memory direcLly following
SETUPSEG. Table 3 lists the actual contents of memory after LSL finishes.

Se ment

BOOTSEG
SETUPSEG
PARAMSEG
LOADMAP
KERNEL
RAMDISK

T e

bzImage
bzImage
N/A
N/A
bzlmagc
ramdisk

Startino- Address

Ox9000
Ox9020
Ox9240
Ox9280
Ox 10000
N/A

Descri lion

Linux boO[code kernel (always 512Bytes)
Linux selup code (lypical 2K bytes)
Paramcters passed to Linux kernel
Segmem address map
Large Linux kernel image
Ramdisk contenls (alignment to 4096 boundary)

Table 3. Actual memory contents when a large kernel begins.

Interestingly, the CPU mode needed to execU(e code varies among segments. In particu
lar, code in the BOOTSEG segmelu musl be execuled in real mode, and code in other segmelHs
executes in protected mode. Recall lhat Xinu code always runs in protected mode. Thus, LSL

- 6 -

needs to switch [0 real mode before running the BOOTSEG code; BOOTSEG code will switch
to protected mode before running the kernel.

6. BIOS Provisioning

When it boots, the Lillux kernel uses BIOS services to obtain hardware configuration
information (i.e., available memory size). Because the BIOS is overwritten when the image is
copied imo low memory, LSL must reprovision [he BIOS before allowing Linux to start. Table
4 shows the set of BIOS calls thal Linux issues.

Interrupt Number

Ox 10
Oxil
OxI3
OxlS
Oxl6

Description Of Service

VGA services
Equipmem determination
Disk services
Miscellaneous services (including memory services)
Keyboard services

Table 4. BIOS ::;erviccs thal Linux uses during startup.

The mosl critical BTOS call consists of the service that compmes the physical memory
size. Implementations of Linux try a list of memory services thal are each specified as an inter
rupt number and specific service wilhin the interrupl. The startup code tries each method on the
list until one succeeds. If nonc succeeds, the slartup code aborts without starting Linux.
Current versions of Linux make the following three calls: ill! Ox/5. ax=Oxe820; i1ll Ox15,
ax=Oxe801; and ill! Ox15, ah=Ox88. To satisfy Linnx, our code constructs a memory table
named e820map, which corresponds to the value retumed by the ax=Oxe820 BIOS call. Table
e820l/1ap provides a map of the memory lhal is available to contain the kernel, rool file system,
and Linux startup code. We pass the address of the table to Linux as the result of the call.
Linux continues lo execute startup code; other BIOS services arc provided similarly.

7. Root File System

Upon finishing the boot sequence, the Linux kernel attempts to locale and mount a roOl
file system. As noLed abDve. the dDwnloaded image contains a ramdisk. which serves as lhe
roDl. Once the root has been mounted, additiDnal remote file systems can be mounted using the
Nelll'ork File System (NFS).

The limited memory space (32 MBytes) poses an interesLing and challenging problem for
the roOl file system: what should be included and hDw should it be organized? On one hand,
the system should be sllfficiemly general FDr many purposes (e.g., a user can choose lo usc a
back-end for packet generatiDn, packet analysis, a firewall. a proxy server, or as a NAT box).
On the other hand, adding dala files and applications to the root file system results in an image
that exceeds the available memory. It may seem that the best soluLion consists of keeping the
root file system small, and mDunting a remote file system that contains auxiliary applications
and data. However, if rhe back-end is used for nerworking research, a productiDll TCPIIP may
not be available or the added packet lraffic may interfere with the experiment being conducted.

To penult nexibiliry withDut depending on NFS, we chose a modular approach. We COll

structed a sel of modules lha[can be cDmbined with the basic files to produce a root file system.
Before a user downlDads Linux, the user must specify which Df the modules to select. Figure J

iHustrates the se[of six optional modules, which are each associated with a general domain or
application.

- 7 -

Firewall Module

Routing Module

NAT Module

Proxy Module
~-

Figure 1. The six optional me system modules available to a user.

The Firewall Module contains code thal implements an Internet firewall subsystem. It
provides stateless Of sfatcful packet filtering. The NAT Module handles packet header transla
tion needed for Network Address Translalion. NAT can be integrated witlI a firewall or used
separmcly. The Routing Module contains code for routing protocols, including RIP, OSPF, and
BGP; the code is taken from the zebra routing package. The Prw..y Module provides the func
[ionalily of the SOCKS proxy services. The Log Module handles maintenance of a system log
that allows postmortum analysis. The PelformQnce Modftle includes the Hcp application used to
measure end-to-end throughput. All of the modules depend on the underlying Minimal Lillux
System, which is required for operation of Linux.

8. Conclusions

We have found Embedded Linux to be a useful tool in the lab. Applications that run
under Linux, such as ucp, allow programmers to test network protocols without spending time
creating tools. More important, Linux can be used as a source or sink for ilHcroperabilily test
ing.

The approach we selected to integrate Embcdded Linux into the Xinll lab environment has
proven to be both practical and efficient. The LSL software allows Linux to be downloaded
witham changes to either the downloading code or the Linux startup code. Allowing a user to
select modules for a root file system provides flexibility, while keeping the resulting image
small enough (0 fit into memory.

Acknowledgments

We thank Gustavo Rodriguez-Rivera and Dongyan Xu for suggestions and insightful dis
cussion.

9. References

[I] Comer, Douglas, Hands-Oil Networking, Prentice Hall, 2002.

[21 Comer, Douglas and John C. Lin, A Laboratory Environment For Experimenting With
Xina, Purdue Ulliversity CS Technical Repor' CSD-TR 96-047, January 1996.

- 8 -

[3} LTSP website: hllp:/lwwlV.lrsp.orgl

[4] Kiosk Project website: htrp://kiosk.mozdev,orgl

[51 ELKS website: !lrtp:/lelks,sollrcejorge.llct

[6J DIET-PC website: htlp://diel-pc,sollrcc!orge,llet

[7] LinuxBIOS website: htlp://wwlI'.acl.hml.gov/lilll/xbios

[8] FreeBIOS website: http://jreebios.sollrce!orge.llet

[9] TinyBIOS website: hUp://wlVw.pcengillcs.com/rillybios,htm

	Purdue University
	Purdue e-Pubs
	2003

	Running Linux on Back-end Computers in The Xinu lab
	Douglas E. Comer
	Xuxian Jiang
	Report Number:

