Effects of Vapor Injected Compression, Hybrid Evaporator Flow Control, and Other Parameters on Seasonal Energy Efficiency.

Christian K. BACH*, Eckhard A. GROLL, James E. BRAUN, W. Travis HORTON

Purdue University Herrick Laboratories
bachc@purdue.edu, groll@purdue.edu, jbraun@purdue.edu, wthorton@purdue.edu
Outline

- Introduction and Motivation
- Calculation Method
- Capacity, COP, and Building Heating Requirement
- Results for different system configurations
- Parametric Studies
- Conclusions and future work
Introduction and Motivation

- Known issues of heat pumps are:
  - Insufficient capacity at low ambient temperature → auxiliary heat
  - Excess capacity at high ambient temperature → cycling
- Shen et al. (2014) mentions over-capacity as key to good seasonal performance
- Previous presentation (paper #2111):
  - Vapor injected compression increases low temperature capacity and COP
  - Hybrid control further increases capacity and COP, especially if airside maldistribution occurs
- No good illustration available/found on the effect of vapor injection onto heating seasonal performance for vapor injected compression, hybrid control, and influence of system parameters
  - Starting point for this work
Calculation Method

- Based on heating seasonal performance factor calculation (HSPF) of ANSI/AHRI 210/240
- Consideration of auxiliary heat and part load degradation
- Consideration of low temperature cutout
- Inter/extrapolation based on measured temperature instead of test plan temperature
- Addition of Minneapolis TMY3 data (NREL, 2013)
- Design heating requirement set to yield a heat pump balance point of -10°C for baseline single stage system
Capacity and Building Heating Requirement

- Single stage, single speed CEC system opposite trend of required
Capacity and Building Heating Requirement

- Single stage, single speed CEC system opposite trend of required
- Single stage, variable speed DOE system reduces overcapacity
Capacity and Building Heating Requirement

- Single stage, single speed CEC system opposite capacity trend of required
- B0: Single stage, variable speed DOE system reduces high temp. overcapacity
- B1 opt: Single stage, variable speed vapor injected DOE system reduces low temp. undercapacity
Heating Coefficient of Performance (COP)

- Exemplarily shown for B0: DOE single stage system
Heating Coefficient of Performance (COP)

- Exemplarily shown for B0: DOE single stage system
- Part load degradation toward building balance point (18.3°C)
Heating Coefficient of Performance (COP)

- Exemplarily shown for B0: DOE single stage system
- Part load degradation toward building balance point (18.3°C)
- System COP degraded below HP balance point due to aux. heat
Heating Seasonal Performance Factor (HSPF)

- Vapor injection (VI) benefit depends on compressor speed
  - B1: match single stage speed,
  - B1: matched single stage capacity or
  - combination of both (e.g. B1: optimum)

- Largest HSPF improvement for colder climates (climate zone 5 and Minneapolis)

- Hybrid control increases HSPF by 1% relative to same speed VI case
  - Increased capacity
    - Part load degradation for higher ambient temperatures
    - Reducing compressor speed would further increase benefits
  - Does not include additional benefits for airside maldistribution (!)
Parametric Studies:
Design Heating Requirement and Balance Point

- All subsequent parametric studies for Minneapolis temperature data
- Change of design heating requirement @ -10°C amb. temp.
  - Optimum value \( \approx 15 \) kW
- Heat pump (HP) balance point more intuitive measure
  - Optimum for both configurations \( \approx 15°C \)

![Graphs showing HSPF vs. Design heating requirement and HP balance point vs. temperature.](image-url)
Parametric Studies:
Share of Heating Requirement and Energy Consumed

- Optimum HP balance point for both configurations ≈ 15°C
  - Some coverage of annual heating requirement by aux. heat
  - Approx. 10% of consumed energy for B0
  - Tradeoff: Part load losses ↔ Auxiliary heat
Cyclic degradation coefficient

- Estimate part load degradation due to cycling
- Shift of opt. design heating requirement to lower temperatures
- Shift of optimum HP balance point to lower temperatures
Parametric Studies: Influence of External Static Pressure (Indoor Fan Coil)

- External static known to negatively affect seasonal cooling performance
- Fan curve of actual test setup constant flow rate
- Include increased fan power consumption in HSPF
- Relatively small penalty even for higher external static pressures
- 187 Pa average external static of field study (Proctor, 2011)

Graphs showing the relationship between power consumption, air flowrate, and HSPF with varying external static pressure.
Parametric Studies:
Influence of Cutout Temperature

- Discharge temperature/ambient temperature:
  » Assumed offset of 12 K, max discharge temperature of 135°C
  » No cutout for vapor injected system
  » -27°C cutout for baseline system – approx. 1 % HSPF penalty (baseline)
Conclusions and Future Work

- Low ambient temperature capacity most important factor for a high HSPF.
  - Part load degradation sets upper limit
  - Compressors with extremely wide frequency range (e.g. 10-100 Hz) should be investigated to overcome the above issue
  - Benefit of vapor injected system result of increase in low ambient temperature capacity
- Low ambient temperature cutout no serious concern for the HSPF of the tested system - even for cold climates
- External static pressures as observed in practice do not lead to a large degradation of seasonal heating performance


→ additional references cited in manuscript