
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

2003

Scheduling for Shared Window Joins Over Data
Streams
Moustafa A. Hammad

Michael J. Franklin

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
03-001

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hammad, Moustafa A.; Franklin, Michael J.; Aref, Walid G.; and Elmagarmid, Ahmed K., "Scheduling for Shared Window Joins Over
Data Streams" (2003). Computer Science Technical Reports. Paper 1550.
http://docs.lib.purdue.edu/cstech/1550

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

SCHEDULING FOR SHARED WINDOW
JOINS OVER DATA STREAMS

MouSlafa A. hammad
Michael J. Franklin

Wnlid G. Aref
Ahmed K. Elmagarmid

CSD TR #03-001
January 2003

Scheduling for shared window joins over data streams

Moustafa A. Hammad
Purdue University

mhammad(jc;s.purduc. edu

Michael J_Franklin
University of California at

Berkeley
franklin (jcs.bcrkeley. edu

Walid G. Aref
Purdue University

arcf(Jcs.purnue. edu

Ahmed K. Elmagarmid
Hewlett Packard

ahmClLclmagarmidfJhp.com

ABSTRACT
Thi$ paper addresses the problem 0/ scheduling the shared C.:t

ecution of mul!iple window-join queries oller data s!reams.
Each join has its own sliding window, whidl can be expressed
in terms of time units or tuple counts. Joining tuples from
the underlying data streams may scroe the pUfJJosc of mul
tiple window join queries. Sharing the EXECution u! these
queries will maximize the 'Utilization of system resources.
One way to share the execution of multiple window joins
is to we the largeJt window among all queries. This ap
proach, the Largest Window Only(LWO), would penalize the
rcsponse time of qucrie.s with small windows to seroe the
query with the largest window size. Two new algorithms for
seheduling the execution of the s1.arcd window-join are pre
sented; the Smallest Window First(SWF) and the Greedy
algorithms. An analytical study of the trndeoffs between tlie
LWO and SWF algorithms leads to the development of tlie
Greedy algorithm. The performance study 0/ the three al
gorithms show that tile Greedy algorithm provides the best
performance in terms of response time for all queries.

1. INTRODUCTION
Data stream processing has recently become a topic of in
tensive interest in tbe database community. The reasons for
this interest are several. FiISt, in many emerging applica
tions, particularly in pervasive computing and sensor-based
environmenls, data streams playa central role, because de
vices continuously report up-to-the minute readings of sen
sor values, 10catioIlli, status updates etc. Data streams also
feature prominently in other networked applications SlIm

as "real-time" business processing and enterprise applica
tion integration. Secondly, data streams break many of the
assumptions upon which traditional query processing tech
nology is built, providing the opportunity to rethink many
fundamental database management techniques.

One major difference that arise; in data stream process
ing systems (compared to more traditional stored database
management) is the notion ofiong-rnnning continuous queries

Sh=~ Wind",.' luin

Figure 1: The shlll'cd execution of two window joins.

over those streams, The emerging data stream process
ing architecture involves potentially large numbers of such
queries that are effectively constantly running, and that con
tinuously react to new data as it arrives at the system. The
availability of a significant set of queries raises the poten
tial to aggressively exploit shared procCSliing of common
work needed by multiple queries. Furthennore, the high
data rates and requirements for split-second responsiveness
in many streaming applications dictate that such opportu
nities for efficiency be exploited.

In this paper, we focus on a fundamental prohlem that
arises in systems for processing continuous queries over data
streams, Namely, we investigate the problem of schedul
ing processing for multiple windowed joins over a common
set of data streams. We show that the approach followed
in earlier systems has a previously unreported perfonnance
problem that discriminates against queries that have small
windows. Ironically, it is exactly such queries that are likely
to have strict responsivenCSli constraints. We propose two
new scheduling algorithms that address this problem and an
alyze their perfonnance in detail using a prototype databiISC
system extended to support these algorithms.

2. BACKGROUND

2.1 Context and Environment
We consider a centralized architecture for stream query pro
cl'$ing in which data streams continuously arrive to be pro
cessed against a set of standing continuous queries (CQs).
A key issue in the design of such a system is the efficient
processing of the CQs as data arrh·cs, particularly if data
rates are high or if there are a large number of active CQs
in the system.

In this paper, we consider streams to be unbounded se
quences of data items. A stream may represent readings
from a sensor device or a set of sensors (e.g., temperature
sensors, financial and news tickers, network monitors). Ea.cb
data item in a stream is associated with a time stamp that
identifies the time at which the data item enters the system.
The data items of a single stream may arrive in a bUl"St fash
ion (a group of data items arriving within a short period of
time) or they may arrive in equally-spaced interva.1s. Exam
ples of the first type are network traffic streams, phone call
records, and ~sors that push data to the system triggered.
by an independent event (monitoring sensors). Examples
of the second type are pull-based sensors, where the system
contacts the sensor device to retrieve data periodically (e.g.,
once every second.) Our discussion focuses on streams with
a burst arrival pattern.

Queries over streams often e."qlloit the temporal nature of
stream data. Furthermore, due to the unbounded nature of
streams, queries over streams are often defined in terms of
sliding windows. For example, consider a data center con
taining thousands of rack-mounted sen'ers, cooled by a so
phi<;ticated cooling system.In modern data centers, sensors
are used to monitor the temperature and humidity at loca
tions throughout the room. For a large data center, thou
sands of such sensors could be required. A control system
monitors these sensors to detect possible cooling problems.

'Ve call model this example scenario as a system with two
streams, one for temperature sensors and one for humidity
sensors, The schema of the streams can be of the form (La
cationId, Value, TimeStamp), where Lm:atioold indicates
a unique location in the data center, Value is the sensor
reading, and TimeStamp is as described above. A window
query that continuously monitors the sensors to determine
if both the humidity and temperature values exceed specific
thresholds within a one minute interval could be specified
as follows:

SELl'X::'1' T.Locationld
FROM Tempera~ure T, Humidity H
WHERE T. Value> 'l'hresholdt and H.Value > Thrc3holdh
and T.LocalionId = II.LocaliollTd
WINDOW I min;

A second example query continuously searches for sensors
with similar heating behavior within a 30 minute interval
and applies a user-defined function, con-ell.lted, to determine
similarity between the temperature and humidity values as
follows:

SELECT T.LocalionId, H.LocationId
FROM '!'empocalure T, Humidity II
WHERE colTelaled(T.VailIe, H.Value) and T.Locationld
if; I1,LocalianId
WINDOW 30 min;

The WINDOW clause in the query syntax indicates that the
user is interested in executing the queries over the sensor
readings that arrive during the time period beginning at a
specified time in the past and ending at the current time.

When such a query is run in a continuous fashion, the result
is a sliding window query.

Window queries may have forms other than the time sliding
window described in the preceding examples. One variation
of the window join is to identify the window in terms of
the number of tuples instead of the time units. Another
variation is to define the beginning of the window to be a
fixed rather than a sliding time. Other vdriation.s associate
different windows with each stream [11] or with each pair of
streams in a multi-way join. In this paper, we address sliding
windows that are applied across all streams and where the
windows can be defined either in terms of time units or tuple
counts. \Ve present our algorithms using time windoW'S, and
in a separate section describe how our algorithm can he
applied to windows defined in terms of tuple counts.

As with any query processing system, resOIlTCes such as CPU
and memory limit the number of queries that can be sup
ported concurrently. In a streaming system, resource limi
tations can also restrict the data arrival rates that can be
supported. Some recently stream query processing systems
(e.g., Aurora [4J, Telegraph [12] and STREAM [3]) propose
mechanisms to respond to resource overload by reducinr;
quality of service (e.g., dropping tuples from the input or
answers). In contrast, in our work, we focus on the case
where no loss occurs, That is, we ensure that the system
is run at a rate where it is possible to execute all queries
correctly. 'Vhile slIch a restriction may be unsupportable in
some applications, Ollr main argument is that the workload
volume that can be SllStained by a shared CQ system can
be dramatically increa..<;ed by exploiting, wherever possible,
shared work among the concurrent queries.

There are a number of recently published algorithms that
support shared execution between multiple queries over data
streams (7, 6, 12, 5J. One result from this previous work is
that for shared CQ systems, the sharing of join proces.<;
ing among queries can be greatly enhanced through the
use of ~selection pull up" [6]. In a shared CQ system, the
traditional heuristic of pushing selection predicates below
joins would significantly reduce the potential for sharing the
work of multiple joins, because such joins would effectively
have different signatures (i.e., they would be over different
streams). Thus, in a CQ system it is usually beneficial to
pull the selections up above the joins, thereby allowing more
queries to share the output of a single join operator. Our
work is very much in this spirit, and in fact, extends the
sharing approach to efficiently allow sharing of join process
ing across all queries that share a join predicate, regardless
of their window specification.

2.2 Problem Definition
Consider the case of two or more queries, where each query
is interested in the execution of a sliding window join over
multiple data streams. We focus on the set of concurrent
queries that have the same join predicate over the same data
streams', and where each query has a sliding window that
represents its interest in the data. The goal is to share the

lNote, the restriction to a single join predicate alloW'S us
to use hash-based implementations of the algorithm. The
nested loop based implementations could be extended to
deal with different join predicates

execution of the different window joins to optimize the uti
lintion of sy~tem resources.

We illustrate this definition using an example of two queries
in Figure 1. In the figure tuples arrive from the left, and
are tagged with their stream identifier and timestamp. We
indicate tuples that satisfy the join predicate (but not nec
essarily the window clause) by marking them with the same
symbol (e.g., cros.,<;, black circle, etc.). In the figure, QI
performs a join between the two streams A and B, using
predicate p with window size Wl = one second. Q2 performs
ajoin between the same two streams A and B, using predi
cate p with window size W2 = one minute. We ilSSume that
new tuples are appended to the left of each stream. There
is an obvious overlap between the interests of both queries,
namely, the answer for Q1 (the smaller window) is included
in the answer for Q2 (the larger window). \Ve refer to this as
the containment property; that is, the answer of any query
is also contained in the answer of the queries with larger
windows.

Executing both queries separately wastes system resources.
The common join execution between the two queries will be
repeated twice, increasing the arnount of memory and CPU
power required to process the queries. Implementing both
queries in a single execution plan (Figure 1, right) is a signif
icant improvement in resource usage. The new shared join
operator has the same common input data streams and pro
duces multiple output data streams for each separate query.
The output data streams are identified hy the distinguish.
ing query windows sizes, and at least one query must be
attached to each output data stream. The shared join op
erator is divided into two main steps: the join step and the
routing step. The join step produces a single output stream
for all queries and the routing step produces the appropriate
output data streams for the various queries.

\Vhile shared execution has significant potential benefits in
terms of scalability il!ld performance, we need to ensure that
such sharing does not negatively impact the behavior of in
dividual queries. That is, the shared execution of multiple
queries should be transparent to the queries. We define two
objectives for sl1ch transparency:

1. A query executed in a shared fashion should produce
the identical resulting output data stream as if it were
run individually. In other words, the shared execution
should not alter tbe content or the order of the output
data stream.

2. The response time penalty imposed on any query when
a new query is included in a shared plan should be kept
to a minimum.

This paper investigates methods for sharing the execution
of multiple window join queries which satisfy these two ob
jectives.

3. THE SCHEDULING ALGORITHMS
In this section, we present three scheduling algorithms for
perfonniug a shared window join among multiple queries.
These are: Largest Window Oilly (LWO), Shortest Window

First (SWF), and Greedy. LWO was implicitly used, but
not elaborated upon in [12, 5]. LWO is a natural way to
address the problem of shared join processing, but as we
will see, has some significant perfonnance liabilities. The
SWF and Greedy algorithms are contributions of this paper.
\Ve present all three algorithms in the same framework and
study the performance tradeoffs of each.

One important consideration for all three scheduling a1go
ritbrns is the order in which the output tuples are produced.
We adopt a "stream-in stream-out" philosophy. Since the
input stream is composed of tuples ordered by some times
tamp, the output tuples should also appear as a stream or
dered by a timestamp. In OUT algorithms, the output tuples
are emitted as a stream ordered by the maximum time stamp
of the two tuples that form the join tuple.

As. described in Section 2.2, the shared execution of win
dow joins should abide by the isolated execution property,
i.e., each window join, say jUl, that is participating in the
shared execution, prodl1Ces an output stream that is identi
cal to the output stream that jUl produces when executing in
isolation. All three scheduling algorithms presented in this
section abide by this property. Note that in thi'i section we
describe the algorithms assuming a nested loops-based im
plementation. As will be described in Section 3.4, all of the
algorithms can be implemented using either nested loops or
hashing.

3.1 Largest Window Only (LWO)
The simplest approach for sharing the execution of multi
ple window joins is to execute a single window-join witll
a window size equal to the maximum window size over all
queries. Due to the containment property, the processing of
the maximum window query will produce output that satis
fies the smaller window queries as well. The join operation
tben needs to route its output to the interested queries. \Ve
call this approach Larye:;t Window Only, or LWO for short.

The join is perfonned as follows. When a new tuple arrives
on a stream, it is matched with all the tuples on the other
stream that fall within the time window. This matching can
be done in a ne:;lcd loops fashion, working backwards along
the the other stream, from most to least recent arrival, or
can be done using hashing as described in Section3.4. Tuples
can be aged out of the system once they have joined with
all subsequently arriving tuples that fall within the largest
window.

To perfonn the routing step for the resulting tuples, the
join operator maintains a sorted list of the windows that are
interested in the results of the join. The windows are ordered
by window size from smallest to largest. Each output tuple
maintains the maximum and minimum timestamps of the
input tuples that constitute the output tuple. The routing
step uses the difference between these two timestamps to
select the windows, and hence the output data streams, that
will receive this tuple. The output tuple is sent to all output
streams that have windows greater than or equal to the time
difference of the tuple.

We illustrate the operation of the shared window join with
the example shown in Figure 2. The figure shows a shared

(.:I.b'2)
(Ll.b12)

(.9.b12)
(IJl,H)1

(,Il,lol)

(all.NI)

(lll.M)
(.II.NI) _ Q2

,

, Wl

! \\"
~
~\I >11:'7 Ll .:I II

""
Wl

-~".
(.1.b12) "

(Ll.bll) -".
(.9,l>1lI "'.

(.II,H)j "'. 01<1<>1
(.lJ,!>Il -'.

(all.bS)

(09.bl1)

(.:I.bll)
(.9.1l12)

(.lI.blll

"

/,"",""S1<p RcdJn15,,!, Out"" D", SU"""
Figure 2; Scheduling the Shlll"ed Window Join using LWO,

window join over two data streams A and B. The join i"
shared by three queries, QI,Q~, and Q3 with window sizes
(ordered from smallest to largest), WI,W2, and W3, respec
tively. In the figure, tuples with similar symbols join to
gether (i.e., they satisfy the common join predicate). The
join step uses window lila for the single window join since
lila is the largest window. As tuple all arrives, it joins
",ith tuples lis, II~, bo in Stream B and the output tuples are
streamed to the the routing step. The routing step deter
mines that the output tllple (au, 1JB)must be routed to all
three querics, tuple (all,b~) be routed to queries Q~ and
Q3 and tuple (a1l,bo) be routed only to query Q3. After
completing the join of tuple all with stream B, the join
step begin.~ to join tuple /.111 with stranm A. The resulting
output tuples are (ag,bI1),(a~,bl:t),(al,b12)and they arc
routed in the same way to the queries.

One advantage of LWO, besides its simplicity, is that ar
riving tuples are completely processed (Le., joined with the
other streams) before considering the next incoming tuple.
In this way, tlle output can be streamed out as the input
tuples are processed, with no extra overhead. This prop
ert)· satisfies our objective of isolated execution. However,
LWO delays tbe proce;sing of small window queries until
the largest window query is completely processed. In the
preceding example, query QI cannot process tuple bl~ until
tnple all completely joins a window of size W3 from stream
B. This means tbat tuple bl 2 waits unnecessarily (from QI'S
perspective) and increases the output response time of query
QI. Tbe effect is more severe as we consider large difference."
between the smallest and largest windows. Thus, LWO may
not satisfy our other objective, as a large window query
could severely degrade the performance of smaller window
queries. In the following section we examine the average re
sponse time of each window involved in the shared window
join when using the LWO algorithm.

3././ Analysis ojrespol/se time
In tbis section, we analyze the average response time of N
queries sharing the execution of a window join operator,
We assume that the sbared window join operates on only
two streams and that each query Q. has a unique window,
Wi. The mean time between tuple arrivals at each stream
follows an exponential distribution with rate A tuples/sec.
The size of tbe join buffer (the amount of memory needed
to hold the tuples for the join operation) for each stream

differs for every query and is determined by tbe window size
associated with the query. The buffer size Si per stream for
an individual query Qi is approximately C<lual to Si = AWi.
Let w m .", be tbe maximum window size among all tlle N
query windows and Sma:r. be the maximum buffer size per
stream. Then, Sm,,:r. = AWma:r.. As a new tuple arrives, the
expected number of tuples tbat join witb thi" tl1ple inside a
query window Wi can be estimated by aSi tuples, where 0'

is the selectivity per tuple.

Consider the case when m tuples arrive simultaneously in
one of the streams, say stream A. LWO needs to schedule
the execution of tbe window-join of each of the m tuples
with the tuples in the other stream, say stream D. Each of
the m tuples in A is checked against S, tuples in D. Let
ATime(a} and CTime(a) be the arrival and completion
times of tuple u, respectively. For query Q;, let AvgRT(Q;)
be the average response time of joining each of the m tuples
for query Qi. Then,

()
L",'!:"'t'(CTime(juinTuplek) - ATime(jainTuplek))

A1Ig1fT' Qi = ,
maS.

where tbe sum is taken over all Olltput join tuples.
Let joinTuplek corresponds to the tuple (ai,bj)' Since
joinTupfek is an output tuple of window Wi, then,
IATime(a;) - ATime(bj)1 < Wi and ATime(joinTuplek) =
ma:r(ATime(ai),ATime(bj». CTime(joinTuplek) repre
sents the time at which tbe output tuple i" received by Q; .
For simplicity of the analysis, let a = 1.

Let t p be the time needed to cbeck that a tuple pair, say
(ui,bj), satisfies the join predicate and tbe window con
straint IATime(ai) ~ ATime(bj)1 < w •. Then, for window
Wi, the first tuple of tbe m tuples will produce 5 i output tu
ples with a total delay oftp+2tp+···+Si t p or fSi(Si+ 1).
The second tuple of the m arriving tuples will have an ad·
ditional delay of tpSma:r. as the second tuple has to wait
until the fust tuple scans the maximum window, Similarly,
the third tuple wiJl have additional delay of 2tp S m,,:r. and so
on. By averaging the response time of all m input tuples,
therefore,

AvgRT(Qi) = ~«Si + 1) + (m -1)Smu) (1)

To clarify this equation we plot tbe AvgRT for multiple
queries while IDling tbe following values: tp = 0.01 lISee,
A = 100 Tuples/Sec, m = 50 tuples. The windows are cho-

"I
~ '0

!

Figure 3: LWO versus Isolated Execution.

sen to span a wide range (from 1 second to 10 minutes) as
follows (WI = lSCCOl1d, w] = IOOsec., W3 = 2QOsec., W4 =
300scc"ws = 400sec.,ws = 500sec"w7 = 600scc.). Fig
ure 3 compares the average response time for each query
when executed ill isolation from the other querics, with the
average response time of the query when executed using
UVO. 'Vhen executed in isolation, Qi'S average response
time i .. AvgRT(Q;) = ~(mS; + 1)2. It is dear from the
graph that the query with smallest window, i.e., Q1 (with
WI = l.~ec.) is severely penalized when lL'iing L'VQ. This
penalty is expected because newly arriving tuples have to
wait until the old tllplcs sca.n the largest window. While a
simple analysis dearly predicts these results, it is important
to recall that LWQ is the only previously published schedul
ing approach for shared join processing in CQ systems.

These analytical results are validated by experiments on an
actual implementation of the algorithm, which is reported
in Section 5.1.1.

3.2 Smallest Window First (SWF)
To addres." the performance issues that arise with small win
dows in LWO, we developed an alternative approach called
Smallest Window First (SWF). As the name suggests, in
this algorithm, the smallest window queries are processed
first by all new tuples, then the ne..d (larger) window queries
and so on until the largest window is served. A new tuple
does Dot proceed to join with a larger window as long as an
other tuple is waiting to join with a smaller window. SWF
is not quite as straightfonvard "-" LWO. As will be seen in
the following, it requires significant bookkeeping.

We illustrate SWF with the example in Figure 4, which hilS
the same configuration as that of Figure 2. 'Vhen tuple
au arrives, it scans a window of size WI in stream B. The
result is the output tuple (ou,b8). After this scan, tuple
bl~ arrives and is waiting to join. Since tuple bl2 will jnin
window WI (the smallest window), bl2 is scheduled immedi
ately. Thple all has not finished its join with stream D so it
is stored along with a pointer to tuple b6 . Now bl2 scans a
window of size WI in stream A, resulting in the output tuple
(ag,bI2). The scheduler L.. invoked again to switch to tuple
all. Thple all proceeds to join with the remaining part of
window lV2, namely, the partial window W2 - WI in stream
B. The resulting output is (all,b~). The scheduler then

~This equation can be ohtained from Equation (1) by sub
stituting Sma" with Si.

switches back to tuple bl2 to join with the remaining part
of window W2, the partial window W2 - WI, in stream A.
The process continues until tuple b12 joins with the partial
window ID3 - W2, of stream B. Figure Jj shows the output
upto this point.

SWF needs to store bookkeeping information with the arriv
ing tuples. 'When the scheduler s'l'.;tches from serving one
tuple to serving another, the current status status of the
first tuple must be maintained. This status describes where
to resume scanning in the other stream and the new window
size (the next window size) to be applied. When a tuple gets
rescheduled, it starts to join beginning at this pointer until
completing the new window.

Note that the output of the joining step is $hujfied when
compared with the LWO :-cheduling. This slluming occurs
as we switch back and forth to serve the different arriving
tuples, To produce the desired output stream for each query
we need to modify the routing step from that of LWO. The
routing step must hold the output tuples and relea."e them
only when the outer tuple... (all and V12 in our example)
completely scan the corresponding windows of the queries.

Figure 4 illustrates how the output tuples are released to
the queries. III the figure, when the output tuple (au,b8) is
produced (Step 1), the ronting :-tep decides that tuple all
completely sca.uned window WI and hence (all, VII) can be
released to query QI. We can also release (all,bll) to queries
Q2 and Qa (Step 2). When the output tuple (ao,bl2) is
produced (Step 3), the routing step releases it to Q. since
tuple VI2 completely scanned window WI (Step IJ). Note
that (ag,b12) cannot be released to queries Q2 and Q3 as
these two queries are waiting to receive the remaining output
tuples that may result from joining all with their partial
windows W2 - WI and IDa - WI, respectively. When tuple
(all,b~) is produced (Step 5), it is released to both query
Q2 and Q3 (Step 6). When tuple (tl5' V12) is produced (Step
7), the tuples (ag,bI 2) and (a5,v12) arc both released to
query Q] (Step 8). In the =e way, tuple (all,bo) will be
released to query Q3 and tuple (01, ba) (Step 11) will releilSe
the tuples (09,bl~), (a5,h2), (01, V12) to query Q3 (Step 12).

The SWF scheduling algorithm uses the following data strnc
tures..

• joinBuffers: joinBuffers represent main memory buffers
used to store the tuples arriving from the input data
:-trcams. The size of a Single JoinBuft"er is limited by
the maxinlUllJ window size in the query mix.

• A list of queues for storing the tuples that need
to be scheduled (or rescheduled). Each queue,
SchedtllingQtlctlc(w), represents one window (w), and
contains the tuples waiting to be scheduled tojoin with
w. The list of queues is ordered according to the size
of the windows associated with each queue.

• An output buffer to hold the output tuples until they
are ready to be released to the queries.

Given these structures, S'WF can be descrihed as follows:

, wi

i ""

, ,
1.0,blll i

:I,il.ii~ OJI

"~
rill: 11'··-------------------···----------,

;-:-1J) :
: : ('J •

:':-'~1l)

--!--~-: -~~.. --- ----- ----- ---_ .. ":
• ::; II)······ :

.··-I-·~··-.'_·:·-!'! :
• :o' : (10)--------···, :

--'--~ --J "--(11) : :

Ulr- - - _. -. :

;'(;''';1;: :
:(",/011': "
:(".hUI~
,-----. (,ll.l<ll

,
!,',blll I •

1.1IJ<l" •
1""'1» ,

(,,,.1>'), ,

('O-""l,,;,t.!,

WI

::" ,
P"','

":

Ii' "
~": 1"0"":'" '" bl:

•

Figure 4: Scheduling the Shared Window Join using SWF.

1. Get a new tuple t (if exists) from iUly of the input data
streams, say stream A. Store t in JoinBuffcr(A).

2. If Step (1) results in a new tuple t, schedule the join of
t with stream B 11.<;ing a window of smallest size and
starting at the mru;t recent tuple of D. Gato Step (4).

3. If Step (1) results in no tuples, get a tuple t from the
list of ScheduliJlgQuf.l.les. Assume that t helongs to
stream A and is stored in SchedulingQueue(wi). Ifno
such tuple t e.,·:i.sts, i.e., all the ScheduliJlgQI.lf.l.les axe
empty, return to Step (1). Otherwise, schedule t for a
join with stream B using window Wi (that corresponds
to the queue SchedulingQueue(w,» and starting at the
pointer location previously stored with t.

4. If the scheduled join of t results in Olltput tuples, notify
the router hy sending the output tuples along with t
to the routing step. Add t to the next queue, i.e.,
SchedulingQueue(wi+1) in the list along with a pointer
to stream B indicating where to restart next. Go to
Step (1).

In Step (3), in order to maintain small joinDuffer sizes, the
join step drops the old tuples in one stream that are outside
the largest window. This process is performed dynamically
while the join step is in progress. To retrieve a tuple from
the list of SchedlllingQueues, SWF finds the first nonernpty
queue (scanning smaller window queues to larger window
queues) and retrieves the tuple at the head of the queue.

The routing step maintains a data structure, outputBuIfer,
to hold result tuples until they can be released. The join
step sends the outer tuple along with the corresponding
output tuples to the routing step (Step 4). Let the outer
tuple he t, where t may either be a new tuple or an resched
uled tuple. In the first case, t is added to outputBuIfer,
and the output tuples are stored with t in outputBuffer
but are also sent to all output data streams. In the sec
ond case, t is a rescheduled tuple from a scheduling queue,
say SchedulingQueue(wi). In this case, all the output tuples
currently held for t along with the new output tuples axe re
leased to the ql1eries with windows ~ Wi. If Wi is not the

maximum window, the output tuples are added to the cur
rent outputBuffer of t. Otherwise, the entry for t is deleted
from outputBuHer since t has been completely processed.

3.2.' A,,(/lysi,I' a[respo1lse rime
To estimate the average response time per query when us
ing S\VF, we use the same <J.."5llmptions we outlined in Sec
tioll 3.1.1. For a lIew arriving tuple, say outer tuple t in
stream A, the resulting output tuples for a certain window
Wi axe only produced when t completely scans a window of
size S, in stream B. The average response time for windowW. can he estimated as the average waiting time of t until t
joins completely with the window of size Sj.

For a query with window WI, the fust arriving tuple waits
for time Sltp , the second tuple waits for time 2SItp and the
third tuple waits for time 3S1 t p , • .. etc. The average waiting
time for m tuples to scan window WI is; ¥Slt p

For the second window, the waiting time for the first tuple
is mSltp + (S2 - Sdtp, for the second tuple is mSltp +
2(S2 - SI)tp and for the mil. tuple is mSltp+m(S2 - S.)tp.
Therefore, the average waiting time for the S&ond window
is: mSltp+ !!!f!(S] - St)tp
Generally, for window Wi, the average waiting time (also the
average response time) can be computed as follows:

m+l
AvgRT(Qi) = mSi_ltp + -,-(S; - S;_.)tp (2)

Figure 5 shows the response times for seven queries using
the same setup a.~ described in Section 3.1.1. Also, we plot
the response time for the isolated execution of each query.
The figure shoW5 that the average response time for small
queries is greatly reduced at the expense of the average re
sponse time for the larger queries. The performance of SWF
is explored further in Section 5.

3.3 The Greedy Algorithm
In comparing the performance of SWF and LWO, it can he
seen that SWF favors small window queries at the expense of
larger window queries, wherea.~ LWO favon; larger window
querie.~ over smaller one.~. Thi~ dear tradeoff betwccn S'WF
and LWO motivates the development of our third scheduling

Figure 5: SWF versU!I Isolated Execution.

~~
~

~ ~ "
~, I,

",. - ----__l__l

I"
i

1,.

algorithm, which we call ~ Greedy". Intuitively, Greedy is
more flexible than either LWQ or SFW I choosing at any
instlUlt to process the tuples that are likely to result in the
release of the most output tuples.

Recall that S'W suspends the processing of the join of a
tuple with its ne.'\:t window whenever a newly arrived tuple
needs to join with a smaller window. The suspended tuple,
however, was supposed to scan a partial window (the dif
ference between tlLc window it had already scanned and the
next larger window). This partial window could actually he
smaller than the smallest full window. Allowing the old tu
ple to complete its CUTTent window before switching to the
newly arrived tuple wOli1d result in an earlier release of a
set of output tuples. This leads us to use a greedy approach
to selecting the next tuple to sclledule. \Vith Greedy, the
priority for scheduling is based 011 the amount of work that
is e:.:pected to be accomplished by scheduling a tuple for a
join.

We illustrate the Greedy algorithm by the example in Fig
ure 6. In the figure, we have three queries with three differ
ent windows WI, W2, and W3. \Ve have omitted the details of
the routing step from the figure. We choose WI, W2, and W3

such that Wi is larger in size than the difference (W2 - wt)
and the difference (W3 -W2) is the largest. For illustration,
we assume tlmt the arriving tuple will join with all tuples in
the other stream (a = 1).

As illustrated by the output tuples from the join, tuple all

joins for the small window WI and continues the join for
the next window W2 since the new tuple bl2 is expected to
scan more tuples in WI than au with W2 - WI. The Greedy
scheduler will switch back to bl2 when finishing all with W2

since bl2 is e.',-:pected to scan smaller window in thL'l case.
Finally the Greedy scheduler will serve all with the partial
window W3 - 1tI2, followed by bl2 with the partial window
1tI3 - W].

Join scheduling in tIle Greedy algorithm is determined by
the sizes of the windows and their differences, which are
static for a given set of window queries. As a result, a fixed
priority can be assigned to the smallest window and to all the
partin! windows when a query is introduced. The priority is
invcr3ely proportional to the size of the smallest window or
the partial window.

The steps for the Greedy algorithm are the same as those for
the SWF algorithm, except in the priority assignment for the
SchedulingQueues and in the routing step. In the Greedy
algorithm, each queue in the list of the SchedulingQueues
is assigned a priority based on the difference between the
size of its willdow and the preceding (smaller) window. At
each scheduling slep, the tuple is selected from the Schedul
ingQueue with the maximum priority. Therefore, Step (2)
in the SWF algorithm is modified to add the arriving tuple
to the SchedulingQueue with the smallest window.

The selection of the tuple does not require a scan of the en
tire list of SchedulingQueues, since we can maintain a li'it
to the ScbedulingQueues ordered by priority, and traverse
thL'i li'it starting at the top priority SchedulingQueue to find
first non-empty one. In the Greedy routing step, we elm
release the output tuples before the outer tuple completely
scans the corresponding: window, due to the static sclleclul·
ing order. This means that in Figure 6, the output tuples
(ou,b12) and (aO,bI2) can be released to tIle quer)' of win
dow w], even before bl2 completely scans 111].

3.4 Hash-based Implementation
The algorithms in the previous sections assume a nested
loop implementation of the join step. A new arriving tuple
t ill one stream, say A, scans all the tuples in the other
stream, say E, that lie within a certain window of t. The
scanning starts from the most recent tuple of E and proceeds
backwards. In the case of large window sizes, a linear scan of
the tuples inside the window may be expensive. We describe
a hash·based implementation of shared window-join using a
symmetric hllsh join [16}.

In a symmetric hash join, eac.b stre.un has its own bash
table. When a new tuple arrives in stream A, it is inserted
into A's hash table and is used. to probe the ha.~h table for
stream B.

We use a linked list to maintain a sliding window of the
arriving tuples. The size of the sliding window is equal to
the maximum window size in the shared queries. Tuples in
the sliding window are ordered based on their arrival time.
Whenever a new tuple arrives, it is added at the head of the
linked list representing the sliding window. Tuples at the
tail of the sliding window are dropped out of the hash table
when probed by arriving tuples from the other stream.

Although the size of each bucket is relatively small, it is
costly to scan the whole bucket (e.g., during LWO) to serve
multiple window queries. However, based on a real imple
mentation inside PREDATOR [13], we found that the cost of
producing output tuples constitutes a major part in the co.~t

of join processing in contrast to the cast of scan.s in either
the nested-loop or the main-memory hash implementations
of a single window join. The experiments demonstrate that
the production of output tuples can be as high as 40% of
execution time. Thus, scanning at the level of the bucket is
still advantageous.

Two pointers, head and tail, are used to facilitate the inser
tion and deletion operatioI15. In order to avoid scanning tbe
sliding window to perform a join, we build a memory-based
hash index on top of the slidiug window linked list. Each

..... -
(.I.h'1)

(L1.bll) -- __

(".hll) -- __
I,U.be) -- __

('I'.bl) -_

Wl

I w'

'-=-, ,
: .11"': .7, LI oJ '1:
: cpO; 0: 000:
:: . ' '\7 -',~""~"'L'=..,.,,-----, , . 6- -

bJ!: IblO bS.b/j 'b-I b~ W.... (.7.h12) --.----e :00 ;0 ;000-:- (.....hll) ---
, :' ' (.Ill-Ill -- __
, .' .
'-"'--;,':, (,,,...,) ---

(.11.>11) --_i I!C , (,1l,h10) ". okI<u

! II')

"

Figure 6; Scheduling the Shared Window Join using Greedy.

bucket in the hash table is implemented by a doubly linked
list of tuples belonging to the bucket. Tbis implie!l that
we add two additional pointers for each tuple in tbe sliding
window. Whenever a tuple drops at the tail of the sliding
window, the douhly linked list allows us to delete this tuple
from its corresponding bucket in constant time.

4. PROTOTYPE IMPLEMENTATION
In order to compare om three scheduling algorithms, we im
plemented them in a prototype database management sys
tem, PREDATOR [131, which we modified to accommodate
stream processing. We implemented both hash-based and
nested loop versions of the shared window join. Stream
ing is introduced using an abstract data type atream-type
that can represent source data types with streaming ca·
pability. Stream-type provides the interfaces InitStream,
RoodStream, and CloscStream. The stream tahle has a sin
gle attribute of stream-type. In order to collect data from
the streams and supply them to the query execution en
gine, we developed a slITilm manager as a new component of
the stream database system. The main functionality of the
stream manager is to register new stream-access requesL~, re
trieve data from the registered streams into its local buffers,
and to supply data to be processed by the query execution
engine. To interface the query execution plan to the stream
manager, we introduce a StreamSron operator to communi
cate with the stream manager and retrieve new tuples.

All the experiments were nm on a Sun Enterpri~e 450 ,
running Solaris 2.6 with <:\GI3ytcs main memory. The data
used in the experiments are synthetic data stream..<;, where
eac.h stream consist.<; of a sequence of integers, and the inter
arrival time between two numhers follows the exponential
distribution with mean .\. The selectivity of a single tuple,
Si, is approximated a.<; 0.002. The windoWli are defined in
terms of time units (second<;).

In all experiments, we measure the average and maximum
response time per output tuple as received hy each query. In
some ca."C5 we also report on the maximum amount of the
main memory required during the lifetime of the experiment.

All the measurements represent steady state values (i.e" tlle
window queries had been running for some time). As the
maximum window could be large (e.g., 10 minutes), the ex
periments arc ~ fast rorwarded~ by initially loading streams
of data that extend back in time to the maximum window
length. We collect performance metric:> starting after this
initial loading h1lS been completed, and run the experiments
until 100,000 new tuples are completely processed by the
shared window join operator. The response times we report
include both the cost of producing output tuples and the
cost of the routing step.

5.1 Varying Window Distributions

o.~ ~--_-_-----_.-,.._--

In the first set of experiments we study the performance of
om implementations of the LWO, S\VF and Greedy algo-

Figure 7: Average response time for all windows
using different window distributions (hash-b!l5ed).

l:l>1I LWO
, _ SWFG_

o.~

".e 0,03

],
8. 0,02

i1

As the focus of this paper is on the operation of the shared
join, we used the simple optimization already implemented
in PREDATOR to generate the query plan for a new query.
The execution plan consists of a single multi-way join op
eration at the bottom of the plan followed by selection and
projection and (if present) the aggregate operator. Using
this simple plan one can determine if the new query actu
ally shared its join with other mnning queries or not. When
adding a new query to the shared plan, the shared join op
erator creates a new output data stream (if the query \lSes a
new window) or uses the output of an already existing data
stream, which has the same window, as the input to the
ne..ct query operators. For the case of SWF and Greedy, the
shared window join operator creates a new SchedulingQueue
if the query introduces a new window and updates the pri
ority accordingly. The window specification is added as a
Special construct for the query syntax as was shown in the
ex.amples of Section 2.1.

5. EXPERIMENTS

,
I'·

____c-c-~__.'"""'''I C1=.

i~f llllL~~
..r--~~

i I

jl~_~_",~----,

--

Iij '-" --
~"
I

i.
!

j"
",, '" ...

-~,-..

(a) Uniform (b) Mostly-Small (e) Mostly-Large
Figure 8: Average and Maxim.um. response tiTTle per window (hash-blUled).

(d) Small·Large

for (as might be expected) Mostly-SmalL LWO favors larger
windows at the expense of smaller ones. Since these aver
aged numbers tend to emphasizc performancc of the larger
windows, LWO's overall performance here is fairly stable
(wc will look at perfonnance for each of the window sizes
shortly). Even by this metric, however, LWO L<; consistently
outperformed hy Greedy. Comparing Greedy and SWF, the
reasons that Greedy does well overall are twofold. First,
recall that Greedy's scheduling always chooses to work on
the smallest outstanding window or partial window, which
compared to SWF can result in satisfying larger queries
in a shorter amount of time. There arc some cases, how
ever, where Greedy and S\VF generatc effectively the same
scheduling steps for new tuples. Even in these cases, how
ever, Greedy has the advantages that because it can predict
the next scheduling step for outer tuples, it can release the
output of the largest window earlier than SWF can.

Table l' Window Sizes (in seconds).
Dist. w, w, w, w. w, w, w,

Uniform 1 100 200 300 400 500 600
Mostly Small 1 5 15 30 60 300 600
Mostly Large 1 60 300 420 510 570 600
Small Large 1 5 15 300 510 570 600

rithms llsing fOUT different window size distributions. We
consider query workloads COIL"isting of seven window-join
queries with the same query signature, but each having a
different window size. \Vhile we ran experiments on many
different distributions and sizes, here we report on results
using four representative d.istributions (shown in Table 1.
All of these distributions include windows ranging ill size
from 1 second to 10 minutes (i.e., 600 seconds).

In the UnifoJ7r1 distribution, windows are evenly distributed
in the range from 1 second and ten minutes. The Mm;tly
Small distribution has window sizes skewed towards the smaller
range while the Moslly-Larye has windows skewed towards
the larger end of the range, Finally, the Small-Large distri
bution has windows skewed towards both extremes.

Note that the arrival rate is exponential with mean >. set to
100 tuples/sec for each data stream in these experiments.
We examine the impact of more bursty arrival patterns in
Section 5.2. Here, we fust describe the results obtained using
the hash-based implementation of the algorithms, and then
brieRy report on the results obtained using nested loops.

5.1.1 Hash-based Implementations
Figure 7 shows the output response time per output tuple av
eraged over all of the windows for each of the four distribu
tions (the avcragc and maximum response times are broken
down pcr window for each of the distributions in Figure 8).
As can be seen in the figure, Greedy bas the best average re
sponse time of the three algorithms, while LWO provides the
second-best response time for all of the distributions except

\\'e now drill down on these results to examine the behavior
of the scheduling algorithms for the different window sizes in
the distribution. This breakdown is ShOWIl in Figure 8. The
top row of graphs in the figure show the average response
time for each window size; the bottom row of graphs show
the maximum response time observed during the mn of the
experiment for each window size.

As can be seen in all of the figures, LWO's perfonnance is
relatively stable across window sizes for each workload. Tllis
is expected since since in LWO, new tuples tbat need to join
with the smaller windows will have to wait until the largest
window is completely processed by an older tuple. As a re
sult, the output response time for all the windows is approx
imately equal to the response time for the largest window.
The slight increase observable when comparing smaller win
dows to larger windows in LWO stems from the fad that if
a tuple arrives when the system is idle, it can immediately
start joining with previou.sly arrived tuples. For such tuples,
the joins for smaller windows arc not delayed by joins for
the larger windows. This behavior is predicted by the for
mulas derived in Section 3.1.1. There, equation (1) dearly

shows that the largest term in the equation is the second
term, (m -1)Sma=, which involves the largest window size,
whereas only a small effect is expected do to the individual
window size, (Si + 1).

In contrast to LWO, both SWF and Greedy tend to pro
vide faster response times for smaller windows than for large
ones. The performance of these two algorithms in this regard
is in fact, heavily dependent on the window distribution, so
we address their performance for each distribution individ
ually, below. Before doing so, however, we note that the
maximum response times provide by the algorithms (shown
in tbe bottom row of Figure 8) generally follow tbe trends
(on a per window size basis) observed for the average re
sponse time. Tbe key fact to notice however, is that there
= be substantial variance in the response time for indi
vidual output tuples; in some case...., the maximum response
time is one or two orders of magnitude worse than the aver
age.

Turning to the Unifarm window distribution (Figure 8 (a»,
we can see that in this case, Greedy and S\VF provide similar
performance for all but the largest window. This is because,
here, they generate the same scheduling order for new tuples
(recall that the difference in response time for the larger
window is due to Greedy's ability to release tuples early
for that window). Both algorithms favor the processing of
smaller window queries with new tuples over resuming the
join of older tuples with larger window qlleries. This is clear
from the incremental increase in the SWF and the Greedy
as we move from smallest to largest windows. Again, these
results validate our analysis in Section 3.2.1 where equation
(2) shows that the average respon.se time depends on the
current and previous window sizes which is incrementally
increasing as we move from smaller to larger windows.

For the Mostly - Small window distribution,Figlire 8 (b),
one would expect a good scheduling algorithm to be SWF,
given that most of the windows are small. As W3.S seen in the
Uniform case, however, Greedy performs much like S'WF
for the small windows here, and has an advantage for the
largest window. Note, however, that S'WF's response time
for the largest window is half as much in this C11.!le than it
is for the Uniform case. This behavior is predicted by the
previous analysis equation (2), where the response time for a
window includes the size of both the current window and the
previous window. Since the two largest windows are further
apart here than in the Uniform case S'WF's re.lJonse time
decreases here.

For the Mostly - Large window distribution,Figure 8 (c),
one would expect a good scheduling algorithm to be LWO,
given that most of the windows are large. In fact, LWO
does reasonably well here, outperforming Greedy for all of
the windows except for the two smallest. Greedy does an ef
fective job of balancing the performance for small and large
windows, here, with the result that os shown earlier, it pro
vides slightly better performance averaged over all windows,
than does LWO in this case. SWF on the other hand, per
fOnrul extremely poorly here, as it continually preempts pro
cessing of the (many) larger windows to handle new incom
ing tuples.

Finally, for the S71U!1l - Large. window:s distribution, Fig
ure 8 (d), neither the LWO nor the S\VF scheduling algo
rithms is the best choice, since choo!>ing one will increase the
response time for windows on one side of the windows spec
trum. The Greedy scheduling is the best choice in this case
as it behaves similar to the SWF for small window queries
(windows 15 seconds and lower) and similar to the LWO for
large window queries (windows 300 seconds and up).

5.1.2 NesTed loop implemematioll
We also ran the above experiments using the nested loops
implementations of the scheduling algorithms. In this case,
due to the increased cost of join processing, we had to lower
the arrival rate of the data streams to 15 tuples/sec in or
der to ensure that all algorithms could keep up with the
incoming streams without dropping any tuples.

The average response time for the different window distri
butions (averaged over all window sizes) i" shown in Fig
ure 9(a). We also show tile per window average and max
imum response times for the Uniform distribution in Fig
ures 9(b),(c) respectively. The results here clearly resemhle
those obtained with the hasll-based implementations, with
the obvious difference in magnitude of the response times.
Compared to hashing, the response time for the nested loop
algorithms is higher for all three scheduling approachcs, as
incoming tuples must be compared with more tuples from
the other stream. Due to space constraints, we do not show
tIle detailed results for the other window distributions using
nested loops, as the story there is similar.

The conclusion of the previous experiments in Section 5.1.1
and Section 5.1.2 is that the Greedy algorithm provides the
best overall average response time when compared to the
LWO and the S\VF and when using a variety of window
distributions. For the S\VF and the LWO algorithms there
is no clear winner as their relative performance is highly
dependent on the particular window di"tribution. In terms
of maximum response time, the Greedy algorithm is alWdYS
better tbOIl the SWF algorithm for large windows, although
it has some irregularity for middle windows. This irregular
ity is mainly the result of switching back and forth to serve
small as well as large windows. The LWQ algorithm has
a uniform maximum value over all the windows due to the
fixed scheduling order used by LWO.

5.2 Varying the level of burstness
Tn the previous experiments, tuple arrival ratcs were driven
by an exponential distribution. The analyses of the algo
rithms in Sectioll 3 showed that their perlormance is highly
dependent OIl the 6urstine.ss of the arrival pattern. To ex
amine this issue more cloSely, we ran several experiments
studying the behavior of the three algorithIJl.S 11.!l the level
of burstcss (Le., tendency of tuples to arrive within short
period of time) is increased for both strea.m.". In these ex
periments, we generate the burst arrival of data streams
using a pareto (81 distribution, which is often used to simu
late network traffic where packets are sent according to ON
OFF periods, In the ON periods a burst of data is generated
and in the OFF periods no data is produced. The interval
between the ON and OFF periods is generated ll5ing the
e.."'qlonential distribution with rate'\. The density function
of pareto distribution is, P(x) = =,,:b;l' where 6 :::: x and a

~
.

,

,~!.._-_.-
(0)

(0)
"- .- - ""--,-,

..•
j'

..._~J
Response time ~gr~~~erentburst arrival Biz""•

Respol1lle time Wi\'ii::~ed loop implemen~atioJ1.

Figure 10:

Figure 9:

(a)

(a)

'.

Ii•j ..

,
i"

i~ the shape parameter. The expected burst count, E(:I:),
is a"'!l' For a much larger than I, the expected value is
almost one, and for a between 2 and 1, the expected value
increases. We V<lIy the expected bur.;t size, E(:z:) between
one and five (and choose cr accordingly). 'Ve a..I.!lo, modify
the arrival rote between the ON periods, to provide a fixed
overall average rate of, ~. As we increase the level of
bUT5tnes.!l, more tuples wait to schedule their join with the
other stream.

In this section we report on an experiment using the hash
bilSed implementation for the three scheduling algorithms
and considering the Small - Lorge windows distribution.
The overall arrival rate is maintained at 100 tuples/sec per
stream. Figure 10(a) shows the average response time (av
eraged ove:r all window sizes). In the figure, we can see that
as the burst size increases, the scheduling becomes more im
portant; as bad scheduling decisions can increase the overall
average response time dramatically. The Greedy scheduling
outperforms all othe:r scheduling for all of the burst sizes
here. This behavior is more evident as we increase the ex
pected burst size (e.g, at expected bun;t of sizes four and
five, respectively). As sbown in the Figure, the improve
ment of Greedy over LWO is as high as 80% (in the case of
burst size of four).

Figures lO(b) and (c) sbow the average and maximum re
sponse time (respectively) per window for the Small-Large
distribution using an expected burst size of five. Figure 10(c)
indicates that with large burst sizes, tbe SWF scheduling al
gorithm has a response time of 125 seconds (approximately 2
minutes) for the largest window, whereas using the Greedy
scheduling algorithm it is bounded by 25 seconds. These
results demonstrate the fact that efficient scheduling is im
portant to maintain a reasonable response time, particularly
in unpredictable environments.

5.3 Memory Requirements
One concern about the SWF and Greedy approaches is that
they might use excessive memory compared to LWO, due to
their need to hold back some output tuples to preserve the
proper ordering of the output stream. In order to determine

the impact of this issue, we examined the maximum amount
of memory required by each of the algorithms. While small
differences are not likely to be important (given the low
cost of memory these days), a large difference could have a
negative impact on the data rates that could be supported
by the various algorithms with out dropping tuples, for a
particular memory size. We briefly present OUI experimental
findings here.

For all of the scheduling algorithms, the JoinBuffer is needed
to hold the tuples of each stream during the join proces..~ing.

The maximum size of a single JoinBuffer is >'wma". SWF
and Greedy also use an extra input buffer (a list of schedul
illg queues) to hold the new tuples from one stream until
they complete their join with the other stream. LWO has
a similar input buffer (a queue) to store the arriving tuples
from one stream before they are actually used to scan the
maximum window ill the other stream. SWF and Greedy
algorithms maintain an output buffer to sort the output be
fore releasing it to the output data streams. The maximum
size of the input buffe:r is a function of the maximum re
sponse time for a newly orriving tuple. In the experiments
we reported on above the maximum response time WU5 seen
to reach 2 minutes in some ca.ses (see Figure 10(c».

\Vhen considering an arrival. rate of 100 tuples/sec and a
maximum window of size 600 seconds, the size of the Join
Buffer is approximately 60,000 tuples and the maximum in
put buffer size is 12,000 tuples, or 20% of the JoinBuffer size.
This, however, is a worst case analysis. We experimentally
obtained lower bounds for the maximum input buffer size,
and found them to be less than 10% of the JoinBuffe:r size,
for SWF.

Our conclusions are that the memory requirement for the
SWF and the Greedy scheduling algorithms are roughly
comparable to that of the LWO algorithm. We also mea
sured the maximum size for the output buffer in case of the
SWF and the Greedy algorithms. The maximum size for the
output buffer in both the SWF and the Greedy algorithm
was less than 3% the size of the JoinBuffer. This supports
our conclusion that the memory requirement for the extra

input and output buffers in the S\VF and the Greedy algo
rithms are negligible when compared to the JoinBuIfer sizes.

6. RELATED WORK
Stream query processing has been addressed by many
evolving systems such as Aurora (4], Telegraph [12] and
STREAM [31 systems. The shared execution of multiple
queries over data streams is recently presented in CACQ [12]
and NiagaraCQ [7, 6]. In CACQ, they addressed the shared
window join between multiple queries by using the largest
wiDdow, similar to our fust proposed algorithm. The join
operation is implemented as a multi-wa.y join and the win
dow is defined in term.s of number of tuples. CACQ al'iO
addressed the shared execution of selection queries (predi
cate indexing). The alteration of the query plan i<; dynamic
(using Eddies [2]). Our research in this paper focuses on
the shared window join and we provide several alternatives
to schedule the join than the work in CACQ. The work
in NiagaraCQ addre>sed incremental group optimization of
multiple queries where queries are added and deleted to the
system. The underlying data sources are remotely located
(over the web). Their conclusion of pulling 11p the selection
predicate to the top of the group execution plan, support...
the usc of shared join as we address in this paper.

Window join processing has been addressed in {5, 11].
Psoup [5] handles streamed queries over streaming data and
provides a similar definition to ours for sliding time window.
However, Psoup uses the same approach as was suggested in
CACQ, mainly join using the largest window which is a lim
ited approach as we showed in this paper. The recent work
in [ll} addressed the window join over two streams where
the two arriving streams have dilferent arrival rates. The au
thors suggest using asymmetric join (e.g., building a nested
loop one stream and a hash table on the other stream), to
reduce the uecution cost. Our research is different as we
consider the problem of sharing the window join execution
between multiple queries.

Joining data streams is also addr~d in [1], the authors
identifies some queries over data streams that can be exe
cuted entirely using limited amount of memory. The authors
consider the boundness of the terms in the projection and se
lection predicates to determine if the query can be executed
in limited memory or not.

Scheduling a single join processing over non streaming data
had been studied in [9, 10, 14, 15]. The ripple join switches
from proce;sing one input data stream to the other when tbe
input source is blocked. The work in [10,14, 15J address the
scheduling of the hash join with limited memory (swapping
pan of the ba..h table to disk). The join scheduling is similar
in spirit to our proposed research although the previous work
was different as in addressing single join and non window
processing.

7. CONCLUSIONS
Sharing the execution of window joins among multiple queries
is a technique that can enhance scalability in stream query
processing. We studied three scheduling algorithms (LWO
and the two new algorithms SWF and Greedy) that priori
tize this shared CJCecution to minimize the a.verage response
time per query. The tradeoffs between LWO and SWF mo-

tivated the development of tlle Greedy algorithm. Under a
variety of workloads and mixes of window sizes, the Greedy
algorithm provides up to 80% improvement in average re
sponse time over the other two algorithms. The experimen
tal results based on real implementation of the algorithms
validate our analytical results. The experiments also illus
trate that the gain in average response time of Greedy is at
the expense of an additional memory overhead of less than
10%.

8. REFERENCES
[I) A. Ara.'lU, B. Babcock, S. Babu, J. McAlister, and

J. Widom. Char;u;terizing memory requirements for queries
over continuous dala streams. 10 Pmc. of PODS, May.,
2002.

[21 R. Avnur and J. M. Hellerstein. Eddies: Continuously
adapth'e query processing. In Pmc. of the SIGMon
Conference, 2000.

[3J S. Babu and J. Widom. ContinUOlL'l queries over data
streams. In SIGMOD ReaJrd Vol 30 No 3 Sept., 2001.

[4J D. Carney, U. Cetintemel, M. Cherniack, C. Con~-ey, S. T,ee,
G. Seidman, M. Stonebraker, N. TaLbul, and S. Zdonik.
Monitoring streams - a new class of data lDanagement
applications. In 28th VLDB Conferena, Aug., 2002.

(5J S. ChandI'a.5ekaran and M. J. Franklin. Streaming queries
over streaming data. In 28th VLDB Conference, Aug.,
2002.

[6J J. Chen, D. J. DeWitt, and J. [0'. Naughton. Design and
evaluation of alternative selection placement strategies in
optimizing continuous queries. In fCV6, Feb., 2002.

[7J J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagracq: A
scalable continuous query system for internet databases. In
Pmc. of the SIGMOD COrlfererlfx, 2000.

(8) M. E. Crovella, M. S. Taqqu, and A. Bestavros.
Heavy-tailed probability distributions in the world wide
web. In A prndiml guide /0 het'.llllJ /oiI8: 8/0/i8/irol
/eehnique.! and oppllwtion3, chopler 1, Chapman & Hol/,
New York, pp. 3-26., 1998.

[9] P. J.llaas and J. M. I1ellerstein.ltipplejoins for online
aggregation. 10 Pmc. of SIGMOD Conference, 1999.

[10] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S.
Weld. An adap~ive query execution system for da~a

in~egration. In Prnc. of Ihe SICMon Conference.

(Ill J. Kang, J. 17. NaughlOn, and S. D. Vigla:l. Evaluating
window joins over unbounded streams. In lCDE, Feb., 2003.

(121 S. Madden, M. A. Shah, J. M. lIelierstein, and V. Haman.
Continuously adaptive continuous querie5 over streams. In
Proc. of SIGMOD Conferena, 2002.

[13J P. Seshadri. Predator: A rewurce ror database research.
SIGMOD Ueeord, 27(1):16--20,1998.

[14J T. Urhan and M. Franklin. Xjoin: A reacLively-schcdulcd
pipelined join operator. IEEE Do/a Engineering Bulletin
23(2), 2000.

[I5J T. Urban and M. Franklin. Dynamic pipeline scheduling for
improving interactive query perfonnance. In Pmc. of 27th
VLDB Conference, Seplember, 2001.

[16J A. N. Wil5chut and P. M. C. Apers. Dataflow query
execution in a parallel main-memory environment. In Proc.
of the 1st PD1S Conference, Dec., 1991.

	Purdue University
	Purdue e-Pubs
	2003

	Scheduling for Shared Window Joins Over Data Streams
	Moustafa A. Hammad
	Michael J. Franklin
	Walid G. Aref
	Ahmed K. Elmagarmid
	Report Number:

