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ABSTRACT

This paper addresses the problem of scheduling the shared cx-
ecution of multiple window-join queries over date strzams.
Each join has its own siiding window, which can be ezpressed
ir terms of tirne unils or luple counls. Jeining tuples from
the underlying data streams may serve the purpose of mul-
tiple window join gueries. Shering the ezeculion of these
queries will mazimize the uwlilization of sysiem resources.
One way to share the ezecution of maulliple window joins
is to use the larpest window among all queries. This ap-
proach, the Largest Window Only({LWO), would penalize the
response time of queries with small windows lo serve the
guery with the largest window size. Twe new algorithms for
scheduling the ezecution of the shared window-join are pre-
sented; the Smallest Window First{(SWF) and the Greedy
algorithms. An analytical study of the tradeoffs between the
LWO and SWF algorithins leads to the development of the
Greedy algorithm. The performarce siudy of the three al-
gorithms show tkat the Greedy algorithm provides the best
performance in terms of response time for all queries.

1. INTRODUCTION

Data stream processing has receatly become a topic of in-
tensive intercst in the database community. The reasons for
this interest are several. First, in many emerging applica-
tions, particularly in pervasive computing and sensor-based
environments, data streams play a ceatral role, because de-
vices continuously report up-to-the minute readings of sen-
sar values, locations, status updates etc. Data streams also
feature prominently in other networked applications such
a5 "real-time" business processing and enterprise applica-
tion integration. Secondly, data streams break many of the
assnmptions upon which traditional query processing tech-
nalegy is built, providing the opportunity to rethink many
fandamental database management technigues.

One major difference that arises in data stream process-
ing systems {compared to more traditional stored database
management) is the notion of long-running continnous queries
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Figure 1: The shared execution of two window joins.

over those streams. The emerging data stream process-
ing architecture involves potentially large numbers of such
queries that are effectively constantly running, and that con-
tinuously react to new data as it arTives at the system. The
availability of a significant set of queries raises the poten-
tial to aggressively exploit shared processing of common
work needed by multiple queries. Furthermore, the high
data rates and requirements for split-second responsiveness
in many streaming applications dictate that such opportu-
nities for efficiency be exploited.

In this paper, we [ocus on a hundamental problem that
arises in systems for processing continuous queries over data
streams, Namely, we investigate the problem of schedul-
ing processing for multiple windowed joins over a common
set of data streams. We show that the approach [ollowed
in earlier systems has a previously unreported performance
problem that discriminates against queries that have small
windows. Ironically, it is exactly such queries that are likely
to have strict responsiveness constraints. We propose two
new scheduling algorithms that address this problem and an-
alyze their performance in detail using a prototype database
system extended to support these algorithms.

2. BACKGROUND

2.1 Context and Environment

‘We consider a centralized architecture for stream query pro-
cessing in which data streams continuously arrive to be pro-
cessed against a set of standing continuous queries (CQs).
A key issue in the design of such a system is the efficient
processing of the CQs as data arrives, particularly if data
rates are high or if there are a large number of active CQs
in the system.



In this paper, we consider streams to be unbounded se-
quences of data items. A stream may represent readings
from a sensor device or a set of sensors {e.g., temperature
sensors, financial and news tickers, network monitors). Each
data item in a stream is associated with a time stamp that
identifies the time at which the data item enters the system.
The data items of a single stream may arrive in a burst fash-
ion {2 group of data items arriving within a short period of
time) or they may arrive in equally-spaced intervals. Exam-
ples of the first type are network traffic streams, phone call
records, and sensors that push data to the system triggered
by an independent event (monitoring sensors). Examples
of the second type are pull-based sensors, where the system
contacts the sensor device to retrieve data periodically (e.g.,
once every second.) Qur discussion focuses on streams with
a burst arrival pattern.

Queries over streams often exploit the temporal nature of
streamn data. Furthermore, due to the unbounded nature of
streams, gueries over streams are often defined in terms of
sliding windows. For example, consider a data center con-
taining thousands of rack-mounted servers, cooled by a so-
phisticated cooling system.In modern data centers, sensors
are used to monitor the temperature and humidity at loca-
tions thronghout the room. For a large data center, thou-
sands of such sensors could be required. A contral system
monitors these sensors to detect possible cooling prablems.

We can model this example scenario as a system with two
streams, one for temperature sensors and one for humidity
sensors, ‘The schema of the streams can be of the form (Lo-
cationld, Value, TimeStamp), where Locationld indicates
a unique location in the data cemter, Value is the sensor
reading, and TimeStamp is as described above. A window
gquery that continuously momnitors the sensors to determine
if both the humidity and temperature values exceed specific
thresholds within a one minute interval could be specified
as follows:

SELIECT 'I'.Locationld

FROM Temperature T, Humidity H

WHERL T, Value > T'hresheld; and H.Value > Thresheldy,
and T.Locationld = Il.Locationld

WINDOW | min;

A second example query continuounsly searches for sensors
with similar heating behavior within a 30 minute interval
and applies a user-defined function, coerrelated, to determine
similarity between the temperature and humidity values as
follows:

SELECT T.Locationld, H.Localionld

FROM Temporature T, Humidivy 11

WHERE correlated({T.Value, H.Valuc) and T.Localionld
# 1l.Locationld

WINDOW 30 min;

The WINDOW clause in the query syntax indicates that the
user is interested in executing the gueries over the sensor
readings that arrive during the time period beginning at a
specified time in the past and ending at the current time.

When such a query is ren in a continuous fashion, the result
is a sliding window query.

Window queries may have forms other than the time sliding
window described in the preceding examples. One variation
of the window join is to identify the window in terms of
the number of tuples instead of the time units. Another
variation is to define the beginning of the window to be a
fixed rather than a sliding time. Other variations assqciate
different windows with each stream [11] or with each pair of
streams in a multi-way join. In this paper, we address sliding
windows that are applied across all streams and where the
windows can be defined either in terms of time units or tuple
counts. We present our algorithms nsing time windows, and
in a separate section describe how our algorithm can be
applied to windows defined in terms of tuple counts.

As with any query processing system, resources such as CPU
and memory limit the oumber of queries that can be sup-
ported concurrently. In a streaming system, resource limi-
tations can also restrict the data arrival rates that can be
supported. Some recently stream query processing systems
{e.g., Aurora [4], Telegraph [12] and STREAM [3]) propose
mechanisms to respond to resource overload by reducing
quality of service {e.g., dropping tuples from the input or
answers). In contrast, in our work, we focus on the case
where no loss occurs. That is, we ensure that the system
is run at a rate where it is possible to execute all queries
correctly. While such a restriction may be unsupportable in
some applications, our main argument is that the workload
volume that can be sustained by a shared CQ system can
be dramatically increased by exploiting, wherever possible,
shared work among the concurrent queries.

There arc a number of recently published algorithms that
support sharcd execution between multiple gueries over data
streams [7, 6, 12, 5]. One result from this previous work is
that for shared CQ systems, the sharing of join process-
ing among rueries can be greatly enhanced through the
use of "selection pull up” [6]. In a shared CQ system, the
traditional heuristic of pushing selection predicates below
joins would significantly reduce the potential for sharing the
work of multiple joins, because such joins wounld effectively
have different signatures (i.e., they would be over different
streams). Thus, in a CQ system it is usually beneficial to
pull the selections up above the joins, thereby allowing more
queries to share the output of a single join operator. Qur
work is very muclh in this spirit, and in fact, extends the
sharing approach to efficiently allow sharing of join process-
ing across all queries that share a join predicate, regardless
of their window specification.

2.2 Problem Definition

Consider the case of two or more queries, where each query
is interested in the execution of a sliding window join over
multiple data streams. We facus on the set of concurrent
queries that have the same join predicate over the same data
streans', and where each query has a sliding window that
represents its interest in the data. The goal is to share the

!Note, the restriction to a single join predicate allows us
to use hash-based implementations of the algorithm. The
nested loop based implementations could be extended to
deal with different join predicates



execution of the different window joins to optimize the uti-
lization of system resources.

We illustrate this definition using an example of two queries
in Figure 1. In the Ggure tupies arrive from the left, and
are tagged with their stream tdentifier and timestamp. We
indicate tuples that satisfy the join predicate (but not nec-
essarily the window clause) by marking them with the same
symbol (e.g., cross, black circle, etc.). In the figure, ¢h
performs a join between the two streams A and B, using
predicate p with window size w| = one second. @2 performs
a join between the same two streams A and B, using predi-
cate p with window size w2 = one minute. We assnme that
new tuples are appended to the left of each stream. There
is an obvious overlap between the interests of hoth gueries,
namely, the answer for ; (the smaller window) is included
in the answer for 2 (the larger window). We refer to this as
the containment properiy; that is, the answer of any query
is also contained in the answer of the queries with larger
windows.

Executing both gueries separately wastes system resources.
The common join execution between the two queries will be
repeated twice, increasing the amount of memory and CPU
power required to process the queries. Implementing both
querics in a single execution plan (Figure 1, right} is a signif-
icant improvement in resource usage. The new shared join
operator has the same common input data streams and pro-
duces multiple output data streams for each separate query.
The output data streams are identified by the distinguish-
ing query windows sizes, and at least one query must be
attached to each output data stream. The shared join op-
erator is divided into two main steps: the join step and the
routing step. The join step produces a single cutput stream
for all queries and the routing step produces the appropriate
cutput data streams for the various queries.

While shared execution has significant potential benefits in
terms of scalability and performance, we need to ensure that
such sharing does not negatively impact the behavior of in-
dividual queries. That is, the shared execution of multiple
queries should be transparent to the queries. We define two
abjectives for such transparency:

1. A query executed in a shared fashion should produce
the identical resulting output data stream as if it were
run individually. In other words, the shared execution
should not alter the content or the order of the output
data stream,

2. The response time penalty imposed on any query when
anew query is included in a shared plan should be kept
to a minimum.

This paper investigates methods for sharing the execution
of multiple window join queries which satisfy these two ob-
Jjectives.

3. THE SCHEDULING ALGORITHMS

In this section, we present three scheduling algerithms for
performing a shared window join among multiple queries.
These are: Largest Window Ounly (LWO), Shortest Window

First (SWF), and Greedy. LWQ was implicitly used, but
not elaborated upon in [12, 5]. LWO is a natural way to
address the problem of shared join processing, but as we
will see, has some significant performance liabilities. The
SWF and Greedy algorithms are contributions of this paper.
We present all three algorithms in the same Framework and
study the performance tradeoffs of each.

One important consideration for all three scheduling algo-
rithms is the order in which the output tuples are praduced.
We adopt a ?stream-in stream-out” philosophy. Since the
input stream is composed of tuples ordered by some times-
tamp, the cutput tuples should also appear as a stream or-
dered by a timestamp. In our algorithms, the output tuples
are emitted as a stream ordered by the maximnm time stamp
of the twa tuples that form the join tuple.

As described in Section 2.2, the shared execution of win-
dow joins should abide by the isolated execution property,
i.e., each window join, say jw, that is participating in the
shared execution, produces an output stream that is identi-
cal to the ontput stream that 7, produces when executing in
isolation. All three scheduling algorithms presented in this
section abide by this property. Note that in this section we
describe the algorithms assuming a nested loops-based im-
plementation. As will be described in Section 3.4, all of the
algorithms can be implemented wiing either nested loops or
hashing.

3.1 Largest Window Only (LWO)

The simplest approach for sharing the execution of multi-
ple window joins is to execute a single window-join with
a window size equal to the maximum window size over all
queries. Due to the containment property, the processing of
the maximum window query will produce output that satis-
fies the smaller window queries as well. The join operation
then needs to route its output to the interested queries. We
call this approach Largest Windew Only, or LWO for short.

The join is performed as follows. When a new tuple arrives
on a stream, it is matched with all the tuples on the other
stream that fall within the time window. This matching can
be done in a nested loops fashion, working backwards along
the the other stream, from most to least recent arrival, or
can be done using hashing as described in Section3.4. Tuples
can be aged out of the system once they have joined with
all subsequently arriving tuples that fall within the largest
window.

To perform the routing step for the resulting tuples, the
join operator maintains a sorted list of the windows that are
interested in the results of the join. The windows are ordered
by window size from smallest to largest. Each output tuple
maintains the maximum and minimum timestamps of the
input tuples that constitute the output tuple. The routing
step uses the difference between these two timestamps to
select the windows, and hence the output data streams, that
will receive this tuple. The output tuple is sent to all eutput
streams that have windows greater than or equal to the time
difference of the tuple.

We illustrate the operation of the shared window join with
the exanple shown in Figure 2. The figure shows a shared
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Figure 2; Scheduling the Shared Window Join using LWO.

window join over two data streams A and B. The join is
shared by three queries, @1, Q2, and (@3 with window sizes
(ordered from smallest to largest), wi, w2, and w;, respec-
tively. In the fgure, tuples with similar symbols join to-
gether (i.e., they satisfy the common join predicate). The
join step uses window wyg for the single window join since
wa is the largest window. As tuple @) arrives, it joins
with tuples g, b4, b5 in Stream B and the ontput tuples are
streamed to the the routing step. The routing step deter-
mines that the cutput tuple (a1, by)muest be routed to all
three queries, tuple (a11,54) be routed to qgueries {Jg and
Qs and tuple (a11,bo) be routed onty to query Q. After
completing the join of tuple &)1 with stream B, the join
step begins to join tuple bjy with stream A. The resulting
output tuples are (aa,bi2), (as, da), (c1,b12} and they are
routed in the same way to the queries.

One advantage of LWQ, hesides its simplicity, is that ar-
riving tuples are completely processed (i.e., joined with the
other streams) before considering the next incoming tuple.
In this way, the output can be streamed out as the input
tuples are processed, with no extra overhead. This prop-
erty satisfics our objective of isolated execution. However,
LWO delays the processing of small window queries until
the largest window query is completely processed. In the
preceding example, query ¢h cannot process tuple b1z until
tuple a1, completely joins a window of size wy from stream
B. This means that tuple b;2 waits unnecessarily (from Q,’s
perspective) and increases the output respanse time of query
1. The eflect is more severe as we consider large differences
between the smallest and largest windows. Thus, LW0O may
not satisfy our other objective, as a large window query
could severely degrade the performance of smaller window
queries. In the following section we examine the average re-
sponse time of cach window involved in the shared window
join when using the LWO algorithm.

3.i.} Analysis of response time

In this section, we analyze the average respounse time of ¥
queries sharing the execution of 2 window join operator.
We assume that the shared window join operates on only
two streamns and that each query Q. has a unique window,
w;. The mean time between tuple arrivals at each stream
follows an exponential distribution with rate A tuples/sec.
The size of the join buffer (the amount of memory needed
ta hold the tuples for the join operation) for each stream

differs {for every query and is determined by the window size
assaciated with the query. The buffer size S; per stream for
an individual query &; is approximately equal to S = dawi.
Let wWmar be the maximum window size among all the &
query windows and Smox be the maximum buffer size per
streamn. Then, Smaz = AWmoez- AS a new tuple arrives, the
expected number of tuples that join with this tuple inside a
query window w; can be estimated by a8; tuples, where ¢
is the selectivity per tuple.

Counsider the case when m tuples arrive simultaneously in
one of the streams, say stream A. LWO needs to schedule
the execution of the windaw-join of cach of the m tuples
with the tuples in the other stream, say stream 7. Each of
the m tuples in A is checked against 5; tuples in B, Let
.ff-il“:':mzl[asJ and CTime(a) be lie arrival and completion
times of tuple a, respectively. For query Q;, let AvgRT(Q:)
be the average response time of joining each of the m tuples
for query Q;. Then,

maSi (CTime(joinTupley) — ATime(joinTuple;))

AvgRT(Q;) = mas;

where the sum is taken over all output join tuples.
Let jeinTupler corresponds to the tuple (a;,b;}. Since
jotnTupler is an output tuple of window 1, then,
|ATime(a;) — ATime(b;)| < wi and ATime(joinTuplex) =
maz(ATime(a;), ATime(b;}). CTime(joinTuple;) repre-
sents the time at which the output tuple is received by Q; -
For simplicity of the analysis, let o = 1.

Let 25 be the time needed to check that a tuple pair, say
{ai,b;), satisfies the join predicate and the window con-
straint |ATime(e;) — ATime(b;)| < wi. Then, for window
w;, the first tuple of the m tuples will produce S; output tu-
ples with a total delay of tp+ 24, +- -+ Sit, or £ 5:(5;+1).
The second tuple of the m arriving tuples will have an ad-
ditional detay of tpSma= as the second tuple has to wait
until the first tuple scans the maximum window. Similarly,
the third tuple will have additional delay of 2t,5maz and so
on. By averaging tlte response time of all m input tuples,
therefore,

AVgRT(@:) = Z((Si + 1) +(m = DSmas) (1)
To clarify this equation we plot the AvgRT for multiple

queries while using the following values: #, = 0.01 usec,
A = 100 Tuples/Sec, m = 50 tuples. The windows are cho-
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sent to span a wide range (from 1 sccond to 10 minutes) as
follows (w, = lsecond,wz = 100sec., w3 = 200sec.,ws =
300sec., ws = 400sec., ws = 500sec,w; = 600sec.). Fig-
ure 3 compares the average response time for each query
when executed in isolation from the other queries, with the
average response time of the query when exccuted using
LWO. When executed in isolation, @,'s average response
time is AvgRT(Q:) = £(mS; + 1)%. It is clear from the
graph that the query with smallest window, i.e., Gh (with
wy = lsec.) is severely penalized when using IWO. This
penalty is expected because newly arriving tuples have to
wait until the old tuples scan the largest window. While a
simple analysis clearly predicts these results, it is importaat
to recall that LWO is the only previously published schedul-
ing approach for shared join processing in CQ systems.

These analytical results are validated by experiments on an
actua! implementation of the algorithm, shich is reparted
in Section 5.1.1.

3.2 Smallest Window First (SWF)

To address the performance issues that arise with small win-
dows in LWQ, we developed an alternative approach called
Smallest Window First (SWF). As the name snggests, in
this algorithm, the smallest window queries are processed
first by all new tuples, then the next {larger) window queries
and so on until the largest window is served. A new tuple
does not proceed to join with a larger window as long as an-
other tuple is waiting to join with a smaller window. SWF
is not quite as straightforward as LWQ. As will be seen in
the following, it requires significant bookkeeping.

We illustrate SWF with the example in Figure 4, which has
the same configuration as that of Figure 2. When tuple
a1 arrives, it scans a window of size w, in stream B. The
result is the output tuple {(e1),bs). After this scan, tuple
b1a artives and is waiting to join. Since tuple b2 will join
window 111 (the smallest window), 12 is scheduled immedi-
ately. Tuple a1, has not finished its join with stream I so it
is stored along with a pointer to tuple bs. Now &7 scans a
window of size w| in stream A, resulting in the output tuple
(2g,812). The scheduler is invoked again to switch to tuple
an. Tuple 11 proceeds to join with the remaining part of
window w2, namely, the partial window wa — wn in stream
B. The resulting output is {ai1,84). The scheduler then

This equation can be ohtained from Equation (1) by sub-
stituting Sma= with S;.

switches back to tuple 312 to join with the remaining part
of window w3, the partial window wz — w1, in stream A.
The process continues until tuple by joins with the partial
window 1wa — twsz, of stream B. Figure 4 shows the ountput
upto this point.

SWF needs to store bookkeeping information with the arriv-
ing tuples. When the scheduler switches from serving one
tuple to serving another, the current status status of the
first tuple must be maintained. This status describes where
to resume scanning in the gther stream and the new window
size (the next window size) to be applied. When a tuple gets
rescheduled, it starts to join beginning at this peinter until
completing the new window.

Note that the output of the joining step is shuffled when
compared with the LWO scheduling. This shuffling occurs
as we switch back and forth to serve the different arriving
tuples, To produce the desired autput stream for each query
we need to modify the routing step from that of LWQ, The
routing step must hold the output tuples and release them
only when the outer tuples (), and b2 in our example)
completely scan the corresponding windows of the queries.

Figure 4 illustrates how the autput tuples are released to
the queries. In the figure, when the output tuple (ap;,by) is
praduced (Step 1), the routing step decides that tuple ai;
completely scanned window w, and hence {a11,ba) can be
released to query (). We can also release (a1, &) to queries
2 and Qs (Step 2). When the output tuple (ag,bia) is
produced (Step 3), the routing step releases it to Q) since
tuple b1z completely scanned window wy (Step 4). Note
that {ms,b12) cannot he released to queries (F2 and Qs as
these two queries are waiting to receive the remaining autput
tuples that may result from joining aq with their partial
windows w3 — w, and wy — wi, respectively. When tuple
(a1, b4) is produced (Step 5), it is released to both query
@22 and Q3 (Step 6). When tuple (a5, b12) is produced (Step
7), the tuples (as,b12) and (as,b12) are both released to
query (Ja (Step 8). In the same way, tuple {z11,bo) will be
released to query @3 and tuple (a1, b12) {Step 11) will release
the t‘llpl&' (ﬂg,bm), (05,1)12), (ﬂl, bl-z) to query Qa (Step 12).

The SWF scheduling algorithm uses the following data struc-

tures:

» joinBuffers: joinBuffers represent main memory buflers
used to store the tuples arriving from the input data
streams. The size of 4 single JoinBuffer is limited by
the maximutn window size in the query inix.

» A list of gueues for storing the tuples that need
to be scheduled (or rescheduled). Each queue,
SchedulingQueue(w), represents one window (w), and
cantains the tuples waiting to be scheduled to join with
w. The list of queues is ordered according to the size
of the windows assoctated with each queue.

* An output buffer to hold the cutput tuples until they
are ready to be released to the queries.

Given these structures, SWF can be described as faollows:
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Figure 4: Scheduling the Shared Window Join using SWF.

1. Get 2 new tuple £ (if exists) from any of the input data
streams, say stream A. Store ¢ in JoinBuffer(A).

2, If Step (1) results in a new tuple ¢, schedule the join of
t with stream B using a window of simallest size and
starting at the most recent tuple of B. Goto Step (4).

3. If Step (1) results in no tuples, get a tuple ¢ from the
list of SchedulingQuenes. Assume that ¢ belongs ta
stream A and is stored in SchedulingQuene{uy). If no
such tuple £ exists, i.e., all the SchedulingQueues are
empty, return to Step (1). Otherwise, schedule £ for a
join with stream B using window w; (that corresponds
to the queue SchedulingQuene(uy;)) and starting at the
pointer location previously stored with 2.

4. If the scheduled joir of £ results in output tuples, notify
the router by sending the output tuples along with ¢
ta the routing step. Add { to the next queue, i.c,,
SchedulingQueue{t;+1) in the list along with a pointer
to stream B indicating where to restart next. Go to
Step {1}.

In Step (3), in order to maintain small joinBuffer sizes, the
join step drops the old tuples in one stream that are outside
the largest window. This process is performed dynamically
while the join step is in progress. To retrieve a tuple from
the list of SchedulingQuenes, SWF finds the first nonempty
queue (scanning smaller window queues to larger window
quenes) and retrieves the tuple at the head of the gueue.

The routing step maintains a data structure, outputBuffer,
to hold result tuples until they can be released. The join
step sends the outer tuple along with the corresponding
output tuples to the routing step (Step 4). Let the outer
tuple be ¢, where ¢ may either be a new tuple or an resched-
uled tuple. In the first case, 1 is added to outputBuffer,
and the output tuples are stored with ¢ in outputBuffer
but are also sent to all output datz streams. In the sec-
ond case, t is a rescheduled tuple from a scheduling queue,
say SchedulingQueue(t;). In this case, all the output tuples
curtently held for ¢ along with the new output tuples are re-
leased to che queries with windows > wy. If wy is not the

maximum window, the output tuples are added to the cur-
rent outputBuffer of t. Otherwise, the entry for ¢ is deleted
from outputBuffer since £ has been completely processed.

3.2.1 Analysis of response time

To estimate tlie average response time per guery when us-
ing SWF, we use the same assumptions we outlined in Sec-
tion 3.1.1. For a new arriving tuple, say outer tuple ¢ in
stream A, the resulting output tuples for a certain window
w; are only produced when { completely scans a window of
size §; in stream B. The average response time for window
u; can be estimated as the average waiting time of ¢ until ¢
joins completely with the window of size S;.

For a query with window un, the Arst arriving tuple waits
for time Sii,, the second tuple waits for time 25, ¢, and the
third tuple waits for time 3511,,. . . etc. The average waiting
time for m tuples to scan window w is: 2 8¢t

For the second window, the waiting time for the first tuple
is mSit, + {S2 — 51)ty,, for the second tuple is mSid, +
2(82 — 51)t, and for the m*" tuple is mSity +m(S2— 5i )y,
Therefore, the average waiting time ior the second window
is: mSitp + 2H (81 — Si)t,

Generally, for window w;, the average waiting time (also the
average Tesponse time) can be computed as follows:

AvgRT(Q:) = mSi1t, + mT“(s.- -5, (2

Figure 5 shows the response times for sevenr queries using
the same setup as described in Section 3.1.1. Also, we plot
the respanse time for the isolated execution of each query.
The figure shows that the average response time for small
queries is greatly reduced at the expense of the average re-
sponse time for the larger queries. The performance of SWF
is explored Farther in Section 5.

3.3 The Greedy Algorithm

In comparing the performance of SWF and LWO, it can be
seen that SWF Favors small window queries at the expense of
larger window queries, whereas LWO favors larger window
queries over smaller ones. This clear tradeoff between SWF
and LWO motivates the development of our third scheduling
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Figure 5: SWF versus Isolated Execution.

algorithm, which we call "Greedy”. Intuitively, Greedy is
more fRexible than either LWOQO or SFW, choosing at any
instant to process the tuples that are likely to result in the
release of the most output tuplcs,

Recall that SWF sospends the processing of the join of a
tuple with its next window whenever a newly arrived tuple
needs to join with a smaller window. The suspended tuple,
however, was supposed Lo scan a partial window (the dif-
ference between the window it had already scanned and the
next larger window). This partial window could actually be
smaller than the smallest full window. Allowing the old tu-
ple to complete its current window before switching to the
newly arrived tuple would result in an earlier release of a
set of cutput tuples. This leads us to use a greedy approach
to selecting the next tuple to schedule. With Greedy, the
priority for scheduling is based on the amount of work that
is expected to be accomplished by scheduling a tuple for a
join.

We illustrate the Greedy algorithm by the example in Fig-
ure 6. In the Rgure, we have three queries with three differ-
ent windows w),ws, and wy. We have omitted the details of
the routing step from the figure. We choose wy, w2, and w;
such that w is larger in size than the difference {(wz — w)
and the difference (tvz — vz} is the largest. For illustration,
we assume that the arriving tuple will join with all tuples in
the other stream {c = 1).

As illustrated by the output tuples from the join, tuple ay;
joins for the small window w; and continues the join for
the next window w2 since the new tuple &2 is expected to
scan more tuples in w) than a1 with w2 —w. The Greedy
scheduler will switch back to biz when finishing ay; with ws
since b2 is expected to scan smaller window in this case.
Finally the Greedy scheduler will serve a,; with the partial
window wy — w2, lollowed by &3 with the partial window
iy — .

Join scheduling in the Greedy algorithm is determined by
the sizes of the windows and their differences, which are
static for a given set of window gueries. As a result, a fixed
priority can be assigned to the smallest window and to all the
partial windows when a query is introduced. The priority is
inversely proportional to the size of the smallest window or
the partial window.

The steps for the Greedy algorithm are the same as those for
the SWF algorithm, except in the priority assignment for the
SchedulingQueues and in the routing step. In the Greedy
algorithm, each queue in the list of the SchedulingQuenes
is assigned a priority based on the difference between the
size of its window and the preceding (smaller) window. At
each scheduling step, the tuple is selected from the Schedul-
ingQueue with the maximum priority. Therefore, Step {2)
in the SWF algorithm is modified to add the arriving tuple
to the SchedulingQueue with the smallest window.

The selection of the tuple does not require a scan of the en-
tire list of SchedulingQueues, since we can maintain a list
to the SchedulingQueues ordered by priority, and traverse
this list starting at the top prierity SchedulingQueue to find
first non-empty one. In the Greedy routing step, we can
release the cutput tuples before the outer tuple completely
scans the corresponding window, due to the static schedul-
ing order. This means that in Figure §, the ontput tuples
(@11, B12) and (ag, b12) can be released to the query of win-
dow wa, ever hefore b2 completely scans w;.

3.4 Hash-based Implementation

The algorithmns in the previous sections assume a nested-
loop implementation of the join step. A new arriving tuple
t in one stream, say A, scans all the tuples in the other
stream, say IF, that lie within a certain window of . The
scanning starts from the most recent tuple of B and proceeds
backwards. In the case of large window sizes, a linear scan of
the tuples inside the window may be expensive. We describe
a hash-based implementation of shared window-join using a
symmetric hash join [16).

In a symmetric hash join, each stream has its own hash
table. When a new tuple arrives in stream A, it is inserted
into A's hash table and is nsed to probe the hash table for
stream B.

We use a linked list to maintain a sliding window of the
arriving tuples. The size of the sliding window is equal to
the maximum window size in the shared queries. Tuples in
the sliding window are ordered based on their arrival time.
Whenever a new tuple arrives, it is added at the head of the
linked list representing the sliding window. Tuples at the
tail of the sliding window are dropped out of the hash table
when probed by arriving tuples from the other stream.

Although the size of each bucket is relatively small, it is
costly to scan the whole bucket {e.g., during LWQ) to serve
multiple window queries. However, based on a real imple-
mentation inside PREDATOR [13], we found that the cost of
producing output tuples constitutes a major part in the cost
of join processing in comtrast to the cost of scans in either
the nested-loop or the main-mempery hash implementations
of a single window join. The experiments demonstrate that
the production of output tuples can be as high as 40% of
execution time. Thus, scanning at the level of the bucket is
still advantageous.

Two pointers, head and tail, are used to facilitate the inser-
tion and deletion operations. In order to avoid scanning the
sliding window to perform a joizn, we build a memory-based
hash index on top of the sliding window linked list. Each
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Figure 6: Scheduling the Shared Window Join using Greedy-

bucket in the hash table is implemented by a doubly linked
list of tuples belonging to the bucket. This implies that
we add two additional pointers for each tuple in the sliding
window. Whenever a tuple drops at the tail of the sliding
window, the doubly linked Jist allows us 1o delete this tuple
from its corresponding bucket in constant time.

4. PROTOTYPE IMPLEMENTATION

In order to compare aur three scheduling algorithms, we im-
plemented them in a prototype database management sys-
tem, PREDATOR. [13], which we modified to accommodate
streamn processing. We implemented both hash-based and
nested loap versions of the shared window join. Stream-
ing is introduced using an abstract data type siream-fype
that can represent source data types with streaming ca-
pability. Stream-type provides the interfaces IritSiream,
ReadSiream, and CloseSiream. The stream table has a sin-
gle attribute of stream-type. In order to collect data from
the streams and supply them to the gquery execution en-
gine, we developed a stream manager as a new component of
the stream database system. The main functionality of the
streain manager is to register new stream-access requests, re-
trieve data from the registered streams into its local buffers,
and to supply data to be processed by the query execution
engine. To interface the query exccution plan to the stream
manager, we introduce a StreamScan operalor to communi-
cate with the stream manager and retrieve new tuples.

As the focus of this paper is on the operation of the shared
join, we used the simple optimization already implemented
in FREDATOR to generate the query plan for a new query.
The execution plan consists of a single multi-way join op-
eration at the bottom of the plan followed by selection and
projection and (if present) the aggregate operator. Using
this simple plan one can determine if the new query actu-
ally shared its join with other running queries or not. When
adding a new query to the shared plan, the shared join op-
erator creates a new output data stream (if the query uses a
new window) or uses the output of an already existing data
stream, which has the same window, as the jnput to the
rext query operators. For the case of SWF and Greedy, the
shared window join operator creates a new SchedulingQueue
if the query introduces a new window and updates the pri-
ority accordingly. The window specification is added as a
special construct for the query syntax as was shown in the
examples of Section 2.1.

5. EXPERIMENTS

All the experiments were run on a Sun Ernterprise 430 ,
running Solaris 2.6 with 4GBytes main memory. The data
used in the experiments are synthetic data streams, where
each stream consists of a sequence of integers, and the inter-
arrival time between two numbers follows the exponential
distribution with mean A. The selectivity of a single tuple,
5:, is approximated as 0.002. The windows are defined in
terms of time units (seconds).

In all experiments, we measure the average and maximum
Tesponse time per output tuple as received by each query. In
some cases we also report on the maximum amount of the
main memory required during the lifetime of the experiment,

All the measurements represent steady state values (i.e., the
window queries had been running for some time). As the
maximum window cauld be large (e.g., 10 minutes), the ex-
peritnents are "fast forwarded” by initially loading streams
of data that extend back in time to the maximum window
length. We collect performance metrics starting after this
initial loading has been completed, and run the experiments
until 100,000 new tuples are completely processed by the
shared window join operator. The response times we report
include both the cost of producing output tuples and the
cost of the ronting step.

5.1 Varying Window Distributions
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Figure 7: Average response time for all windows
using different window distributions (hash-based).

In the first set of experiments we study the performance of
our implementations of the LWQ, SWF and Greedy algo-
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Table 1: Window Sizes (in seconds)

Dist. wy | we wa wWa s iy wy

Uniform 1 | 100 | 200 } 306 { 400 | 500 | 600

Mostly — Small 5 15 | 30 | 60 | 300 | 600

1
Mostly — Large | 1 | 60 | 300 | 420 | 410 | 570 | 600
Smeall — Large 115 15 | 300 | 510 | 570 | 600

rithms using four different window size distributions. We
consider query worklpads consisting of seven window-join
queries with the same query signature, but each having a
different window size. While we ran experiments on many
different distributions and sizes, here we report on results
using four representative distributions (shown in Table 1.
All of these distributions include windows ranging in size
from 1 second to 10 mimtes (i.e., 600 seconds).

In the Uniforra distribution, windows are evenly distributed
in the range from 1 second and ten minutes, The Mesily-

Small distribution has window sizes skewed towards the smaller

range while the Mostly-Lorge has windows skewed towards
the larger end of the range. Finally, the Small-Large distri-
bution has windows skewed towards hoth extremes.

Note that the arrival rate is exponential with mean A set to
100 tuples/sec for each data stream in these experiments.
We examine the impact of more bursty arrival patterns in
Section 5.2. Here, we first describe the results obtained using
the hash-based implementation of the algorithms, and then
briefly report on the results obtained using nested loops.

5.1.1 Hash-based Implementations

Figure 7 shows the output response time per ouipul tuple av-
eraged aver all of the windows for each of the four distribu-
tions (the average and maximum response times are broken
down per window for each of the distributions in Figure 8).
As can be seen in the figure, Greedy has the best average re-
sponse tite of the three algorithms, while LWO provides the
second-best response time for all of the distributions except

for (as might be expected) Mosty-Small TWO lavors larger
windows at the expense of smaller ones. Since these aver-
aged numbers tend to emphasize performance of the larger
windows, LWO’s overall performance here is fairly stable
{we will look at perforinance for each of the window sizes
shortiy). Even by this metric, however, LWO is consistently
outperformed by Greedy. Comparing Greedy and SWF, the
reasons that Greedy does well overall are twofold. First,
recall that Greedy’s scheduling always chooses to work on
the smallest outstanding window or partial window, which
compared to SWF can result in satisfring larger queries
in a shorter amount of time. There are some cases, how-
ever, where Greedy and SWF gencrate cffectively the same
scheduling steps for new tuples. Even in these cases, liow-
ever, Greedy has the advantages that hecause it can predict
the next scheduling step for outer tuples, it can release the
output of the largest window earlier than SWF can.

We now drill down on these results to examine the behavior
of the scheduling algorithms for the different window sizes in
the distribution. This breakdown is shown in Fignre 8. The
top row of graphs in the figure show the average response
time for each window size; the bottom row of graphs show
the maximum response time cbserved during the ruz of the
experiment for each window size.

As can be seen in all of the figures, LWOQ's performance is
relatively stable across window sizes [or each workiead., This
is expected since since in LWQO, new tuples that need to join
with the smaller windows will have to wait until the largest
window is completely pracessed by an older tuple. As a re-
sult, the output response time for all the windows is approx-
imately equal to the response time for the largest window,
The slight increase observable when comparing smaller win-
dows ta larger windows in LWQ stems Fom the fact that if
a tuple arrives when the system is idle, it can immediately
start joining with previeusly arrived tuples. For such tuples,
the joins for smaller windows arc not delayed by joins for
the larger windows. This behavior is predicted by the for-
mulas derived in Section 3.1.1. There, equation (1} clearly



shows that the largest term in the equation is the second
term, (m -- 1)Smaz, Which involves the largest window size,
whereas only a small effect is expected do to the individual
window size, (Si + 1)-

In contrast ta LWQ, both SWF and Greedy tend to pro-
vide faster response times for smaller windows than for large
ones. The performance of these two algorithms in this regard
is in fact, heavily dependent on the window distribution, so
we address their performance for each distribution individ-
ually, below. Before doing so, however, we note that the
maximum response times provide by the algarithms (shown
in the bottom row of Figure 8) generally follow the trends
(on a per window size basis) cbserved for the average re-
sponse time. The key fact to notice however, is that there
can be substantia! variance in the response time for indi-
vidual output tuples; in some cases, the maximum response
time is ane or two orders of magnitude worse than the aver-
age.

Turning to the Uni form window distribution (Figure 8 (a)),
we can see that in this case, Greedy and SWF provide similar
performance for all but the largest window. This is because,
here, they generate the same scheduling order for new tuples
(recall that the difference in response time for the larger
window is due to Greedy's ability to release tuples early
for that window). Both algorithms favor the processing of
smaller window queries with new tuples over resuming the
join of older tuples with larger window queries. This is clear
from the incremental increase in the SWF and the Greedy
as we move from smallest to largest windows. Again, these
results validate our analysis in Section 3.2.1 where equation
(2) shows that the average response time depends on the
current and previous window sizes which is incrementally
increasing as we move from smaller to larger windows.

For the Mostly — Small window distribution,Figure 8 (b),
one would expect a good scheduling algorithm to be SWF,
given that most of the windows are small. As was seen in the
I'niform case, however, Greedy performs much like SWF
for the small windows here, and has an advantage for the
largest window. Note, however, that SWF’s response time
for the largest window is half as much in this case than it
is for the Uniform case. This behaviar is predicted by the
previous analysis equation (2}, where the response time for a
window includes the size of both the current window and the
previous window. Since the two largest windows are further
apart here than in the {/niform case SWF's response time
decreases here.

For the Mostly — Large window distribution,Figure 8 {c),
one would expect a geod scheduling algorithm te be LWQ,
piven that most of the windows are large. ln fact, LWO
does reasonably well here, ontperforming Greedy for all of
the windows except for the two smallest. Greedy does an ef-
fective job of balancing the perfermance for small and large
windows, here, with the result that as shown earlier, it pro-
vides slightly better performance averaged over all windows,
than does LWQ in this case. SWF on the other hand, per-
forms extremely poorly here, as it continually preempts pro-
cessing of the (many) larger windows to handle new incom-
ing tuples.

Finally, for the Small — Large windows distribution, Fig-
ure 8§ (d), neither the LWQ nor the SWF scheduling algo-
rithms is the best choice, since choosing one will increase the
response time for windows on one side of the windows spec-
trum, The Greedy scheduling is the best choice in this case
as it behaves similar to the SWF [or small window queries
{windows 15 seconds and lower) and similar to the LWO for
large window queries (windows 300 seconds and up).

5.1.2 Nested loop implememtation

We also ran the above experiments using the nested loops
implementations of the scheduling algorithms. In this case,
due to the increased cost of join processing, we had to lower
the arrival rate of the data streams to 15 tuples/sec in or-
der to ensure that all algorithms could keep up with the
incoming streams without dropping any tuples.

The average response time for the different window distri-
butions (averaged over all window sizes) is shown in Fig-
ure 9(a). We also show the per window average and max-
imum response times for the Uniform distribution in Fig-
ures 9(b),(c) respectively. The results here clearly resemble
those obtained with the hash-based implementations, with
the obvious difference in magnitnde of the response times.
Compared to hashing, the response time for the nested loop
algarithms is higher for all three scheduling approaches, as
incoming tuples must be compared with more tuples from
the other stream. Due to space constraints, we do not show
the detailed results for the other window distributions using
nested loops, as the story there is similar.

The conclusion of the previous experiments in Section 5.1.1
and Section 5.1.2 is that the Greedy algorithm provides the
best overall average response time when compared to the
LWOQ and the SWF and when using a variety of window
distributions. For the SWF and the EWO algorithms there
is no clear winner as their relative performance is highly
dependent on the particular window distribution. In terms
of maximum response time, the Greedy algorithm is always
better than the SWF algorithm for large windows, although
it has some irregularity for middle windows. This irregular-
ity is mainly the result of switching back and forth to serve
small as well as large windows. The LWOQ algorithm has
a uniform maximum value over all the windows due to the
fixed scheduling order used by LWO.

5.2 Varying the level of burstness

Tn the previous experiments, tuple arrival rates were driven
by an exponeatial distribution. The analyses of the algo-
rithms in Section 3 showed that their performance is highly
dependent on the burstiness of the arrival pattern. To ex-
amine this issue more closely, we ran several experiments
studying the behavior of the three algorithms as the level
of burstess (i.e., tendency of tuples to arrive within short
period of time) is increased for hoth streams. In these ex-
pertments, we generate the burst arrival of data streams
using a pareto [8] distribution, which is often used to simu-
late network traffic where packets are sent according to ON
OFF periods. In the ON periods a bunit of data is generated
and in the OFF periods no data is produced. The interval
between the ON and OFF periods is generated using the
exponential distribution with rate A. The density function
of pareto distribution is, P(x) = ;E%ur, where b > = and &
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is the shape parameter. The expected burst count, E(x),
is 2% For a much larger than 1, the expected value is
almost one, and for a between 2 and 1, the expected value
increases. We vary the expected burst size, E(z) between
one and five {(and choose ar accordingly). We also, modify
the arrival rate between the ON periods, to provide a fixed
overall average rate of, H“;j As we increase the level of
burstness, more tuples wait to schedule their join with the

other stream.

In this section we report on an experiment using the hash-
based implementation for the three scheduling algorithms
and comsidering the Small — Large windows distrbution.
The overall arrival rate is maintained at 100 tuples/sec per
stream. Figure 10(a) shows the average response time {(av-
eraged over all window sizes). In the figure, we can see that
as the burst size increases, the scheduling becomes more im-
portant; as bad scheduling decisions can increase the overall
average response time dramatically. The Greedy scheduling
putperforms all other scheduling for all of the burst sizes
here. This belavior is more evident as we increase the ex-
pected burst size {e.g, at expected bumst of sizes four and
five, respectively). As shown in the Figure, the improve-
ment of Greedy aver LWO is as high as 80% (in the case of
burst size of four).

Figures 10{b) and (c} show the average and maximum re-
sponse time (respectively) per window for the Small—Large
distribution using an expected burst size of five. Figure 10(c)
indicates that with large burst sizes, the SWF scheduling al-
gorithm has a response time of 125 seconds (approximately 2
minutes) for the largest window, whereas using the Greedy
scheduling algerithm it is bounded by 25 seconds. These
results demonstrate the fact that efficient scheduling is im-
portant to maintain a reasonable response time, particularly
in unpredictable environments.

5.3 Memory Requirements

One concern about the SWF and Greedy approaches is that
they might use excessive memory compared to LWQ, due to
their need to hold back some output tuples to preserve the
proper ardering of the output stream. In arder to determine
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the impact of this issue, we examined the maximum amount
of memory required by each of the algorithms. While small
differences are not likely to be important (given the low
cost of memory these days), a large difference could have a
negative impact on the data rates that could be supported
by the various algorithms with out dropping tuples, for a
particular memory size. We briefly present our experimental
findings here.

For all of the scheduling algorithms, the JoinBuffer is needed
to hold the tuples of each stream during the join processing.
The maximum size of a single JoinBuffer is Awpaz- SWE
and Greedy also use an extra input buffer {a list of schedul-
ing queves) to hold the new tuples from one stream until
they complete their join with the other stream. LWO hax
a similar input buffer (a gueue) to store the arriving tuples
from one stream before they are actually used to scan the
maximum window in the other stream. SWF and Greedy
algorithms maintain an output buffer to sort the output be-
fore releasing it to the output data streams. The maximum
size of the input buffer is a function of the maximum re-
sponse time for a newly arriving tuple. In the experiments
we reported on above the maximum response time was seen
to reach 2 minutes in some cases (see Figure 10(c)).

When considering an arrival rate of 100 tuples/sec and a
maximum window of size 600 seconds, the size of the Join-
Buffer is approximately 60,000 tuples and the maximum in-
put buffer size is 12,000 tuples, or 20% of the JoinBuffer size,
This, however, is a worst case analysis. We experimentally
obtained lower bounds for the maximum input buffer size,
and found them to be less than 10% of the JoinBuffer size,
for SWF.

Qur conclusions are that the memory requirement for the
SWF and the Greedy scheduling algorithms are roughly
comparable to that of the LWO algorithin. We also mea-
sured the maximum size for the output buffer in case of the
SWF and the Greedy algorithms. The maximum size for the
output huffer in both the SWF and the Greedy algorithm
was less than 3% the size of the JoinBuffer. This supports
our conclusion that the memory requirement for the extra



input and output buffers in the SWF aud the Greedy algo-
rithms are negligible when compared to the JoinBuffer sizes.

6. RELATED WORK

Streamn query processing has been addressed by many
evalving systems such as Aurora [4], Telegraph [12] and
STREAM [3] systems. The shared execution of multiple
queries over data streams is recently presented in CACQ [12]
and NiagaraCQ [7, 6]. In CACQ, they addressed the shared
window join between multiple queries by using the largest
window, similar to our first proposed algorithm. The join
operation is implemented as a multi-way join and the win-
dow is defined in terms of number of tuples. CACQ also
addressed the shared execution of selection queries (predi-
cate indexing). The alteration of the guery plan is dynamic
{using Eddies [2]). Our research in this paper focuses on
the shared window join and we provide several alternatives
to schedule the join than the work in CACQ. The work
in NiagaraCQ addreised incremental group optimization of
multiple queries where queries are added and deleted to the
system. The underlying data sources are remotely located
(over the web). Their conclusion of pulling up the selection
predicate to the tap of the group execution plan, supports
the use of shared join as we address in this paper.

Window join processing has been addressed in {5, 11].
Psoup [5] handles streamed queries over streaming data and
provides a similar definition to ours for sliding time window,
However, Psoup uses the same approach as was suggested in
CACQ, mainly join using the largest window which is a lim-
ited approach as we showed in this paper. The recent work
in [11} addressed the window join over two streams where
the two arriving streams have different arrival rates. The au-
thors suggest using asymmetric join (e.g., building a nested
loop one stream and a hash table on the ather stream), to
reduce the execution cost. Our research is different as we
consider the problem of sharing the window join execution
between multiple queries.

Joining data streams is also addressed in [1], the authors
identifies some queries over data streams that can bhe exe-
cuted entirely using limited amount of memory. The authors
consider the boundness of the terms in the projection and se-
lection predicates to determine if the query can be executed
in limited memory or not.

Scheduling a single join processing over non streaming data
had been studied in [9, 10, 14, 15). The ripple join switches
from processing one input data stream to the other when the
input source is blocked. The work in [10, 14, 15} address the
scheduling of the hash join with limited memory (swapping
part of the hash table to disk). The join scheduling is similar
in spirit to our proposed research although the previous work
was different as in addressing single join and non window
processing.

7. CONCLUSIONS

Sharing the execution of window joins among multiple queries
is a technique that can enhance scalability in streamn query
pracessing. We studied three scheduling algorithms (LWO
and the two new algorithms SWF and Greedy) that priori-
tize this shared execntion to minimize the average response
time per query. The tradeoffs between LWQO and SWF mo-

tivated the development of the Greedy algorithm. Under a
variety of workloads and mixes of window sizes, the Greedy
algorithm provides up to 80% improvement in average re-
sponse time over the other two algorithms. The experimen-
tal results based on real implementation of the algorithms
validate our analytical results. The experiments also illus-
trate that the gain in average response time of Greedy is at
the expense of an additional memory overhead of less than

10%.
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