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Abstract
We study and compare the persistence of bipartite entanglement (BE) and multipartite
entanglement (ME) in one-dimensional and two-dimensional spin XY models in an external
transverse magnetic field under the effect of thermal excitations. We compare the threshold
temperature at which the entanglement vanishes in both types of entanglement. We use the
entanglement of formation as a measure of the BE and the geometric measure to evaluate the
ME of the system. We have found that in both dimensions in the anisotropic and partially
anisotropic spin systems at zero temperatures, all types of entanglement decay as the magnetic
field increases but are sustained with very small magnitudes at high field values. Also we
found that for the same systems, the threshold temperatures of the nearest neighbour (nn) BEs
are higher than both of the next-to-nearest neighbour BEs and MEs and the three of them
increase monotonically with the magnetic field strength. Thus, as the temperature increases,
the ME and the far parts BE of the system become more fragile to thermal excitations
compared to the nn BE. For the isotropic system, all types of entanglement and threshold
temperatures vanish at the same exact small value of the magnetic field. We emphasise the
major role played by both the properties of the ground state of the system and the energy gap
in controlling the characteristics of the entanglement and threshold temperatures. In addition,
we have shown how an inserted magnetic impurity can be used to preserve all types of
entanglement and enhance their threshold temperatures. Furthermore, we found that the
quantum effects in the spin systems can be maintained at high temperatures, as the different
types of entanglements in the spin lattices are sustained at high temperatures by applying
sufficiently high magnetic fields.

(Some figures may appear in colour only in the online journal)

1. Introduction

The state of a classical composite system is described in
the phase space as a product of its individual constituents’
separate states, whereas the state of a composite quantum
system is expressed in the Hilbert space as a superposition of
tensor products of its individual subsystems’ states. Therefore,
the state of a quantum composite system is not necessarily
expressible as a product of the individual quantum subsystems’
states. This peculiar property of quantum systems is called
entanglement, which has no classical analogue [1]. Recently,

the interest in studying quantum entanglement was sparked
by the development in the fields of quantum information and
quantum computing, which was initiated in the 1980s by the
pioneering work of Benioff, Bennett, Deutsch, Feynman and
Landauer [2–8]. Although there is still no complete theory that
can quantify the entanglement of a general multipartite system
in a pure or mixed state, there are few cases where we have
successful entanglement measures. Most importantly, bipartite
systems in a pure state and mixed state of two spin-1/2 possess
such measures, also the pure and mixed multipartite systems
using geometric measures, such as geometric entanglement
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(GE) and relative entanglement [9–14]. Quantum information
processing and quantum computations can only be performed
in a many-body system with very complicated arrangements
concerning the properties of that system [15]. The building
unit, smallest for storing information in such a system (qubit),
has to be a well defined two state quantum entity that can be
easily addressed, manipulated and readout. The basic idea is
to define a certain quantum degree of freedom to serve as a
qubit, such as the charge, orbital or spin angular momentum.
The next step is to define a controllable mechanism to
form the coupling between two individual qubits in such a
way as to produce a fundamental quantum computing gate.
Furthermore, we have to be able to coherently manipulate
such a mechanism to provide an efficient computational
process. On the other hand, quantum phase transitions
in many-body systems are accompanied by a significant
change in the quantum correlations within the system, which
led to a great interest in investigating the behaviour of
quantum entanglement close to the critical points of transitions
[16–19].

All these facts and developments sparked great interest
in studying entanglement properties in many-body systems
in general and particularly in quantum spin systems in
the presence of external magnetic fields at zero and finite
temperatures [20, 21]. There has been special focus on
studying entanglement in one-dimensional (1D) spin chains,
utilizing the possession of exact analytic solutions for many
of these systems [17, 19, 22–26]. The raised question of the
multipartite entanglement (ME) versus bipartite entanglement
(BE) and whether they have to coexist and which one is
the actual resource for the critical behaviour in many-body
systems has stimulated many investigations. To address this
problem, several works have focused on comparing ME with
BE in quantum spin systems. Some of these works made
use of the one tangle [27, 28] as well as the concurrence
[29] for that purpose without explicitly evaluating the global
entanglement in the system. The one tangle τ1 represents the
entanglement between a single spin with the rest of the system
at zero temperature, which is equal to 4 det ρ(1), where ρ(1)

is the single site reduced density matrix. On the other hand,
the sum of the squared of pairwise concurrences,

∑
i�= j C2

i, j,
defines another quantity τ2 representing the weight of the
pairwise entanglements in the system. The ratio R = τ2/τ1

was introduced as a measure of the fraction of the total
entanglement attributed to the pairwise correlations.

The quantification of the global ME in a many-body
system is a very hard task as it usually requires the solution
of a big set of variational equations and the difficulty of
the problem increases nonlinearly with the dimension of the
Hilbert space. Few different measures of global entanglement
have been proposed, the most common among them are the
relative entropy of entanglement [13, 30], the robustness of
entanglement [31], polynomial measure [32] and the geometric
measure [14]. Particularly, the geometric measure determines
the distance between the state under consideration and the
closest product state in the Hilbert space. This measure has
been used intensively to study the ME in many-body systems
and especially the 1D spin chain systems utilizing the exact
solutions that these systems have [18, 33–38].

Natural systems of interest have strong interaction with
their environment, which causes decoherence effects [39, 40].
Particularly, practical many-body systems are required to
function at finite temperatures, which means that the system
will be exposed to thermal excitations and therefore its
mixed thermal states should be fully studied and understood.
Evaluating the density matrix of mixed thermal states of many-
body systems is a very hard task due to the large size of
the Hilbert space of the system. Recently, so much attention
has been directed to investigating ME versus BE in thermal
states of many-body systems and their relative robustness
to temperature, exploring the feasibility of achieving high
temperature entangled states. The ME and BE properties in
a 1D XY X spin model in an external field, using the Monte
Carlo simulation, were investigated [41]. It was shown that
the system possesses a factorized ground state [22] signalled
by vanishing τ1 and τ2 and a quantum phase transition
corresponding to an anomaly in the ratio R in the form of a
narrow minimum versus the magnetic field. This suggests that
the pairwise correlations suffer a big loss across the quantum
critical point in contrary to ME which dominates and as a
result, ME can be safely considered as the actual resource for
the observed quantum phase transition. The minimum of the
factor R was suggested as an estimator of the quantum critical
points. Also a class of 1D XY Z spin systems, with different
degrees of anisotropy, was shown to have factorizable ground
states [24] where the pairwise entanglement range diverges
while approaching these separable states, indicating a long
range reshuffling of entanglement. At finite temperature, using
τ2 and concurrence, it was demonstrated that the system may
emerge from a separable state into a mixed thermal entangled
state with no pairwise entanglement present, i.e. containing
only ME. The ME of a subsystem of three arbitrary spins
in a 1D XY spin chain in an external magnetic field was
evaluated [25], using the negativity between one spin and
the other two [42]; compared with the BE of each pair of
these three spins, it was shown that ME enjoys a longer range
compared with BE through the chain. At finite temperature,
it was demonstrated that ME is more robust than BE for a
block of three adjacent spins where ME is still present, though
there is no pairwise entanglement left in the system. Quite
a few works have studied the quantification and behaviour of
global ME in thermal states of many-body systems and mainly
focused on systems possessing analytic solutions, such as 1D
spin chains (e.g. [33, 35, 43]). To overcome the difficulties
of evaluating the global entanglement in the thermal mixed
states of many-body systems, there has been an approach
to provide a transition temperature below which the ME is
guaranteed in such systems based only on information about
the ground state of the system and its partition function [33].
Using this approach, the robustness of ME in thermal states of
the 1D spin-1/2 XY system was investigated and the threshold
temperature for vanishing entanglement was estimated [35].
It was demonstrated that the threshold temperature increases
monotonically with the magnetic field in the region of large
values of the field. Due to the big computational difficulties,
there is a lack in investigations in two-dimensional (2D) (and
higher) quantum systems, with a few notable exceptions [44–
48]. These works have focused on studying entanglement
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in 2D finite and infinite square lattices using Monte Carlo
simulations or the projected entangled-pair states [49]; they
used concurrence, one tangle and fidelity to quantify ME
and determine points of separable ground states and phase
transitions at zero temperature.

In this paper, we consider two different systems of a finite
number of spins, each in presence of an external transverse
magnetic field in contact with a heat bath at temperature T .
We provide an extensive investigation of a 2D XY spin-1/2-
star model but also study a 1D XY spin-1/2 chain for the
sake of comparison with the 2D system and the previous
1D results as well. The number of spins in each system is
7 and the nearest neighbour (nn) spins are coupled through
an exchange interaction J. We investigate and compare the
BE and the global ME of both systems under the effect of
an external transverse magnetic field, thermal excitations and
different degrees of anisotropy. We use the entanglement of
formation and GE as measures of the bipartite and global MEs
respectively. We show that, for both cases, in the anisotropic
and partially isotropic systems at zero temperature, the MEs
and BEs can be maintained at high magnetic field values where
the nn and MEs assume very small values that are, however,
still much higher than those of the next to nearest ones. Also
we demonstrate that the threshold temperature, at which the
entanglement vanishes, is higher for the nn entanglement
compared to both of the next-to-nearest neighbour (nnn)
BEs and MEs. Therefore, nn BE is more robust to thermal
excitations compared to the next to nearest bipartite and global
MEs in these systems. Also we demonstrated how an impurity
can be used to tune and enhance the threshold temperature of
all types of entanglement. We also examined the persistence
of quantum effects at high temperatures by observing the
entanglement behaviour and show that we may maintain
non-zero entanglement at considerably high temperatures by
applying strong enough magnetic fields.

This paper is organized as follows. In the next section,
we present our model. In section 3, we focus on the 2D spin
system and evaluate the BE and the thermal energy of the
system. The ME and the threshold temperatures for all type of
entanglements for the 2D system are evaluated in section 4. In
section 5, we study impurity effects. In section 6, we calculate
and compare the BE and MEs and the corresponding threshold
temperatures in the 1D system. We conclude in section 7.

2. The Model

We consider two different systems, 2D and 1D spin-1/2 XY
models with nn exchange coupling J subject to an external
magnetic field h, with seven spins in each system. The first
system is a 2D spin-star model consisting of one central spin
and six surrounding spins, whereas the second system is a 1D
spin chain, as shown in figure 1(a) and (b). The Hamiltonian
of the system is given by

H = − (1 + γ )

2

∑
〈i, j〉

Ji, jσ
x
i σ x

j − (1 − γ )

2

∑
〈i, j〉

Ji, jσ
y
i σ

y
j

−h
∑

i

σ z
i , (1)

1 2

3 4 5

6 7

 2 3 4 5 6 71

(a) (b)

Figure 1. (a) 2D triangular spin lattice; (b) 1D spin chain.

where σis are the Pauli matrices, γ is the anisotropy parameter,
〈i, j〉 is a pair of nn sites on the lattice and Ji, j = J
for all sites. For this model, it is convenient to study a
dimensionless Hamiltonian where we set J = 1 and define
a dimensionless parameter λ = h/J. The Hilbert space of
this spin systems is huge with 27 dimensions, nevertheless it
can be exactly diagonalized using the standard computational
techniques, yielding the system energy eigenvalues {Ei} and
eigenfunctions {ψi}. At absolute zero temperature, the system
lies in its ground state |ψ0〉, which is usually entangled with an
amount that varies based on the values of the different system
parameters. The system is described by the density matrix
defined in terms of the pure ground state wavefunction |ψ0〉 as

ρ = |ψ0〉〈ψ0|. (2)

Now, when the spin system is set into contact with a heat bath
at an absolute temperature T , the system moves from its initial
pure state, described by equation (2), to a mixed thermal state,
which is a mixture of the ground state and a number Ne of
excited states, represented by

ρT = 1

Z

{
e−βE0 |ψ0〉〈ψ0| +

Ne∑
i=1

e−βEi |ψi〉〈ψi|
}
, (3)

where β = 1/kT , k is the Boltzmann constant and Z is
the system partition function. The number of excited states
involved depends on the temperature, where more states are
added as the temperature is raised. This mixing of excited
states with the ground state acts as a destructive noise that
reduces the amount of entanglement contained in the system.
When the temperature reaches a certain value, which varies
based on the system characteristics and parameters values, the
amount of noise created by the excited states due to thermal
fluctuations is sufficient to turn the system into a disentangled
state. This temperature is known as the threshold temperature,
denoted by Tth, where below it the system is guaranteed to be
entangled [33].

3. Thermal bipartite entanglement in 2D spin
systems

To study the BE in the system, we confine our interest to
the entanglement between only two spins, at any sites i and
j [58]. All the information about the considered two sites i
and j is contained in the reduced density matrix ρi, j, which
can be obtained from the entire system’s density matrix by
integrating out all the spins states except i and j. We adopt
the entanglement of formation as a well known measure of

3



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 245501 G Sadiek and S Kais

0
5

10
15

20

0
2

4
6

8

0

0.02

0.04

0.06

 

λ
kT

 

E
F

(1
,2

)

0
5

10
15

20

0
2

4
6

8

0

0.02

0.04

0.06

 

λkT
 

E
F

(1
,4

)

0
2

4

0

0.5

1
0

0.5

1

1.5

2

2.5

x 10
−3

 

λkT
 

E
F

(1
,7

)

(a) (b)

(c)

Figure 2. The BE EF(1, 2), EF(1, 4) and EF(1, 7) of the 2D Ising system (γ = 1) versus λ and kT (in units of J).

entanglement, where Wootters [29] has shown that, for a pair
of binary qubits, the concurrenceC, which goes from 0 to 1, can
be used to quantify entanglement. The concurrence between
two sites i and j is defined as

C(ρi, j) = max{0, ε1 − ε2 − ε3 − ε4}, (4)

where the εis are the eigenvalues of the Hermitian matrix
R ≡ √√

ρρ̃
√

ρ with ρ̃ = (σ y ⊗σ y)ρ∗(σ y ⊗σ y) and σ y is the
Pauli matrix of the spin in the y direction. For a pair of qubits,
the entanglement of formation is defined as,

E(ρi, j) = ε(C(ρi, j)), (5)

where ε is a function of C

ε(C) = h

(
1 − √

1 − C2

2

)
, (6)

where h is the binary entropy function

h(x) = −x log2(x) − (1 − x) log2(1 − x). (7)

In our calculations, we use the entanglement of formation EF
as a measure of the BE. Using the mixed density matrix ρT

defined in (3), one can evaluate the BE between any pair of
spins in the system. In this section, we focus on studying the
BE only in the 2D spin system sketched in figure 1(a). In
figure 2, we have explored the behaviour of the entanglements
of the nns EF(1, 2); EF(1, 4) and the next-to-next-to-nearest
neighbour (nnnn) EF(1, 7) versus λ and the temperature kT

for the anisotropic Ising system (γ = 1). In fact, the nnn
EF(1, 5) is very close to EF(1, 7), as we will show below,
but EF(1, 7) shows sharper changes, which makes us focus
on it. As can be noticed, the nn BEs between two border
sites EF(1, 2) and between a border site and the central one
EF(1, 4) are strongest for very small magnetic fields but
very fragile away from the zero temperature. On the other
hand, as the magnetic field is increased, the entanglement
maintains a small value which is more resistant to higher
temperatures. Interestingly, the threshold temperature Tth at
which the entanglement vanishes increases monotonically as
the magnetic field increases. The (nnnn) entanglement EF(1,7)
sustains only for very small values of the magnetic field and in
the vicinity of the zero temperature; its value is much smaller
than the nn entanglements. In order to further investigate the
thermal robustness of the entanglement state and determine the
magnitude of the entanglement precisely at high temperatures,
we show the contour plot of the entanglements EF(1, 2),
EF(1, 4) and EF(1, 7) in figure 3. As can be noticed, we
can reach, for EF(1, 2) and EF(1, 4), a threshold temperature
kT = 8 and higher by applying a magnetic field h = 20
and higher though the entanglement magnitude is very small.
EF(1,7) is very fragile to temperature regardless of the strength
of the applied magnetic field, as shown in figure 3(c).

The partially anisotropic system with γ = 0.5 was found
to exhibit a close behaviour to the γ = 1 case, as depicted in
figure 4. The peak of the entanglements, at a small magnetic

4



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 245501 G Sadiek and S Kais

λ

kT

 

 

0 5 10 15 20

1

2

3

4

5

6

7

8

0.01

0.02

0.03

0.04

0.05

EF(1,2)

λ

kT

 

 

0 5 10 15 20

1

2

3

4

5

6

7

8

0.01

0.02

0.03

0.04

0.05

EF(1,4)

λ

kT

 

 

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

EF(1,7)

(c)

(a) (b)

Figure 3. The contour plot of the BE EF(1, 2), EF(1, 4) and EF(1, 7) of the 2D Ising system (γ = 1) versus λ and kT (in units of J).
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Figure 5. The contour plot of the BE EF(1, 2), EF(1, 4) and EF(1, 7) of the 2D isotropic system (γ = 0.) versus λ and kT (in units of J).

field and in the neighbourhood of zero temperature, is not
single and this is due to the profile of the system’s energy gap
for γ = 0.5, as will be discussed in more detail below. It is
clear that the value of the threshold temperature corresponding
to the different magnetic field values is smaller compared to
that of the γ = 1 case, as can be concluded from figures 3
and 4. Interestingly, the completely isotropic spin system with
γ = 0 behaves in a completely different way compared to
γ = 0 and 0.5, as shown in figure 5. As can be noticed from
the figures, not only EF(1, 7) but also EF(1, 2) and EF(1, 4)

vanish at very small temperatures, about a few kT . Clearly
the thermal fluctuations are very devastating to the isotropic
system where the BE over the whole lattice vanishes at a very
small temperature. The peak of the entanglement EF(1, 2) is
higher than that of EF(1, 4) but EF(1, 7) is much lower than
both. In fact, this behaviour of the isotropic system (γ = 0)
should not be very surprising, as it is known that the
systems described by the Hamiltonian equation (1) at the
thermodynamic limit belong to different universality classes
based on the value of γ . The isotropic system is characterized
by a separable state at a small value of the magnetic field; for
the considered system at γ = 0, the ground state is separable
for λ ≈ 1.85 and higher.

In order to investigate the robustness of entanglement
at much higher temperatures, we depict, as an example,
the contour of the entanglements EF(1, 2) (at γ = 1),
EF(1, 4) (at γ = 0.5), at a very high magnetic field in
figures 6(a) and (b) respectively, which confirms the survival
of entanglement, though very low in magnitude, at a high
temperature. Interestingly, when we considered EF(1, 7) in the

Ising system and the partially anisotropic system (γ = 0.5) at
high magnetic fields and temperatures, we found that it is not
exactly zero (only for γ = 0.5) though it is extremely small,
as shown in figure 6(c).

It is of great interest to examine the relationship between
the robustness of thermal entanglement and the corresponding
thermal energy gap of the system. By the thermal energy gap,

Eth, we mean the difference between the mean (ensemble
average) energy of the system at temperature T and the
system’s ground-state energy, i.e. 
Eth = 〈E〉 − E0. In
figures 7(a)–(c), we present the contour plots of energy gaps
for the systems with γ = 1, 0.5 and 0 respectively versus
λ and kT for small values of λ. As can be seen, there are
clear differences between the different cases, where the energy
gap in the Ising system shows one sharp minimum before
increasing montonically as λ increases, which gives rise to
one corresponding sharp peak of entanglement in that case
at the small values of λ. The energy gaps in the partially
anisotropic and isotropic systems show two and multiple
minima respectively before they also increase monotonically
with λ, which causes the double peaks and multiple peaks, with
different relative intensities, in the two systems respectively.
This explains the different profiles of the entanglement peaks,
at small values of the magnetic field, as the degree of anisotropy
changes, as demonstrated in figures 3–5. On the other hand,
the thermal energy gap at the different anisotropic values looks
asymptotically (at a high magnetic field) the same, as shown
in figure 7(d) for the case γ = 0, for instance.

Remarkably, one can see a strong correspondence between
the strength and survival of entanglement, particularly for
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system versus λ and kT (in units of J) for a range of λ from 100 to 400.
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γ = 0.5 and 1 and the value of the energy gap when comparing
figures 3, 4 and 7. The energy gap is either zero (the white
regions of the contour plot) or quite small in the domains of
non-zero entanglement. As can be noticed, the thermal energy
gap increases monotonically as the magnetic field intensity
increases, which explains the survival of the entanglement,
despite its small magnitude, at relatively high temperatures
and its strong resistance against thermal excitations compared
to the high magnitude entanglement at the small values of
the magnetic field, which is very fragile to temperature. It
is important to emphasize here that though the energy gap
profile looks asymptotically almost the same for the three
anisotropic parameter values, nevertheless the entanglement in
the isotropic system (γ = 0), contrary to the other two cases,
vanishes at a very low temperature regardless of the energy gap
value; this is due to the fact that this system’s ground state,
as we mentioned before, is disentangled for λ ≈ 1.85 and
higher.

4. Robustness of thermal entanglement in 2D spin
systems

In order to study the ME of the entire lattice, a distance-
like measure of entanglement, namely the global robustness
of entanglement R(ρ) [31, 33] is commonly used, which is
defined for a general state ρ as the minimum amount of noise
(t) needed to destroy the entanglement content of ρ and is
given by

R(ρ) := min ω t, (8)

where ω is the state when added to ρ converts it to a separable
state φ, such that

φ(ω, t) :=
{

1

1 + t
(ρ + t ω)

}
∈ S, (9)

where S is the set of all separable states. The resultant separable
state φ can be regarded as a mixture of two states, ρ and ω, with
relative populations 1/(1 + t) and t/(1 + t) respectively. This
general approach can be applied, in particular, to a system
in contact with a heat reservoir to determine the threshold
temperature, Tth, below it the system is guaranteed to be
entangled [33]. Therefore, for instance in the spin system,
if the state ρ is identified as the ground state ψ0 and the rest
of the states {ψi}, which get mixed with ψ0 as the temperature
is raised, as ω, then the population of the state ρ is given by
1/(1+t) = e−E0/kT /Z. As a result, the condition for the system
to be guaranteed entanglement at a temperature T will read

e−E0/kT

Z
>

1

1 + R(ψ0)
, (10)

where R(ψ0) is the global robustness of the ground state ψ0,
which has an energy eigenvalue E0. To obtain the threshold
temperature one has to turn the inequality in equation (10)
into an equality and we get

e−E0/kTth

Z
= 1

1 + R(ψ0)
. (11)

To determine the threshold temperature, Tth, one has to evaluate
the robustness of entanglement of the ground state R(ψ0),

which is a very difficult task, where the entire system’s
Hilbert state has to be searched for the noise mixed state ω.
However, it was found that a lower bound for the robustness
of entanglement can be obtained [33] by evaluating the GE,
G(ψ0), instead [14], which is easier to evaluate, where in
general for any pure state ψ

1

1 + R(ψ)
� 1

2 G(ψ)
, (12)

which would enable us to calculate a lower bound for the
threshold temperature, where below it the system is guaranteed
to be entangled. In all the figures, we simply denote this
temperature as Tth.

The geometric measure of ME utilizes the geometric
properties of the Hilbert space to find the distance (or angle)
between a pure state, ψ , representing the system and the closest
pure separable state, φ to it, i.e. || |ψ〉 − |φ〉 ||. The square
sin of the angle between the two states ψ and φ represents a
good measure of the global GE, where the smallest value of
the square sine specifies the closest separable state to the pure
state ψ and is defined by

G(ψ) := 1 − [max φ ||〈ψ |φ〉||]2, (13)

where ||〈ψ |φ〉|| represents cosine the angle between the two
states ψ and φ. By evaluating the GE and using equations (11)
and (12), we can find the lower limit of the threshold
temperature Tth.

In order to find the closest separable state to the state ψ ,
we assume an arbitrary separable state φ as a product of the
single spin states of the seven spins, which takes the form

|φ〉 =
i=7∏
i=1

{
Pi|0〉 +

√
1 − P2

i eiδ|1〉}. (14)

Utilizing the reality of the wavefunction, where the eigenstates
of this class of Hamiltonians are real, we set the azimuthal
angle δ = 0 [14, 18]. In addition, we have also examined
numerically the independence of the results on the azimuthal
angle. The set of parameters {Pi, i = 1, 2, . . . 7} has to be
varied over its entire range to cover the whole system’s Hilbert
space searching for the closest distance between ψ and φ

where 0 � Pi � 1. Searching the entire Hilbert space is a
computationally difficult task; therefore, we have tested around
4 × 106 different distinct set of values for the P’s parameters,
uniformally distributed over the system’s Hilbert space, for the
calculations of the GE.

In this section, we investigate only the 2D spin system.
In figure 8, we compare the BEs EF(1, 2), EF(1, 4), EF(1, 5)

and EF(1, 7) with the multipartite GE versus the parameter λ

at zero temperature for different degrees of anisotropy. As can
be noticed, the behaviour of the nnn entanglement EF(1, 5) is
very close to the nnnn entanglement EF(1, 7) for all degrees
of anisotropy. In figure 8(a), the nn BEs EF(1, 2) and EF(1, 4)

of the Ising system after reaching its peak value at around
λ = 2.5, decay as λ increases, whereas the nnn and nnnn
BEs EF(1, 5) and EF(1, 7) reach exactly zero magnitude at
small values of the magnetic field. On the other hand, the
ME GE starts with a large magnitude, ≈0.92 at λ = 0,
then decays abruptly as λ increases before it asymptotically
approaches the nn entanglements, where all sustain with quite
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Figure 8. The entanglements EF(1, 2), EF(1, 4), EF(1, 5), EF(1, 7) and GE of the 2D spin system versus λ for γ = 0, 0.5 and 1 at zero
temperature. The legends are as shown in subfigure (a).

small magnitudes up to large values of the magnetic field. In
fact, examining the nn BE and GEs at a very large magnetic
field strength shows that they reach quite small values that are
of the same order of magnitude; for instance at λ = 300 they
are of the order of 10−5, though the magnitude of GE is always
less than that of EF. A similar behaviour of the BEs and MEs is
observed again in the partially anisotropic system, as shown in
figure 8(b), but in this case, EF(1, 5) and EF(1, 7) sustain to a
larger value of λ reaching very small magnitudes compared to
EF(1, 2) and EF(1, 4). The behaviour of the entanglement in
the isotropic system is depicted in figure 8(c) where all types
of entanglement vanish at λ ≈ 1.85; as we mentioned before,
this stems from the fact that the ground state of the system is
separable at this value and higher.

In figure 9, we compare the threshold temperature of the
BEs, which is the temperature at which the BEs vanish, as was
demonstrated in figures 3–5, to the threshold temperature of
the ME, as defined before versus the parameter λ. In the Ising
model, explored in figure 9(a), the threshold temperatures of
the nn BEs EF(1, 2) and EF(1, 4) are very close and increase
monotonically as the magnetic field increases. On the other
hand, Tth for EF(1, 7) is very close to that of the GE at small
values of the magnetic field where it increases monotonically
but suddenly drops to zero around λ = 6, whereas Tth for
the GE maintains its monotonic behaviour but is much smaller
than Tth for EF(1, 2) and EF(1, 4). In figure 9(b), the threshold
temperatures of the partially anisotropic system, γ = 0.5,
behave in a similar way to the isotropic case where the

temperatures for the nn BEs are very close; however, what
is even more interesting is that the threshold temperatures
for the nnnn BE sustains as the magnetic field increases and
asymptotically becomes very close to that of the GE.

This means that the ME over the lattice along with the
BE between the far spins (such as EF(1, 7)) are more fragile
to temperature than the BE between the nn spins, such as
EF(1, 2) and EF(1, 4), which manifests higher resistance and
assumes a higher magnitude compared to GE and EF(1, 7) at
the same temperature. A closer look at the behaviour of the
threshold temperatures of the partially anisotropic system at
small values of the magnetic field is given in figure 9(c). One
can see sharp changes in the threshold temperatures especially
for the nnnn entanglement and the GE, which can be explained
in terms of the energy gap of the system, as will be discussed
shortly. The threshold temperatures of the completely isotropic
system, γ = 0, is explored in figure 9(d), where again the
threshold temperatures of the nn entanglements EF(1, 2) and
EF(1, 4) are very close and maintain an almost constant value
before suddenly dropping to zero at λ ≈ 1.85. The threshold
temperature of EF(1, 7), which is considerably lower than that
of the nns, increases linearly before suddenly dropping to zero
also at the same value λ ≈ 1.85. The threshold temperature
of the ME exhibits an oscillatory behaviour with an average
value within that of the nnnn bipartite value.

Figure 10 explains the sharp changes in the threshold
temperatures at the small range of values of the magnetic field.
As can be noticed in figures 10(a)–(c), the energy gap of the
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Figure 9. The threshold temperatures (in units of J) corresponding to the entanglements EF(1,2), EF(1,4), EF(1,7) and GE of the 2D spin
system versus λ for γ = 0, 0.5 and 1. The legends are as shown in subfigure (a).
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Figure 11. (a) The GE of the 2D Ising system (γ = 1) and (b) the threshold temperature (in units of J) of the 2D isotropic system (γ = 0),
for two different numbers of the set of parameters {Pi}, n = 2 × 105 and 4 × 106.

Ising system increases monotonically over the entire λ range
with no sharp changes, which explains the smooth monotonic
increase in the threshold temperatures shown in figure 9(a).
In contrast, the energy gaps in the partially anisotropic and
isotropic systems exhibit oscillating and sharp oscillating
changes respectively at the small values of the parameter
λ � 1.85 before coinciding with the anisotropic curve and
increasing monotonically, as shown in figure 10. Interestingly,
by comparing the behaviour of the threshold temperatures,
particularly of the ME in figure 9, to that of the energy gaps
in figure 10, one can notice the strict correspondence between
them; the minima (and maxima) in the threshold temperatures
coincide with that of the energy gaps on the parameter λ

scale and when the energy gap increases monotonically, the
threshold temperature follows that behaviour too. The impact
of the energy gap on the ME is stronger compared to the
BE due to the fact that the energy gap is calculated for
the entire (multipartite) system. The effect of the number of
the distinctive set of parameters {Pi, i = 1, 2, . . . 7} on the
accuracy of the results is examined in figure 11 where two
different numbers, 2×105 and 4×106, are compared in plotting
the ME for γ = 1 and the threshold temperature for γ = 0.5 ,
which shows a very strong coincidence.

5. Impurity effect

The imperfection and disorder in real physical systems have
been always a big concern when studying the different
quantum properties of many-body systems [21, 50]. Disorder
and lack of homogeneity and isotropy cause a break of the
translational symmetry and consequently the scaling of the
entropy and all related quantities. An essential source of
disorder is the presence of impurities in the physical system.
The effect of quantum impurities in many-body systems
and the quantification of the entanglement in these systems
have been investigated [50]. The Von Neumann entropy was
used to quantify the single site impurity entanglement in the
considered systems. At finite temperature, the thermodynamic
impurity entropy is used to quantify entanglement, especially
in Kondo impurity systems [51, 52]. It was shown that the
entanglement is significantly affected by the presence of the

impurity even in the absence of physical coupling to the
impurity itself. In a previous work, it was demonstrated that the
entanglement and ergodicity in 2D spin systems can be tuned
using impurities and anisotropy [53]. The effect of impurities
on the spin relaxation rate [54] and dynamics of entanglement
in 1D spin systems have been investigated [55]. The decay rate
of the spin oscillation was found to be significantly affected
by the coupling strength of the impurity spin.

In this section, we study the effect of a single impurity
located at the central site on the threshold temperature of
the different types of entanglement in the lattice. The single
impurity is a spin that is coupled to its nns through an exchange
interaction J′, which differs from that between the other sites.
We set J′ = (α + 1)J where α is the impurity strength
parameter. Here we consider three different cases for the
impurity strength, α = −0.5, 0 and 0.5 representing weak, null
and strong ones respectively. In fact, such a system of seven
spins with the central spin having a different coupling strength
from the surrounding ones can be realized, for instance, in
a system of coupled semiconductor quantum dots where the
coupling between the valence electrons on the different dots is
the exchange interaction, which can be controlled by raising
or lowering the potential barrier between the dots [56].

In figures 12(a)–(c), we study the effect of the central
impurity, with different strengths, in the 2D Ising lattice on
the nn bipartite EF(1, 2), nnnn bipartite EF(1, 7) and the ME
(GE) respectively. As can be noticed, the impurity strength
has a minor effect on EF(1, 2), where almost no change
can be observed. Interestingly, in the case of EF(1, 7), the
critical value of the magnetic field at which the entanglement
vanishes increases as the impurity strength increases. For
strong impurity case, EF(1, 7) never vanishes and increases
monotonically as λ increases. This means that the impurity
can be used to significantly preserve and enhance nnnn
entanglement at a high temperature and magnetic field in
the Ising system, which is also the case for GE, as can be
noticed in figure 12(c). The partially anisotropic system is
explored in figure 13. The impurity has a significant effect
on EF(1, 2) only at small values of λ, where it shifts the
threshold minimum towards the right and creates an oscillation
for a strong impurity value. The asymptotic value of EF(1, 2)

at large λ is not affected by the impurity strength. On the
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Figure 12. The threshold temperature of the entanglements EF(1,2), EF(1,7) and GE in the Ising 2D spin system with a central impurity
versus λ at different impurity strengths. The legends are as shown in subfigure (a).
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Figure 13. The threshold temperature of the entanglements EF(1,2), EF(1,7) and GE in the partially anisotropic 2D spin system with a
central impurity versus λ at different impurity strengths. The legends are as shown in subfigure (a).

other hand, while the impurity strength enhances the nnnn
asymptotic entanglement, it reduces the global entanglement
but shifts the minima of Tth towards higher magnetic field

values. The effect of the impurity on the isotropic system,
with γ = 0, is shown in figure 14, where increasing the
impurity strength clearly enhances all types of entanglement.
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Figure 14. The threshold temperature of the entanglements EF(1,2), EF(1,7) and GE in the isotropic 2D spin system with a central impurity
versus λ at different impurity strengths. The legends are as shown in subfigure (a).

In addition, it also shift the magnetic field critical value at
which all entanglements vanish towards higher values. In fact,
our results concerning the threshold temperatures here confirm
the findings in a previous work [53] where it was shown that
the entanglement can be enhanced or quenched in the spin
system depending on the degree of anisotropy and the strength
of the impurities.

6. Entanglements and threshold temperatures in 1D
spin systems

Now let us consider a 1D XY spin chain consisting of seven
spins, as sketched in figure 1(b), which is described by the same
Hamiltonian equation (1) where, in this case, the exchange
interaction Ji, j exists only between each spin and its two nn
spins on the chain. The system shows a close behaviour to
what we have seen in the 2D case.

In figure 15(a), we compare the BEs to the ME for the
Ising system, where, as can be seen, the nn entanglements
EF(1, 2) and EF(2, 3) are very close as they start with zero
magnitude at λ = 0 and increase as λ increases, reaching
a maximum value around λ = 1 and then decay to zero at
large λ. The nnn entanglement EF(1, 3) exhibits a similar
behaviour but with a much smaller magnitude and in contrast
to the 2D case, it sustains at large values of the magnetic
field. The ME starts with a large value and abruptly decays
approaching asymptotically the nn BEs at large magnetic field.
The behaviour of the partially anisotropic system is very close
to that of the Ising system, as shown in figure 15(b), except
the quasi-oscillatory behaviour of the BE at values of λ < 1;

however, again the nn bipartite and the GEs become close
asymptotically, whereas the nnn entanglement sustains but
with a much smaller magnitude. The entanglements of the
isotropic system, similar to the 2D case, shows a step-like
behaviour and vanish at the same point, which is λ ≈ 0.92
in the current case, as depicted figures 15(c). The threshold
temperature of the different types of entanglements in the 1D
chain is explored in figure 16. Once more, the behaviour of
the threshold temperatures of the nn entanglements EF(1, 2)

and EF(2, 3) are close at the different degrees of anisotropy
of the system and the case is the same for the nnn BE and
MEs. Also, as can be seen, the isotropic system has zero
threshold temperature at λ ≈ 0.92. The behaviour of both the
entanglements and threshold temperatures in the 1D spin chain
can be explained in terms of the variation in the system’s energy
gap at zero temperature, which is depicted in figure 17. Similar
to the 2D case, one can see the strict correspondence between
the variations in entanglements and threshold temperatures and
the variations in the energy gap for all degrees of anisotropy
of the system and at all λ values.

Now, it is clear that the general behaviour of the MEs
and BEs, in the one and 2D systems at the different degrees
of anisotropy, shows that the threshold temperature of the
system, considered at the same magnetic field, increases with
γ within the range 0 < γ � 1 and vanishes at a small value
of the magnetic field for γ = 0. In addition, the threshold
temperatures increase monotonically with the magnetic field
for λ � 1.

In fact, our results, particularly the 1D case, are in
complete agreement with the findings of [35], which is

13



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 245501 G Sadiek and S Kais

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25
(a)

λ

E

 

 

  GE
EF(1,2)
EF(2,3)
EF(1,3)γ = 1

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25
(b)

λ

E

 

 

γ = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(C)

λ

E

 

 

Figure 15. The entanglements EF(1,2), EF(2,3), EF(1,3) and GE of the 1D spin system versus λ for γ = 0, 0.5 and 1 at zero temperature.
The legends are as shown in subfigure (a).
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Figure 16. The threshold temperatures (in units of J) corresponding to the entanglements EF(1,2), EF(2,3), EF(1,3) and GE of the 1D spin
system versus λ for γ = 0, 0.5 and 1. The legends are as shown in subfigure (a).
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Figure 17. The energy gap (in units of J) of the 1D spin system versus λ for γ = 0, 0.5 and 1 at zero temperature.

concerned with the threshold temperature corresponding to
the global entanglement in 1D XY model at different degrees
of anisotropy (see figures 5 and 6 therein), though the results
in those figures are for 80 spins. Also, our results agree with
those of [25] concerning the monotonic behaviour and the
relative magnitudes of nn to nnn of BE in the different pairs of
three adjacent spins on a 1D isotropic XY spin chain utilizing
the integrability of the model. However, the ME in their case,
which is quantified using the negativity between one of the
spins and the other two, shows a higher threshold temperature
compared to that of BE in that case (see figure 3 therein).
Furthermore, the minima that the entanglements go through
at γ = 0.5, as presented in figures 8(b), 9(b), 9(c) and 15(b),
bear resemblance to the findings of [22, 24] where minima
of the entanglement were observed indicating the existence
of factorizable (disentangled) ground states, which was also
investigated in XY X spin systems [23, 45].

An estimate of the experimental values of the threshold
temperatures for the typical spin systems of interest are due
here. As the values of the threshold temperatures and energy
gaps are all expressed in units of the exchange interaction
constant J, which varies for the considered spin systems over
a range of the order of μeV to meV [57], the corresponding
range of the threshold temperature is 1.16×10−2 K to 11.6 K.
Also, the typical value of the magnetic field h, which is also is
expressed in units of J, can be evaluated here, which goes over
the range 1.7 × 10−2 T to 17 T. Our results demonstrate that a
bigger energy gap would lead to a higher threshold temperature
but needs a stronger magnetic field too. Using these results,

one can come up with important estimates, where, as can be
concluded from figure 9, the 2D Ising system can reach a
bipartite threshold temperature as high as 100 K, which needs
a magnetic field that is as high as 300 T but the corresponding
multipartite threshold temperature would be only about 50 K.
The isotropic system is entangled up to a magnetic field of
about 30 T where the maximum bipartite threshold temperature
would be about 15 K and the maximum reachable multipartite
threshold temperature is 7.5 K. For the same applied magnetic
field, the threshold temperatures of the 1D spin chain would be
slightly smaller than the corresponding ones in the 2D system
as can be concluded from figure 16.

7. Quantum phase space of XY spin systems

Quantum phase transition in a many-body system happens
either when an actual crossing takes place between the excited
state and the ground state or a limiting avoided level crossing
between them exists, i.e., an energy gap between the two states
that vanishes in the infinite system size limit at the critical
point [16]. When a many-body system crosses a critical point,
significant changes in both its wavefunction and ground-state
energy take place, which can be realized in the behaviour of
the entanglement function and its derivatives [53, 58, 59]. It
is well known that an infinite many-body system (i.e. at the
thermodynamic limit) exhibits clear singularity at the critical
point. However, finite sized systems may still show a strong
tendency for being singular closer to the actual critical point
of the system, which improves with the system size [53, 59].
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The Hamiltonian equation (1) describes a family of
models with different distinct phases at the thermodynamic
limit (N → ∞). The quantum phase diagram for the
1D system, in terms of γ and h, is well determined and
contains three different phases: oscillatory, ferromagnetic and
paramagnetic [60]. At the thermodynamic limit, the system
reaches the isotropic and Ising limits at γ = 1 and 0
respectively. The system belongs to a universality class, the
isotropic (XX) at γ = 0, whereas it belongs to a different class,
Ising (aniostropic XY ), in the range 0 < γ � 1. The system
possesses a quantum critical point at λ = λc = 1, where this
point dictates the transition between different phases of the
system depending on the value of γ . The system at all degrees
of anisotropy exists in the paramagnetic phase for λ > λc. For
γ 2 + λ2 < λ2

c and γ �= 0, the system exits in the oscillatory
phase, whereas for γ 2 + λ2 > λ2

c and λ < 1 is paramagnetic.
The phase diagram of the infinite 2D system, though it is very
similar to the 1D case, is not well established due to the lack of
an analytic solution, computational difficulty and the different
structures that the system may have. Many efforts have been
directed to the prediction of the critical value of λc in the 2D
spin system. For instance, the renormalization group method
has been applied to the 2D infinite triangular (square) lattice
and estimated a critical point at λc = 4.757 84(2.629 75) [61],
whereas the finite size scaling method applied to the square
lattice predicts λc = 3.044 [62]. The point (with tendency to
singularity) in the finite 2D spin system with 7-sites considered
in this paper (and also for 19-sites), was estimated previously
and found to be λc = 1.64 and 3.01 for the 7-sites and 19-sites
systems respectively by studying the pairwise concurrence and
its derivative in the system [59].

Though we emphasize here that the quantum phase
transitions can take place only in the infinite system size (in
the thermodynamic limit), we will try to draw a relation here
between the behaviour of the entanglements and the threshold
temperatures in our considered systems and the different
phases of the system. As one can notice for the Ising
system (γ = 1), the BEs have one single peak, where in
fact its derivative locates the point of strong tendency for
being singular [53, 59] before decaying monotonically with
λ and the GE decay monotonically from a large value. This
behaviour is reflected also in the threshold temperatures,
which increase monotonically with λ. This profile of the
entanglements and temperatures can be related to the transition
from ferromagnetic to paramagnetic states for the Ising system
as λ increases crossing the expected critical point. In the
partially anisotropic system γ = 0.5, the entanglements
(threshold temperatures) exhibit few maxima and minima with
λ before monotonically decreasing (increasing), which can
be explained in terms of the transition of the system from
oscillatory to ferromagnetic and finally to the paramagnetic
phase at the critical point. Finally, the isotropic system shows
sharp changes in the entanglements (threshold temperatures)as
they decay before vanishing at λ ≈ 1.85, which can be
explained in terms of the transition from the oscillatory phase
to the paramagnetic phase; as we mentioned before, the
vanishing of all entanglements and threshold temperatures is
due to the fact that the isotropic system has a disentangled
state for any magnetic field higher than this critical point.

8. Conclusions

We have investigated the robustness of bipartite and
multipartite entanglement in 1D and 2D XY spin-1/2 lattices
in an external magnetic field h against thermal excitations.
The spins are coupled to each other through nearest neighbour
exchange interaction J. The number of spins in the lattice is
7, which are coupled to a heat bath at temperature T . We
have compared the bipartite entanglement to the multipartite
entanglement versus the external applied magnetic field and
temperature. Also, we compared the threshold temperature
at which the entanglement vanishes in both cases. We used
the entanglement as a measure of the bipartite entanglement
and the geometric measure to evaluate the multipartite
entanglement of the system.

In the 1D and 2D cases for the anisotropic and partially
anisotropic spin systems at zero temperature, the nearest
neighbour bipartite and multipartite entanglement can be
maintained at large magnetic fields, though they would have
very small values, which are still much higher than that of
the next-to-nearest neighbour entanglements, except in the 2D
Ising system where the latter vanishes at a small value of the
field. In the isotropic system case, all types of entanglement
vanish at the same small value of the magnetic field. The
nearest neighbour bipartite threshold temperature was found to
be higher than that of the next to nearest neighbour bipartite and
multipartite where the temperatures of the last two get closer
asymptotically and the three of them increase monotonically
as the magnetic field increases. The exception is the threshold
temperature of the nearest neighbour entanglement in the 2D
Ising system, which vanishes at a small value of the magnetic
field. Accordingly, the bipartite entanglement of the far spins of
the system and the multipartite entanglement are less resilient
towards thermal excitations compared to the nearest neighbour
entanglement. All the threshold temperatures of the isotropic
system vanish exactly at the same value of the magnetic field
where all the entanglements vanish. Studying the different
systems’ energy gaps as a function of the magnetic field
showed that they have great correspondence to the behaviour
of the entanglements and the threshold temperatures, where
large characteristic energy gaps lead to stronger robustness
of entanglement and higher threshold temperatures, while
vanishing energy gaps may cause zero threshold temperatures.
Nevertheless, the properties of the ground state of the system
plays a major role in determining the behaviour of the
entanglement and the threshold temperature over the energy
gap. This was particularly seen in the isotropic system case,
which has a ground state that is entangled only below a
threshold value of the magnetic field, which causes both the
entanglement and the threshold temperatures to vanish at this
value and above, regardless of the monotonic increase of the
energy gap. The effect of a central impurity was found to
be significant in enhancing the threshold temperatures and
preserving all types of entanglements at high magnetic fields.
Furthermore, we have focused on examining the persistence
of quantum effects at high temperatures where we found
that the different types of entanglements (especially the
bipartite), though they would have very small values, can be

16



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 245501 G Sadiek and S Kais

maintained at high temperatures by applying sufficiently high
magnetic fields. It will be interesting in future to investigate
the same systems coupled to a dissipative environment in
the presence of thermal excitations to test the interplay of
the two environments. Also, it is important to engineer similar
systems with inserted impurities to examine their effect to
tune the threshold temperatures. Furthermore, we would like
to investigate the same system with a larger number of sites
to test the system size effect on the robustness of thermal
entanglement and determine threshold temperatures using
finite size scaling [63, 64].
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