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Abstract

We design an efficient on-line approach, FlowMate, for
partitioning flows at a busy server into flow grotps that
share bortienecks. These groups are periodically inpur to
congestion coordination, aggregation, load balancing, ad-
nussion control, or pricing modiles. FlowMalte uses in-
band pucket delay measurements to the receivers to deter-
mine shared bottlenecks among flows. Packet delay infor-
mation is piggybacked on returning feedback, or, if impossi-
ble, flow (e.g., TCP) round trip time estimates are used, We
sinnilate FlowMalte ro examine the effect of network load,
traffic burstiness, nenvork buffer sizes, and packet drop
policies on partitioning correciness. Our results demon-
sfrate accurate partitioning of medium to long-lived flows
even under heavy load and self-similar background traf-
fic. Experiments with HTTF/1. | flows demonstrate difficul-
ties in partitioning bursty foreground traffic. We also study
Jairness of coordinated congestion management when inte-
grated witi: FlowMale.

beginkeywords nelwerk measurement, network tomog-
raphy, TCP, shared bottleneck identification, coordinated
congestion control, load balancing endkeywords

1 Introduction

Current end sysiem congestlion control mechanisms reg-
ulate the sending rate of each individual connection (flow)
according to network conditions assessed by that particular
conneclion. Recent research has shown thatl coordinating
congestion control decisions among certain flows at a busy
end system {e.g., [tp/Web server) can increase the collec-
tive performance of the flows [3, [9]. An important prob-
lem in addressing coordinated congestion management is

“This research has been sponsored in part by the Purdue Rescarch
Foundatian. and the Schlumberger Foundation lechnical merit award.

the parlitioning of flows from a single sender to multiple
receivers into groups, in order to perform congestion man-
agemeni decisions on a per-group basis. Figure 1 depicls
a multiple recciver topology (referred to as Inverled-Y in
[22]). In current coordinated congestion management ap-
proaches [2, 9, 18, 23], Nows between Lhe same hosts (or
same LLANs) are grouped together. This stralegy assumes
that those flows will likely share the same bottlenecks along
their paths. This, however, may not necessarily be true, due
te network address translation (NATs), quality of service
(e.g., using several queucs at certain router porls), load bal-
ancing schemes, and dispersily routing [1]. In these cases,
flows destined to the same host or LAN may be routed
on different paths with different bottlenccks, and, conse-
quently, should not be grouped and coordinated. Morcover,
extending coordination benefits to flows thal share (he same
bottlenecks, but are not destined to the same host, can sig-
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Figure 1. Logical inverted-Y topology

In this paper, we examine on-line partiticring of llows
al a sender into groups with shared bottlenecks, withoul in-
troducing out-of-band traffic. The problem can be stated
as follows: given a set of flows F = {f1, f2,..., fa}, we
design a mapping protocol 7 that maps cach flow f; to ex-
actly one group g, 1 < i < n, such thal v, all flows f; € g;
share a commen botteneck. Qur approach, which we cal]
FlowMatre, can be integrated with any congestion coordina-
tion scheme that coordinates decisions within each group g;,




such as the Congestion Manager [3] or TCP-Int [2]— the par-
titioning and coordination schemes are completely orthog-
onal. FlowMate outpuls flow groups that can also be input
to load balancing, admission control, and pricing modules,

We use the packet delay correlation test proposed in [22]
lo periodically determine shared bottlenecks and partition
flows. Delay correlation tests usually converge faster than
loss correlation, and yield more accurate results. Delay cor-
relation lests, however, impose the requirement of limes-
tamping packets. We cxiend the techniques for timestamp-
ing packets in [13] for this purpose. The TCP timestamp-
ing option is currently supported in TCP implementations
in most operating systems, such as FreeBSD, Linux, and
Windows (it is currently enabled by defauit in the Windows
2000 TCP implementation). We use TCP round trip time
(RTT) estimates (which TCP mainlains for timeout compu-
lation purposes), however, if (imestamping is not possible.

Since TCP flows comprise the majority (80% or more)
of traffic in the Inlernet, we experiment with TCP Aows,
although our algorithm can be gencralized 1o any flow for
which delay information can be oblained (e.g., feedback in-
formation gathered by RTCP). Partitioning requires a time
scale larger than the life-time of very short TCP connec-
tions (c.g., small HTTP/1.0 transfers) (o converge. Long
TCP connections (such as file downloads) still comprise a
dominant traffic load on the Internet {the heavy-tail portion
of the distribution). Al the server, partitioning such mediom
to long-lived connections (called clephants in the literature,
e.g., [15]), and coordinating congestion decisions within
a group, increases responsiveness and fairness among all
flows originating from the same server. We inlegrale our
algorithm with a coordinated congestion management strat-
egy and illustrate the improved lairness.

FlowMare has the following features that distinguish it
from other approaches in (he literature: (1) no generation
nor transmission of out-of-band probing traffic, {2) on-line
adaptivity 1o flow and network dynamics during flow [ife-
times, (3) completely end-to-end; sender side only, or with
timelamping support at receivers, and (4) low overhead and
complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 explains our de-
sign in detail. Scction 4 analyzes the performance of Flow-
Mate in a number of network configurations with HTTP,
FTP and Telnet traffic, and demonstrates the effect of net-
work paramelers on a correciness index metric, which we
define. Scetion 5 studics the performance of FlowMate in-
tegrated with coordinaled congestion management. Finally,
seclion 6 summarizes our conclusions and discusses future
work.

2 Related Work

Coordination among [lows has been proposed and slud-
ied in [2, 3, 9, 19]. The congestion manager {CM) [3]
provides a general framework for applications to coordi-
nate congestion management decisions among flows be-
tween the same end systems. TCP-Int [2] uses one conges-
tion window for all concurrent TCP conneclions between
the same end systems. Ensemble-TCP [9, 23] also groups
flows between the same end systems, and caches informa-
tion aboul the measured slate of the network o expedite
the start-up of new connections. TCP Fast Start [18] ad-
ditionally marks these extra packels sent by new connec-
(ions {more than the usual slow starl permits) with a drop-
prelerence flag.

Padmanabhan [19] studics the benefits of performing co-
ordinated congestion control, and identifies topology dis-
covery, delay and/or loss correlation, and enhanced notifi-
cation as means ol detlecling shared bottleneck links among
Nlows.

Recently, a number of studies have investigated the in-
ference of internal network characteristics using end-lo-
end measurements (sometimes referred to as “network to-
mography™}, by applying innovative statistical techniques
[5. 8, 12, 16, 22]). Katabi el al [16] use an entropy [uc-
tion to compule correlation among flows at then receiver.
This technique does not require probe traffic and proposes
genceral flow partitioning algorithms, but partitioning cor-
rectness degrades under heavy cross-traffic. More recent
measurement results using Renyi {(as opposed to Shannon)
entropy demonstrale more robust partitioning [17]. Ruben-
stein el al {22] propose novel loss and delay correlation tests
among Mows Lo determine shared bottlenecks. They inject
Poissen probes to collect loss or delay information. They
do not use in-band measuremenis or present a general par-
titioning algorithm. Morcover, they do not discuss main-
laining informaltion from multiple receivers. We adopt their
delay-correlation test, but address the additional issues re-
quired for its on-line application for multiple flows ata busy
server. Delphi [21] sends probes at the sender to collect de-
lay information from receivers organized in a multifractal
wavelet model to infer the amount of cross traffic at certain
bottlenccks. The accuracy of this approach depends on the
utilization levels at bottlenecks. The higher the utilization,
the more accurate the computed estimates. Harfoush et al
[12] use Bayesian probing instead of Markovian probing to
infer shared Iosses, Their approach is more effective with
active probing, rather than in-band measurements.

To avoid problems with collecling delay information and
clock synchronization, correlation among TCP round trip
time (RTT) estimales {c.g., {6]) or throughput estimates at
the sender (e.g., [24]) may substitute one-way delays. Al-
though vsing these metrics eliminates any changes (e.g.,




timestamping support) to the receiver, the delay on the for-
ward path cannot be isolated from that of the reverse path
and the delays al the receivers themselves, as discussed in
the next seclion.

3 FlowMate Design

This section describes our system and analyzes its com-
plexity. Figure 17 contains pseudocode for FlowMale.

3.1 Basic Architecture

Figure 2. FlowMuate organization

The FiewMate module can be invoked Lo provide infor-
mation about groups of flows sharing common bottlenecks
along their paths from a sender to various receivers. The
FlowMate organization is depicted in figure 2. Basic mod-
ifications 10 the TCP implementation are required at the
sender side Lo provide delay samples for correlation. Pack-
ets are limestamped before being sent. Usable samples are
later selected ar the “Sampler™ when timestamped ACKs are
received, as described in section 3.3, Sample delay lists are
then provided 1o the “Flow Correlator” module, which per-
forms partitioning and sends the resulting proups to other
modules, e.g., load balancer,

3.2 Correlation Tests

The delay correlation test that we use in FiowMare was
proposed in [22] to statistically identily shared bottlenecks
using Poisson-distributed probe packets. We apply an anal-
ogous method on actual data packet delays. Pearson’s cor-
relation function [22, 26] is used on the delay samples as

follows:
_ Smi-H-7)
Tzy = = =
VE(m: — D22y - 7

where, 1z, is the correlation coelficient (with range [—1, 1])
of the two sample sets =; and y; whose averages are T and 7
respectively. The closer rzy, approaches +1 (—1), the more
positively (negatively) linear the samples (z;, ;) are. If
rzy = 0, the samples show no lincar relationship.

The correlation iest among (wo flows is defined as fol-
lows [22]: (1} Compute the cross-measure, M., between
pairs of packets in two flows f; and f;, spaced apart by
time £ > (. (2} Compute the anto-measure, M,, between
packeis within a (low, spaced apart by time T > ¢ (3) If
M: > M,, then the Mlows share a common bottleneck, oth-
erwise Lthey do nol. The intuition behind this test is that il
two flows share a bottlencck, then the cross correlation co-
efficient should excced the auto correlation cocificient, if
the spacing between packets of different lows after the bot-
tleneck is smaller than the spacing between packets within
the same flow.

3.3 Delay Computation

The delays of packets on the forward path from sender
1o receiver should be collected at the sender. If timestamp-
ing ACKs is not possible, RTT samples (which TCP any-
way compules for retransmission timeout caleulation pur-
poses} are used inslcad. The receiver need notl handle the
TCP timestamping option lield (or an equivalent applica-
lion layer mechanism) in this case: the receiver is entirely
FlowMarte-unaware. Using RTT information instead of for-
ward delay may, however, degrade the partilioning accuracy
when bottlenecks in the reverse direction aller the packet de-
lay correlalion properties. Furthermore, delayed acknowl-
edgments (and even the operating system and scheduling at
the receiver) affect the RTT. We have repeated all our exper-
iments in section 4 with RTT samples instead of one-way
delays, and the reduction in accuracy values was less than
5%. This performance degradation is primarily due 1o the
interference of reverse path bottleneck dynamics with delay
correlation values.

Standard timestamping mechanisms presented in [13]
use the Options field in the TCP header [20] to include the
time a packel is sent by the sender, and the time an ACK is
sent by the receiver, as shown in figure 3. We extend this
field (KIND=8} to also include the time at which the packet
was received. (Alternatively, this information can be added
to the application layer payload if Lhe receiver does not sup-
port this extension.) Note that clock-skewness between the
sender and receiver clocks is not a problem if it is approxi-
malely constant throughout the flow duration.

1 1 4 4
[xind=8] 10 [rsvatue [tS Echo Reply]

1 1 4 4 4
[ Kind=8] 14 [15 value [ TS Echo Repty| TS Recv.Tima]

Figure 3. Extending the timestamped ACK op-
tions field



3.4 In-Band Packet Sampling

The scalability ol out-of-band delay correlation tests to
flows at a busy server is limited due Lo the need for generat-
ing and uansmitting Poisson probes on all flow paths [22].
To avoid injecting out-of-band control traffic in the network,
we use selected data packets as samples. The sampling pro-
ceeds as follows. For the two [lows being tested, we merge
the two sels of sample delays according to their packet send
times. We compute the average spacing between every lwo
consecutive packets, t. To compute the aulocorrelation of
onc of the two flows, samples are sclecled from ils sam-
ple set with packet spacing higher than £. This is the main
resiriction on the correctness of the correlation tests {as ex-
plained in [22]), and not how probes are distributed. To
verily this, we repeated our cxperiments with the simple
sampling approach illustrated in figure 4. We selected data
packets that are closest to Poisson probe send times (at a
rale of 10 Poisson samples per second), and then applied
the spacing restriction discussed above. Qur results were
not significantly different in both cases. Therefore, in sce-
tion 4, we only use (he inter-packel spacing restriction.

T Tt
pobeon | || ] 1 o

Figure 4. Poisson-like sampling

3.5 Data Structures

FlowMare uses lhree main data structures (o maintain in-
formation about Alows and groups, as shown in figure 5:

s The Flow Info maintains information related to a flow
with flow ID fid and destined o host address dst. Two
lists arc maintained for cach Now: (1)} SampleList
maintains sample delay values gathered during the cur-
rent interval of time. This list is reset afier partitioning
is performed for the current interval; and (2) CorrList
is used Lo maintain correlation history of one flow with
other group flows (used in future pariitioning for bet-
ter accuracy). Alfter performing correlation tests for
lwo Aows, this information is stored in the history list
of the Aow with smaller fid.

¢ The Flow Table maintains Flow Info of all lows. The
table is hashed based on the last 8 bits of the desti-
nation address lo speed up searches [14]. (Moreover,
flows Lo the same destination TP address can be found
in the same “bucket.” This facilitates applying simple
parlitioning mechanisms that assume no NAT or dis-
persity routing [1] for certain flows.)

s The Group List is the final output of each partition-
ing process. This list is reset before re-partitioning.
Each “group” contains a list of highly correlated flows.
Due to the lecality patterns of flows and the power-law
propertics of Internet lopology, the number of groups
is usually limited during any given interval, conse-
quently aiding in performing better coordinated con-
gestion management/toad balancing/pricing decisions.

Flow Info

| fid I dat ilaalsamplnl aocd I Y I \l
4

Sample
List
Carrolallon

Hlatory
Llst
Flow Tablo
a1 T ——— [
i
sndem  Flow Info _
List
Group Lisl
G G2 Gn
Flow
Llgt

Figure 5. Data structures used in FlowMate

3.6 Triggering Partitioning

It is important to trigger partitioning only when sufficient
samples are usable. This cannot be easily achieved for all
flows, however, since each flow has its own congestion win-
dow according to its start time and encountered losses. As-
sume that the last partitioning was invoked at time 2. We
next igger partitioning at time ¢ 4+ d, where d is a period
during which all lows have reccived at least a minimum of
M delay values. Assuming a minimum of % usable sam-
ples are required for correlation testing, the threshold M is
selected to be at least twice the value of k. We have cxper-
imentally determined that & > 10 is usuzlly adequate. Un-
der low background load, at least 20 samples are required
for accurale results. The valuc of k is also dependent on
how packets of various [lows are interlcaved. With little in-
terleaving, more samples are required, as discussed in sec-
tion 4.3.5. If a time d;,.. clapscs before the threshold A
is salisfied for all flows, partiioning is automnatically trig-
gered. In this case, we only consider flows with suffictent
samples. To prevent frequent riggering, pactitioning is not
invoked before a period dp,;n, elapses since the last parli-
tioning.
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Figure 6. Summary of triggering conditions

3.7 Partitioning

FlowMate partitioning starls with empty group lists and
a set of target flows (with sufficient samples) to be grouped.
We designale a “representalive” flow in every group. A new
flow is only compared to the group representative to deter-
mine whether it should join the group. This ensures that all
flows that are grouped Logether are highly correlated with
the same representative flow. FlowMatre selects the first Tow
in a group to be its representative. Selecting and swilch-
ing the group representative dynamicaily is currently under
study. A new flow is compared o alf group representatives
to determine if it should join an existing group or create a
new group. Consider, however, the case when a new flow is
highly correlated with more than one group representative.
FiowMate follows a conscrvativerule: no grouping is better
than incorrect grouping. The cross comelation coclficients
of the new flow in all successful tests are compared, and
the flow joins the group with highest cross cocfficient. This
is because a fow typically exhibits the highest correlation
with the correet group. Oplionally, whenever a new group
is created, all flows in other groups, except for the represen-
tatives, may be compared to the new group representative to
determine if they have a higher correlation with the newly
created group. This technique increases accuracy in cases
where flow delay patterns are similar. Note that the cross
and aute measures and their delay slatistics are maintained
and continuously updated for every pair of flows that have
been tested. When partitioning is riggered, new samples
update the mean and variance of flow delay samples, and
consequently, the corresponding cross and auto measures.

3.8 Time Complexity

FlowMuare computations are divided into two main com-
ponents: {1} sample sclection, and (2) correlation tests. Us-
ing appropriate bounds in the triggering condition limits the
number of delay values to process for each flow. Computing
the coeflicienls depends on the number of selected samples,
which is less than the number of delay values received. As-
sume that ¥V flows are currently being partitioned; G is the
number of generated groups; and S, is the average group
size. FlowMare lime complexity is O(NG), where G is
approximately N/S,. This is better than comparing ev-

_ Table 1. Simulation parameters
TCP Rows

12—48; infinite FTP flows; Telnet Aows;
HTTF/1.1 flows
Cross raffic 24 flows, CBR (256 Kbps each)
Background traf- | 1o all  reccivers (256  Kbps
lic Pareloflraces)

Reverse traffic 64 Kbps averape rate for cach (from re-

ceivers Lo sender)
250 packets {cxcepl in one experiment)
Drop-Tail (RED in onc experiment)

Queue size
Drop policy

ery pair of flows which is O(N2). Therefore, FlowMate
partitioning is a [ower-cost approximation of the K-Means
clustering technique [7]. In addition, (ows with insufficient
samples arc cxcluded from partitioning, which may lurther
reduce complexity. FlowMare overhead is lowest il only a
few large groups are formed. Large groups do not require
as many correlation tests among individual flows (due to
the representative-based approach). The worst case occurs
if all Alows do not share any common bottlenccks and cach
is grouped scparately, which would not occur often. This
is due (o the locality of server requests, as well as Internet
topology power-law characieristics,

4 Performance Analysis

We have implemented FlowMate in the ns-2 network
simulator [25]. In this section, we conducl scveral cx-
perimenis to cvaluate its performance. We investigate
FlowMate robusiness under heavy background traffic us-
ing Pareto sources or sclf-similar (races, and with various
foreground traffic models, including FTP, Telnet and HTTP.
We also study the effect of physical bandwidth constraints,
buffer sizes, drop policies and FlowMare parameters. Ta-
ble [ summarizes the simulation parameters. Two Lapolo-
gies {(one symmetric and one asymmelric) are used in the
experiments. In the first topology (figure 7}, a single source
has a number of concurrent TCP connections with receivers
on three different branches. The upper two branch links are
botdenecks with bandwidths [.5 Mbps and 3 Mbps, respec-
tively. The third branch link has a bandwidth of [0 Mbps,
bul is congested by a number of cross CBR flows. All other
links have a capacity of 10 Mbps. A number of multiplexed
Parcto llows (originating at the same source) are generated
as background traffic. Other muliiplexed Parete flows are
generaled by the receivers in the reverse direction.

Figure 8 depicts the second simulation topology, where
the upper two branch links have limited bandwidth, while
the link on the third branch is congested by high back-
ground traffic load. This topology is not as symmetric as




TCP flows
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[some-22()

Background Tralfic

Cross-Iraffic
deslination

Figure 7. Simple simulation configuration

the first one. Background traffic is injected using a real traf-
fic race (the “Star Wars" movie [11]}. One “Star Wars”
flow is transmitted on each of the three main branches start-
ing from router 72 to a randomly-chosen receiver on each
branch, so as nol 1o create a bottleneck on the main shared
path. In both topologies, three groups of flows comprise the
expected partitioning: one group for each one of the three
branches.

generator

12
TCP llava

Bockground traliie

Bottlenack due .\
Io high croas—
Lroffis load

Cross—Lraflic
dastinnlion

Figure 8. More complex simulation configura-
tion

4,1 Group Accuracy Metric

Partitioning inaccuracies are introduced by cither crro-
ncous grouping of flows (including merging two or more
groups) or splitling a group into two or more subgroups. We
use the term “lalse sharing™ (fs) to dencte erroneous group-
ing of a flow with a group it does not share bottienccks with.
Let iV denole the total number of Aows; (. denote the sel
ol correct groups; Gr denote the set of resulting groups;
124 denote the number of flows grouped crroncously in a

resulling group; and s; denote the number of subgroups of
a correcl group € (. that was split into 5; subgroups in G..
The group accuracy index (Al is computed as follows:

Sy Dliesl(si - 1)
N N

Accuracy Index (Al) = 1—

where (ns,); of a group gi € G- is computed as follows:
Map g; to a corresponding group g, € G, such that |g; Ng.|
is maximized. The total number of llows f such that f €
gi A f & gc is the number of flows grouped erroncously
(nge)i

For example, consider § flows with correct groups
{1,2,3} and {4,5.6]. If the groups produced by FlowMare
arc {1,2}, {3.4,5}, and {6}, then the accuracy index is com-
putedas: 1~ 1 — !2—511 = 0.67. In this case, one sixth iy
deducted for flow 3, which was incorrectly grouped, and an-
other one sixth is deducted for the split of group {4,5,6} into
groups {4,5} and {6}. Notc that a single flow is penalized
only once, either for being grouped incorrectly, or for nol
being grouped {merged). Table 2 gives some additicnal ex-
amples. There is no case in which aif lows are erroneously
grouped. Therefore, the accuracy index varies between a
fraction (above 0) and 1. For a fixed number of Aows, as the
number of correct groups increases {decreases), the average
number of flows per group decreascs (increases). There-
fore, the merge effect is, on the average, diminished (ex-
acerbated). The split effect is constant, since it only de-
pends on Lhe number of Aows. Our interpretation of accu-
racy considers a group split into two or more groups to be of
equal severity (thus prompling an equal deduction) to incor-
rect grouping of one flow (while incorrect merging of two
groups cniails a penalty for each flow that was incorrectly
merged with the larger set). This may be too strict, since
group splits often occur during transient periods. In addi-
tion, group splits have fewer undesirable cffects than false
sharing. A group split simply does not exploit the full ben-
efits of coordination among the group, but the consequent
decisions (congestion control, load balancing, or pricing)
are not incorrect, This is in contrast to false sharing which
may, for example, cause a flow to enter the slow starl phase
if other members of that group are bottlenccked, We are
currenily investigating Lhe effectiveness of our accuracy in-
dex metric more carefully.

4.2 FlowMare Accuracy

In this section, we discuss the results of experiments on
the topology in figure 7. In our first experiment, we com-
pute the accuracy index with different numbers of flows,
Figure 9(a) shows the performance using 24, 36, and 48
TCP flows as foreground traffic. To interpret the results
more easily, we trigger partitioning at fixed intervals and



Table 2. Computing the accuracy index
(Al) for 10 flows with 2 optimal groups
{{1...5}.{6...10})

Qulpul Groups | Al
All split: {1}, {2}.---,{10} | 0.2 | 1 comect Row per
Eroup

All merged: {1,2,- - -,10} 0.5 | only | carrect group
Spliting:  {1,2,3}, {45}, | 0.8 | 2 errors {splils)
{6.7.8}, {9.10}
More  splitting: {1,2}, | 0.6 | 4 crrors (splits)
{34}, {5}, {6}, {7.8}.

Interpretation

{9,10}
Some false sharing: | 0.8 | 2 emors (Aows 6 and
{1,---.7}, {8,9,10} £k

More false sharing: | 0.6 | 4 crrors (Hows 510 9)
{1,--.9} {i0}
Combined errors: {1,2,3}, | 0.7 | 3 errors (1 split + 2
{4,5,6,7}. {8.9,10} false sharing)
Combined erors:  {1,2}, | 0.6 | 4 crrors (3 splits + 1
(3.4}, {5.6}. {7.8}. {9.10} false sharing)

do not trigger it early if sufficient samples are received be-
fore digz. The value used for d,,, is 6 seconds. There-
fore, ihe results of the first partitioning can be seen at time
6 scconds, the second at time 12, and so on. Triggering par-
titioning according to the number of samples (as proposed
in section 3.6) may improve system performance (e.g., con-
geslion control or load balancing) if it occurs between
and daz. The main effect of only triggering at dp 2 in-
tervals on FlowMate accuracy computation is to alter the
number of flows considered for partitioning (according to
their number of samples). Note that we compule the accu-
racy index by comparing against a stalic correct partition-
ing, even though the background traffic variations entail a
dynamic partitioning goal. We select this more conserva-
tive approach for case of accuracy index computalion, and
to show the worst case index value.

We observe thal in sicady state, performance is reason-
able (average index > 90%). During the initial (ransient pe-
riod, which includes the first one or ilwo parlitioning invoca-
lions, sample delay patterns are not unique for each group of
flows, so accuracy is lower. Afler the transtent, accuracy is
higher: observed inaccuracies are mostly due to a few group
splits. Flows used in this experiment start at 10 to 50 ms in-
tervals apart. We also perform experiments with more stag-
gered start times with 36 TCP flows and 12 receivers. In (he
first experiment, half of the flows begin at time zero (using
a 40 ms mean interval between flows}, and the remaining 18
start around 30 seconds later. In a second experiment, one
third of the flows starl near time zero, another third afler
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Figure 9. Accuracy index with FlowMate

approximately 18 seconds, and the last third after approxi-
mately 36 seconds. Finally, we conduct a third experimen
where flows are divided into 4 groups, each starting at limes
ncar {, 18, 30, and 48 seconds. The performance results
are depicted in figure 9(b). A large number of flows starl-
ing during the same period causcs an abrupt degradation in
accuracy, unlike the case where flows are added gradually.
The performance is still reasonably good in the steady slate,
and if a dynamic accuracy metric (that considers transient
bottlenecks) is used, the accuracy index increases.

4.3 Impact of Network Conditions

The performance of FlowMatre is affecled by network
condilions. Router buffer size is an important network pa-
rameler since the delay correlation test performs belter in
networks with large buffer sizes [22). The packet drop,
policy and Iraffic patterns may also impact the results. We
demonstrate the effect of these parameters on the topology
shown in figure 8. The effect of varying the maximum cor-
relation interval duration dp,;,; does not have a profound
impact on the results. Results for dpao values between 2
and 10 seconds follow almost the same pattern as the re-
sults with 6 seconds given in this scction as shown in fig-




ure 10. As mentioned above, the “Star Wars” trace is used
as a source of self-similar background traffic, except when
varying background traffic load, when a number of Parelo
sources are multiplexed (in order to easily experiment with
different background rates and on/olf periods). 24-36 TCP
flows are used as foreground trafiic, evenly divided among
all 12 receivers, and, as before, the correct partitioning is
three groups— one for each main branch. Simulation time
is 60 seconds. This allows the effect of the Lransients to be
visible, cven in experiments where the average accuracy is
computed over the simulation period.
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4.3.1 Buffer Size

Although the delay correlation is mare clearly manifesied in
bottlenecked routers with long queues, varying buffer sizes
[rom 50 o 500 packeis does not result in significant perfor-
mance variation in steady state, as illustrated in figure 11-
(a). Detailed results for specific buffer sizes arc shown in
figure 11-(b). Variation in performance is more pronounced
during the transient peried, which is expected any time a
large number of connections start at the sender simultane-
ously. We believe that having routers with larger buffers
usually enhances performance.

4.3.2 Packet Drop Policy

The most common drop policy used in routers is Drop-Tail.
We use this policy in all our experiments, except in this ex-
periment, where we use Random Early Detection (RED).
Figure 12 shows the resulling accuracy index in three cases.
One case uscs the Drop-Tail policy for all queues, another
case uscs some Drop-Tail and some RED queues, and the
las( casc uses only RED in all quenes. Resulls show that
using RED for all quenes reduces the accuracy. This agrees
with the results presented in [12] about Markovian probing
performance with the RED queuing discipline. The reason
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Figure 11. Effect of router buffer size

for RED interference is that random packet drop alters sam-
ples and introduces noise Lo the correlation process. Varia-
tions among different flow delay patterns are also reduced
by RED, which complicates the process of determining the
best group for a certain flow. This is consistent with the
results presented in [22]. The Drop-Tail policy currently
prevails in Internet routers, however, and even wilh the use
of other policies in seme routers on a path, FlowMate still
performs reasonably well.
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4.3.3 Background Traffic Load

We study the performance of FlowMate in our lwo config-
urations (figure 7 and figure 8) under different background
traffic loads: we multiplex a number of Pareto sources, each
with average rate of 400 Kbps. The Pareto sources are syn-
chronized Lo start al the same time {1 second before fore-
ground traffic starts). The load values shown on the z-axis
in figure 13-(a) are computed according to the first branch
which has the least physical bandwidth; load is slightly
lower on other branches. Results show that FlowMare is
robust under heavy background traffic. We also conducted
another experiment in which the ratio of the on/off periods
of the Pareto sources is varied lo demonstrate the effect of
different burst sizes. The results, depicted in figure 13-(b)
illustrated that performance is consistent, which indicates
that dilferent on/off period ratios have a relatively minor
effect on the partitioning accuracy. It is worlh noting that
performance on the more complex configuration is superior
to the simpler onc. This can be attributed to its asymmelric
nature.
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4.3.4 Foreground Traffic Load

In our experiments thus far, we have used FTP applications
as our [oreground traffic sources. In this experiment, we
demonstrate the effect of higher burstiness in foreground
traffic, and determine the number of samples required for
correcl results, We use Telnet traffic with bursty packet
inter-arrivals, and control the packet inter-arrival mean t.
Figure 14-(a) shows results with different inter-packet ar-
rival periods. As shown in figure 14-(h), a large ¢ value
reduces the number of samples available for correlation and
consequently reduces accuracy. For ¢ = 100 ms, the fig-
ure depicts significant performance degradation since very
few samples are used in the correlation tests. In most of the
cases where we saw group splits, the number of available
samples was less than 10 per flow. Degraded performance
conlinues throughout the simulation period. We conclude
that large average packet inter-arrival times limit FlowMate
effectiveness, since the reduced number of samples either
disables the partitioning entirely or impacis the results.
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Table 3. HTTP simulation parameters

Number of web clients 12, 18, and 24
Number of sessionsfclient 20

Mean number of pages/session 50

Mean inler-page interval 10 ms

Mean page size 12 KB

Mecan number of embedded objects/page | 2

Mean object size 120 KB

4.3.5 HTTP Traffic

Many problems arise when HTTP uaffic is considered.
First, most HTTP conncctions are short-lived [15]. This
implies that a connection may very well terminate before
parlitioning is triggered, even for a small d,.i, value. Sec-
ond, since HTTP packels are sent in ghort bursis, and since
we only scleet samples whose inter-packet spacing exceeds
the inter-flow packet spacing, then we may have no avail-
able samples during many intervals. The above two prob-
lems are exacerbated by the delayed ACKs option, which
delays receiver ACKs in order to piggyback them on any
available data in the reverse dircction. Fortunately, these
problems are somewhat mitigated by HTTP/1.1 with persis-
tent or pipelined conncetions [10]. The HTTP/1.1 specifi-
calion entails that connections are not terminated after cach
request/response as in the case of HTTP/1.0. A conneclion
remains alive to be used for other requests and only times
out il it stays idle for a specified interval of time. Although
this resolves the short connection problem, burstiness re-
mains an imporlant concern.

FlowMate was applied (o HTTP/1.1 traffic on the two
configuralions in figure 7 and figure §. We used the SURGE
model [4] for web woerklead traffie generation. This model
is implemented in “nsweb” [27]. Table 3 summarizes the
HTTP/1.1 paramelers used in our experiments. SURGE pa-
ramelers are chosen as in [4], while other parameters used
in the experiments are similar to those in [27]. Figure 15-
(a) depicts the performance of FlowMate using different
numbers of web clients on the first configuration with 12
reccivers (figure 15-(b) shows resulis for the second con-
figuration). Performance is similar with different numbers
of clients. We have found that accuracy is actually higher
than what is computed by our accuracy metric. This is be-
cause the metric compares against stalic groups throughout
the simulation, and does nol caplure scenarios where (wo
flows have samples with Lotally disjoint sets of send limes.
In such cases, correlation fails (comrectly), and FlowMare
avoids false sharing. We conclude that partitioning HTTP
flows significantly depends on two main factors, namely,
conneclion lifelime and traffic burstiness. While it is still
possible for FiowMate 1o perform reasonably well under
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Figure 15. Using FlewMate with HTTP/1.1

some burstiness, connection life-time is crucial in determin-
ing if partilioning is applicable. When partitioning is trig-
gered, short-lived Aows have either already terminated and
their information has been deleted, or they do not excced the
minimum threshold of samples required to be considered in
the correlation process.

5 Application of FlowMate to Coordinated
Congestion Management

In this seclion, we demonstrale one application thal may
benefit from FlowMate, namely, coordinated congestion
management. As previously stated, groups of flows are pro-
vided as the input to any coordinated congeslion manage-
ment scheme, such as CM. We implement a simple coordi-
nation mechanism that works as follows. Each flow main-
tains ils own congestion window. When loss is detected
by any member of a group, all group member windows are
reduced to react (o incipient congestion. All group mem-
bers increase their windows after three consecutive window
increases within the group. Thus, fows react more conser-
vatively Lo detecled available bundwidth. Experiments are
conducted using the configuration in figure 8. Figures 16(a)
and (b) show the number of ACKed packets during a simu-
lation period of 120 scconds for one of the resulting groups,



without and with FlowMare and simple coordination. Fig-
ure 16(b) illustrates thal the Aow throughput values arc more
similar and consequently fairness among flows sharing a
common boltleneck is betler with FlowMare. We believe
that using flow groups generaied by FlowMare in schemes
suchas {2, 3,9, 18, 23] will extend the benefits of these con-
gestion coordination schemes 1o flows with dilferent desti-
nations bul common bottlenecks. Moreover, FlowMate will
also false sharing of state among flows with different bot-
tlenecks.
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6 Conclusions and Future Work

In this paper, we have presented FlowMare, an algorithm
that exploits end-to-end packet delays (o periodically par-
tition flows originaling at a busy sever into groups, based
upen whether they share bottlenccks. FlowMate does not
require generation and wransmission of probe traific for col-
lecting delay information. Although using out of hand
probes introduces little load (usually about 5% of the to-
tal load), the overhead of generaling probe flows is propor-
tional to the number of flows o be grouped. Moreover, a

flow and its corresponding probe flow may not lollow the
same path, and may, consequently, face different bottle-
necks. This emphasizes the need for a scheme to dynam-
ically group flows based on in-band measurements.

FlowMate will likely produce multi-member groups at
a busy scrver, due to the locality of requests and Internet
topology characteristics. Therefore, FloswwMare complex-
ity, which depends on the number of groups, is reasonable,
FlowMate accuracy is high in various configurations with
different propagation delays, bottlenecks, buifer sizes, and
drop policies. The main factor that degrades performance
is the burstiness of the flows being partitioned themselves,
as seen in our HTTF/I.] and Telnet results. Background
traffic load and burstiness do not have a delrimental effecl,
due to our design which considers the history ol correlation
statistics.

We have implemented FlowMarte in the Linux kerncl
v2.4.17. We plan to measure the benefits of FlowMate with
coerdination schemes in wide area experiments. UDP Nows
may also be considered by measuring delays at the applica-
tion layer. For example, RTP flows can be grouped with
TCP flows or with each other (at large time scales) and con-
trolled according to mulimedia application requirements.
Finally, we will integrate FlowMate into other components
in addition Lo congestion management— specifically foad
balancing in overlay nelworks,
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PROCEDURE TriggerPartitioning{condition)
IF (condition is met)
THEN return triggered
ELSE return nol triggered
END PROC

PROCEDURE SclectSamples(Flow f1, Flow £2)
Flow f3 « NULL
Flow f4 +- NULL
f3 + merge samples from f1 and 2
AvgDist « average time between consecutive packets in 3
f4 & f2 packets with inter-packet distance > AvgDist
return £3 and {4

END PROC

PROCEDURE Regroup(GroupsList)
[/ optional procedure
71 +— numGroups
FORk+ 1TOn-1DO
BEGIN
for each flow f; of Gy,
(fa. fo) + SelectSamples(f;, G, .representative)
result = Test(fq, fo)
check (result.CrossCoeff > original coeff with Gy.)
IF (TRUE) THEN BEGIN
remove f; from G,
add fi o G,
END
END
END PROC

FlowMate MAIN PROC
Initialize;
Groups List + NULL
Flows Table + NULL
Start:
FOR i < 1 TO numFlews DO
SampleList(f;) « NULL
collect delay information from received ACKs
store delay information in Flow Table
check TriggerPartitioning(condition)
If (riggered) THEN
BEGIN
Partition()
generate GroupList
Goto Start
END
ENDPROC

PROCEDURE Partition()
FOR i + | TO numFlows DO
BEGIN
IF (GroupsList = NULL) THEN BEGIN
G + creale new group for f;
G, .representative  f;
END
ELSE BEGIN
MaxCoeff + NEGATIVE_VALUE
ChosenGroup + NULL
FOR k + | TO numGroups DO
BEGIN
Sr +— G .representative
(fa. fu) & SelectSamples(f;, fr)
result +— Test{ fq, f5)
j & min{i, k)
f;i.CoriList.add(result)
IF (result.success) and (result > MaxCoclf)
THEN BEGIN
ChosenGroup + Gy,
Update MaxCoeff
END
END
IF (ChosenGroup = NULL) THEN BEGIN
numGroups + numGroups + 1
k + numGroups
G 4+ creale a new group for f;
Gy .representative « f;
Regroup(GroupsList)
END
END
END
END PROC

Figure 17. The FlowMare algorithm
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