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Abstract

We design an efficient oil-line approach, FlowMate, for
partitioning flolVs at a busy .'ierver info flow groups '"a!
share bottlenecks. These groups are periodically input to

congestion coordinatioll, aggregation, load balancing, ad­
misJ.·ion control. or pricing modules. AowMatc uses il/­
bOlld packet delay meOSllrements to 'he receivers to deter­
mine shared bottlenecks alllong flows. Packet de/ay infor­
mation;s piggybacked on retumingfeedback, or, ijimpossi­
hie. flow (e.g., rep) rOlllld trip lime estimates aTe used. We
simlliate FlowMate to examine the effect of network foad,
traffic burstilless, network buffer sizes, and packet drop
policies all partitioning correctlless. Our resuftJ' demon­
strate accurate partitioning of medium to fong-livedjlows
even under heavy load and self-similar background traf­
fic. Experimenrs with HIT?/!.! flows demolls/rale difficlll­
lies i/l part/tiD/lillg bursty foreground traffic. We also study
fairness of coordinated congestion managemellt wi/en ime­
grated willi FlowMatc.

beginkeywords nelwork mcasurement, network tomog­
raphy, TCP. shared bottleneck identification, coordinated
congestion control, load balancing endkeywords

1 Introduction

Current end system congeslion control mechanisms reg­
ulate the sending rate of each individual connection (flow)
according to network conditions assessed by lhat particular
connection. Recent research has shown thal coordinating
congestion control decisions among certain flows at a busy
end system (e.g., ftplWcb server) can increase the collec­
tive perfonnance of the flows [3, 19]. An important prob­
lem in addressing coordinated congestion management is

-This research has been sponsored in pm by the Purdue Rcscarch
Foundalion. and Ihe Sehlumbergcr Foundmion lochnkal merit a.wanJ.

the partitioning of flows from a single sender (0 multiple
receivers into groups, in order to perform congestion man­
agement decisions on a per-group basis. Figurc 1 dcpicLs
a multiple receiver topology (referred to as Inverlcd-Y in
[22]). In currenl coordinated congestion managemenl ap­
proaches [2, 9, 18, 23J, flows belween the same hosts (or
same LANs) are grouped together. This strategy assumes
that those flows will likely share the same houlellecks along
their paths. This, however, may not necessarily be true, due
(0 nelwork address translation (NATs), quality of service
(e.g., using several queues at certain router ports), load bal­
ancing schemes, and dispersilY rouling [1]. In these cases,
flows desLined to the same host or LAN may be routed
on different paths with differenl bottlenecks, and, conse­
quently, should not be grouped and coordinated. Moreover,
extending coordination benefils to flows thaL share the same
bottlenecks, but are nol destined to the same host, can sig­
nificantly enhance perfonnance.
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Figure 1. Logical inverted-Y topology

In this paper, we examine on-line partilioning of nows
al a sender inlo groups with shared bottlenecks, withouL in­
troducing oUl-of-band traffic. The problem can be stated
as follows: given a set of flows:F := {iI, h, ... , fll}' we
design a mapping protocol P that maps each flow Ii lo ex­
actly one group 9i, 1 :::; i :::; n, such thaL Vi, all flows Ii E 9i
share a common bottleneck. Our approach, which we call
FfolllMate, can be integrated with any congestion coordina­
tion scheme that coordinates decisions within each group gi,



such as the Congestion Manager [3] or TCP-Int [2]- Lhe par­
titioning and coordination schemes are completely orthog­
onal. FfolllMate outpuLs flow groups that can also be input
[0 load balancing, admission control, and pricing modules.

We use the packet delay correlaLion test proposed in [22]
Lo periodically determine shared bottlenecks and partition
flows. Delay correlation tests usually converge faster than
loss correlation. and yield more accurate results. Delay cor­
relation Lests, however, impose the requirement of times­
tamping packets. We extend the techniques for timestamp­
ing packets in [13J for this purpose. The TCP timesLamp­
ing option is currently supported in TCP implementations
in most operating systems, such as FreeBSD, Linux, and
Windows (it is currently enabled by default in the Windows
2000 TCP implementation). We use TCP round rrip time
(RTF) estimates (which TCP maintains for timeout compu­
tation purposes), however, if timeslarnping is not possible.

Since TCP flows comprise the majority (80% or more)
of traffic in the Internet, we e:\periment with TCP flows,
although our algorithm can be generalized to any flow for
which delay information can be obtained (e.g., feedback in­
formation gathered by RTCP). Partitioning requires a time
scale larger than the life-time of very shon TCP connec­
tions (e.g., small H'TI'P/l.O transfers) to converge. Long
TCP connections (such as file downloads) still comprise a
dominant traffic load on the Internet (the heavy-tail portion
of the distribution). At Lhe server, partitioning such medium
to long-lived connections (called elephants in the literature,
e.g., [15]), and coordinating congestion decisions within
a group, increases responsiveness and fairness among all
flows originating from the same server. We integrate our
algorithm with a coordinated congestion managementstrat­
egy and illustrate the improved fairness.

FlolIIMare has the following features that distinguish it
from other approaches in the literature: (1) no generation
nor transmission of out-of-band probing traffic, (2) on-line
adaptivity to flow and neLwork dynamics during flow life­
times, (3) completely end-to-end: sender side only, or with
timetamping support at receivers, and (4) low overhead and
complexity.

The remainder of this paper is organized as follows. Sec­
tion 2 discusses related work. Section 3 explains our de­
sign in detail. Section 4 analyzes lhe performance of Flow­
Mate in a number of network configurations with HITP,
FfP and Telnet traffic, and demonstrates the effect of net­
work parameters on a correctness index metric, which wc
define. Section 5 studies the performance of FlowMa.te in­
tegrated wilh coordinaLed congestion management. Finally,
scetion 6 summarizes our conclusions and discusses future
work.

2 Related Work

Coordination among llows has been proposed and slud­
ied in [2, 3. 9, 19]. The congestion manager (CM) [3]
provides a general framework for applications to coordi­
nate congcstion management decisions among flows be­
tween the same end systems. TCP-Int [2] uses one conges­
tion window for all concurrent TCP connections between
the same end systems. Ensemble-TCP [9, 23] also groups
flows between lhe same cnd systems, and caches informa­
tion about the measured sLate of the neLwork to expedite
the starL-up of new connections. TCP Fast Stan [18J ad­
ditionally marks lhese extra packets sent by new connec­
tions (more than lhe usual slow start permits) with a drop­
preference llag.

Padmanabhan [19J studies the bcnefits of performing co­
ordinated congestion control, and idcntifies topology dis­
covery, delay andlor loss correlation, and enhanced notifi­
cation as means of detccting shared bottleneck links among
llows.

Recently, a number of studies have investigated the in­
ference of internal ncLwork characteristics USing end-to­
end measurements (sometimes referred to as "neLwork to­
mography"). by applying innovative staListical techniques
[5, 8, 12, 16.22]. !{atabi et ai [16] use an entropy fue­
tion to compute correlation among flows at then receiver.
This technique does not require probc traffic and proposes
general flow partitioning algorithms, bUL partitioning cor­
rectness degrades under heavy cross-traffic. More recent
measurement results using Renyi (as opposed to Shannon)
entropy demonstrate more robust partitioning [17]. Ruben­
stein el al [22] propose novel loss and delay correlation tests
among llows to determine shared bottlenecks. They injecL
Poisson probes to collect loss or delay information. They
do nOL use in-band measurements or present a general par­
titioning algorithm. Morcover, they do nol discuss main­
Laining information from multiple receivers. Wc adopL their
delay-correlation test. but address the additional issues re­
quired for its on-line application for multiple flows aL a busy
server. Delphi [21] sends probes at the sender to collect de­
lay information from receivers organized in a multifractal
wavelet model to infer the amoUnL of cross traffic at certain
bottlenecks. The accuracy of this approach depends on the
utilization levels at boulenecks. The highcr the utilization,
the more accurate the computed estimates. Harfoush et al
[12] use Bayesian probing instcad of Markovian probing to
infer shared losses. Thcir approach is more effective with
active probing, rather than in-band measurements.

To avoid problems with collecting delay information and
clock synchronization, correlation among TCP round trip
time (RIT) estimates (e.g., [6]) or throughput estimates at
the sender (e.g., [24]) may substitute one-way delays. Al­
though using thcse metrics eliminates any changes (c.g.,



timestamping support) to the receiver. lhe delay on lhe for·
ward palh cannot be isolated from thal of the reverse path
and the delays al the receivers themselves, as discussed in
the next seclion.

3 FlowMate Design

This section describes our system and analyzes its com­
plexity. Figure 17 contains pseudocode for FlowMate.

3.1 Basic Architecture

The correlation lest among two flows is dcfined as fol­
lows [22]; (I) Compute the cross-measure, M"" between
pairs of packets in LWO flows it and 12, spaced apart by
time t > O. (2) Compute the allto-mea:'iure, M a• beLween
packets within a flow, spaced apart by time T > t. (3) If
M", > M a , then the flows share a common bottleneck, olh­
erwise they do not The intuition behind this tesl is that if
two flows share a bottleneck, then the cross correlation co­
efficient should exceed the auto correlation coefficient, if
the spacing belween packets of differem flows after the bot·
tleneck is smaller than the spacing between packets within
the same flow.

3.2 Correlation Tests

Figure 2. FlowMate organization
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3.3 Delay Computation

Figure 3. Extending the timestamped ACK op­
tions field

The delays of packets on lhe forward path from sender
to receivcr should be collected al the sender. If limestamp­
ing ACKs is nol possible. RIT samples (which TCP any­
way computes for rctransmission timeout calculation pur­
poses) are used insLead. The receiver need not handle the
TCP timestamping option Hcld (or an equivalenl applica­
Lion layer mechanism) in this case: the receiver is entirely
FlowMare-unaware. Using RIT information instead of for­
ward delay may, however. degrade the partiLioning accuracy
when bottlenecks in the reverse direction alter the packet de­
lay correlation properties. Furthermore, delayed acknowl­
edgments (and even the operating system and scheduling al
the receiver) affeclthe RTT. We have repcatcd all our exper­
iments in section 4 wilh RIT samples instead of one-way
delays, and the reduction in accuracy values was less than
5%. This performance degradation is primarily due to Lhe
interference of reverse path botLieneck dynamics with delay
correlation values.

Standard timestamping mechanisms presentcd in r13]
use the Options Hcld in the TCP header [20] to include the
time a packel is sent by the sender, and the time an ACK is
senl by the receivcr, as shown in figure 3. We extend this
field (KIND=8) to also include Lhe time at which the packet
was received. (Alternatively, this information can be added
to the application layer payload if the receiver docs not sup­
port this extension.) Note IhaL clock-skewness between the
sender and receiver clocks is not a problcm if it is approxi­
mately constant throughout the flow duration.
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The delay correlation test that we use in FlowMare was
proposed in [22] to statistically identify shared bottlenecks
using Poisson-distributed probe packets. We apply an anal­
ogous method on actual data packet delays. Pearson's cor­
relation function [22, 26] is used on the delay samples as
follows:

The FlowMale module can be invoked to provide infor·
mmion about groups of flows sharing common bottlenecks
along their paths from a sender to various receivers. The
FlowMale organization is depicted in figure 2. Basic mod­
ifications to the TCP implementation are required at the
sender side to provide delay samples for correlation. Pack­
ets arc timesLamped before being sent. Usable samples are
later selected at lhc "Sampler" when timestamped ACKs are
received, as described in section 3.3. Sample delay lists are
then provided to the "Flow Correlator" module, which per­
forms partilioning and sends the resulting groups to other
modules, e.g., load balancer.

E(Xi - :f)(y; - y)
r"'II = -v-,~~(;J;x~,~_"'x;J,:e~!;:(:=y~,-;g,y"'J'

where, r"'!1 is the corrclation coefficient (with range [-1, 1])
of the LWO sample sets Xi and Yi whose averages are :fund y
respcetively. The closer r"'!1 approaches +1 (-1), the more
positively (negatively) Iincar thc samples (Xi,Yi) arc. If
r"'!1 = 0, the samples show no linear relationship.



3.4 In-Band Packet Sampling

The scalability of out-of-band delay correlation tests to
flows at a busy server is limited due Lo the need for generat­
ing and transmitting Poisson probes on all flow paths [22].
To avoid injecting out-of-band control traffic in the network,
we use selected data packets a" samples. The sampling pro·
ceeds as follows. For the two flows being tested, we merge
the two sets of sample delays according to their packet send
times. We compute the average spacing between every two
consecutive packets, t. To compute the autocorrelation of
one of the two flows, samples are selected from its sam­
ple set with packet spacing higher than t. This is the main
restriction on the correctness of the correlation teslS (as ex­
plained in [22]), and not how probes are distributed. To
verify this, we repealed our experiments with the simple
sampling approach illustrated in figure 4. We selected data
packets thal are closest to Poisson probe send times (at a
rate of 10 Poisson samples per second), and then applied
the spacing restriction discussed above. Our results were
not significantly differenl in both cases. Therefore, in sec­
tion 4, we only use the inter-packet spacing restriction.
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• The Group List is the final output of each partition­
ing process. This list is reset before re.partitioning.
Each "group" contains a list of highly correlated flows.
Due to the locality pallerns of flows and the power-law
properties of Internet topology, the number of groups
is usually limited during any given interval, conse­
quently aiding in performing better coordinated con­
gestion managementlload balancing/pricing decisions.
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Figure 5. Data structures used in FlowMate

Figure 4. Poisson-like sampling

3.5 Data Structures 3.6 Triggering Partitioning

FlowMare uses Lhree main data structures to maintain in­
formation about flows and groups, as shown in figure 5:

• TIle Flow Info maintains information related to a flow
with flow ID fid and destined to host address dSI. Two
lists arc maintained for each flow: (I) SampleList
maintains sample delay values gathered during the cur­
rent interval of time. This list is reset after partitioning
is performed for the current interval; and (2) CorrLisl
is used to maintain correlation history of one flow with
other group flows (used in future partitioning for bet­
ter accuracy). After performing correlation (ests for
Lwo flows, this information is stored in the history list
of the flow with smaller fid.

• The FlolV Table maintains Flow Info of all flows. The
table is hashed based on the last 8 bits of the desti­
nation address to speed up searches [14]. (Moreover,
flows La the same destination IP address can be found
in the same "buckel." This facilitates applying simple
parLitioning mechanisms that assume no NAT or dis­
persity routing [1] forcenain flows.)

It is imponant to trigger partitioning only when sufficient
samples are usable. This cannot be easily achieved for all
flows, however, since each flow has its own congestion win­
dow according to its start time and encountered losses. As­
sume that the lasL partitioning was invoked at time t. We
next trigger partitioning at time t + d, where d is a period
during which all flows have received at least a minimum of
M delay values. Assuming a minimum of k usable sam­
ples arc required for correlation testing, the threshold M is
selected to be at least twice the value of k. We have exper­
imentally determined that k ;::: 10 is usually adequate. Un­
der low background load, at least 20 samples are required
for accurate results. The value of k is also dependent on
how packets of various flows are interleaved. With little in­
terleaving, more samples arc required, as discussed in sec­
tion 4.3.5. If a time dma 2: elapses before the threshold M
is satisfied for all flows, parritioning is automatically trig·
gered. In this case, we only consider flows with sufficient
samples. To prevent frequent triggering, partitioning is nol
invoked before a period dmin elapses since the last parti­
tioning.



Table 1 Simulation parameters.
TCP /lows 12-48; infiniteFTP flows; Telnet /lows;

HTIP/I.1 flows
Cross lraffic 24 /lows, CBR (256 Kbps each)
Background tnlf- " ,II reccivcrs (256 Kbps
n, Parelo/lrace.~)

Reverse trallic 64 Kbps average rale for each (from re-
ceivers to sender)

Queue size 250 packcts (except in one experiment)
Drop policy Drop-Tail (RED in one experiment)3.7 Partitioning

Ia.\llim••t grouping can be
which IV"lIJ'ing invoked during
"'"' invoW (t) this interval il
--l . :<endiuonismel! Time

I gfQuplMgcan , gmupingmusl
lIIllbeinvoked d min d max L- '__~,during l/ili; - - Ill: mvo~"" 0 or
inlerval d_mAXi/not

mVllkod,ml

Figure 6. Summary of triggering conditions

FlolVMare partitioning starLs willi empty group lists and
a set oftargcl flows (with sufficicm samples) to be grouped.
We designate a "representative" flow in every group. A new
flow is only compared (0 the group representative to deter­
mine whether it should join the group. This ensures thal all
flows that are grouped together are highly correlated with
the same representative flow. FlowMate selects the firsliiow
in a group 10 be its representative. Selecting and switch­
ing the group representative dynamically is currently under
study. A new flow is compared to all group representatives
to determine if it should join an existing group or create a
new group. Consider, however, the case when a new flow is
highly correlated with more than one group representative.
FlowMate follows a conservative rule: no grouping is beUer
than incorrect grouping. The cross correlation coefficients
of the new flow in all successful tests are compared, and
the flow joins the group with highest cross coefficient. This
is because a flow typically exhibits the highest correlation
with the correct group. Optionally, whenever a new group
is created, all flows in other groups, except for the represen­
tatives, may be compared to the new group representative to
determine if they have a higher correlation with the newly
created group. This technique increases accuracy in cases
where flow delay patterns are similar. Note that the cross
and auto measures and their delay statistics are maintained
and continuously updated for every pair of flows that have
been tested. When partitioning is triggered, new samples
update the mean and variance of flow delay samples, and
consequently, the corresponding cross and auto measures.

3.8 Time Complexity

FlowMate computations are divided into two main com­
ponents: (1) sample selection, and (2) correlation tests. Us­
ing appropriate bounds in the triggering condition limits the
number of delay values to process for each flow. Computing
the coefficients depends on the number of selected samples,
which is less than the number ofdelay values received. As­
sume !.hat N flows arc currently being partitioned; G is the
number of generated groups; and Sy is !.he average group
size. FfowMate time complexity is O(NG), where G is
approximately NIBg • This is better than comparing ev-

cry pair of flows which is O(N2). Therefore, FlowMate
partitioning is a lower-cost approximation of the K-Means
clustering technique [7]. In addition, flows with insufficient
samples arc excluded from partitioning, which may further
reduce complexity. FlowMare overhead is lowest if only a
few large groups are formed. Large groups do not require
as many correlation tests among individual flows (due to
the representative-based approach). The worst case occurs
if all flows do not share any common bOlllenccks and each
is grouped separately, which would not occur often. This
is due to the locality of server requests, as weII as Internet
topology power-law characteristics.

4 Performance Analysis

We have implemented FfowMale in the ns-2 network
simulator [25]. In this section, we conduct several ex­
periments to evaluale its performance. We investigate
FlowMate robustness under heavy background traffic us­
ing Pareto sources or self-similar traces, and with various
foreground traffic models, includingFrP, Telnet and HTTP.
We also study the effect of physical bandwidth constraints,
buffer sizes, drop policies and FlowMare parameters. Ta­
ble I summarizes the simulation parameters. 1\vo lopolo­
gies (one symmeU"ic and one asymmetric) are used in the
experiments. In the first topology (figure 7), a single source
has a number ofconcurrent TCP connections with receivers
on three different branches. The upper two branch links are
bottlenecks with bandwidths 1.S Mbps and 3 Mbps, respec­
tively. The third branch link has a bandwidth of 10 Mbps,
but is congested by a number ofcross CBR flows. All other
links have a capacity of 10 Mbps. A number of multiplexed
Parcto flows (originating at the same source) are generated
as background lraffic. Other multiplexed Pareto flows are
generated by the receivers in the reverse direction.

Figure 8 depicts the second simulation topology, where
tbe upper two branch links have limited bandwidth, while
the link on the third branch is congested by high back·
ground traffic load. This topology is not as symmetric as



Figure 7. Simple simulation configuration

4.1 Group Accuracy Metric

E~C:~II('~i - 1)
N

where (n[s); of a group gi E Gr is computed as follows:
Map 9; to a corresponding group ge E Ge, such lhallg,ngel
is maximized. The LOlal number of llows f such that f E
9i A f ¢:. ge is the number of flows grouped erroneously
(n[s);.

For example, consider 6 flows wi!.h correel groups
{I ,2,3} and {4,5,6}. If lhe groups produced by FlowMafe
arc {I,2}, {3,4,5}, and {6}, then the accuracy index is com­
pUled as: 1 - ~ - (2~1) = 0.67. In !.his case, one sixth is
deducted for flow 3, which was incorreclly grouped, and an­
other one sixth is deducted for the splil of group {4,5,6} into
groups {4,5} and {6}. Note that a single flow is penalized
only once, either for being grouped incorreclly, or for not
being groupctl (merged). Table 2 gives some additional ex­
amples. There is no case in which all flows are erroneously
grouped. Therefore, lbe accuracy index varies belween a
fraction (above 0) and 1. For a fixed number of flows, as the
number ofcorrect groups increases (decreases), the average
number of flows per group decreases (increases). There­
fore, !.he merge effect is, on the average, diminished (ex­
acerbaled). The split effect is constant, since it only de·
pends on the number of flows. Our interpretation of accu­
racy considers a group split inlo lWo or more groups lo be of
equal severilY (lhus prompung an equal deduction) lo incor­
rect grouping of one flow (while incorrect merging of two
groups entails a penally for each flow that was incorrectly
merged wilh the larger set). This may be too strict. since
group splits often occur during transient periods. In addi­
lion. group splits have fewer undesimble effects than false
sharing. A group split simply docs nOl exploit the full ben­
efits of coordination among the group, but the consequent
decisions (congestion control, load balancing, or pricing)
are not incorrect. This is in contrast to 'false sharing which
may, for example, cause a flow to enter the slow start phase
if other members of that group are bOlllenecked. We are
currenUy investigating the effectiveness of our accuracy in­
dex meuic more carefully.

resulling group; and si denote the number of subgroups of
a correct group E Ge lhat was split inlo si subgroups in Gr.
The group accuracy index (AI) is computed as follows:

~Ol
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Figure 8. More complex simulation configura­
tion
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lhe firsl one. Background traffic is injected using a real traf­
fic trace (!.he "Star Wars" movie [11]). One "Star Wars"
flow is transmitted on each of the three main branches start­
ing from router T2 to a randomly-chosen receiver on each
branch. so a.~ not to create a bottleneck on !.he main shared
path. In both topologies, three groups of flows comprise the
expected partitioning: one group for each one of the three
branches.

Parlitioning inaccuracies are introduced by either erro­
neous grouping of flows (including merging two or more
groups) or splitting a group into two or more subgroups. We
use the lenTI "false sharing" (fs) to denote erroneous group­
ing ofa now with a group il does not share botllenecks wilh.
Let N denote the lotal number of flows; Go denote lhe set
of correct groups; Gr denote the sel of resulting groups;
n[~ denote !.he number of flows grouped erroneously in a

4.2 FlowMare Accuracy

In this section, we discuss the results of experiments on
!.he LOpology in figure 7. In our first experiment. we com­
pute the accuracy index wi!.h different numbers of nows.
Figure 9(a) shows the performance using 24, 36, and 48
TCP flows as foreground traffic. To interpret lhe results
more easily, we trigger parutioning at fixed intervals and



Table 2, Computing the accuracy index
(AI) for 10 flows with 2 optimal groups
({1,..,5},{6,.., 10j)
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(a) Perfonnancc under dirre~fIl loads

~ Inlerpre!:uionOutput Groups

All split: {f}, {2}.·· ',{IO} 0.2 1 correct 'ow p"
group

All merged: {1.2.. · ·.lD} 0.5 only t correct group
Splitting: ( I,Z,J), {4,5}, 0.8 2 errors (splilS)
{6,7,8}, {O,W}
More splitting: {I,Z}, 0.6 4 errors (splits)
P,4}, {5}, {6}, {7,,},
{O,lO}
Some false sharing: 0.8 2 errors (flows 6 and
{1,.. ·,7}, {8,O,lO} 7)
More false sharing: 0.6 4 errors (flows 5 to 9)
{l,.· ',O} {IO)
Combined errors: {1,2,J}, 0.7 3 errors (I split + 2
{4,5,6,7}, {8,O,10} false sharing)
Combined errors: {1,2}, 0.6 4 errors (3 splits + 1
P,4), {5,6}, P,8}, {O,lO} false sharing)

do /lot trigger it early if sufficient samples are received be­
fore dmllz • The value used for dmflz is 6 seconds. There­
fore, the results of !he first partitioning can be seen at time
6 seconds, the second at time 12, and so on. Triggering par­
titioning according to the number of samples (as proposed
in section 3.6) may improve system performance (e.g.• con­
gestion control or load balancing) if it occurs between dmin

and dmaz' The main effect of only lriggering at dmaz in­
lcrvals on FlowMate accuracy compulation is to alter the
number of flows considered for partitioning (according to
their number of samples). Note Lhat we compute the accu­
racy index by comparing against a slatic correct partition­
ing. even though Lhe background traffic variations entail a
dynamic partitioning goal. We select this more conserva­
tive approach for ease of accuracy index computaLion, and
to show the worst case index value.

We observe thaL in sleady state, performance is reason­
able (average index> 90%). During the initialtransiem pe­
riod, which includes the firsl one or two partitioning invoca­
tions, sample delay paHerns arc not unique for each group of
flows, so accuracy is lower. Arter the transient, accuracy is
higher: observed inaccuracies arc mostly due to a few group
splits. Flows used in this experiment start at 10 to SO ms in­
tervals apart. We also perform experiments with more stag­
gered start times wilh 36 TCP flows and 12 receivers. In the
first experiment, half of the flows begin at time zero (using
a40 ms mean interval between flows), and the remaining 18
start around 30 seconds laler. In a lieeond experiment. one
third of the flows slart ncar time zero. another third after

(b) Performance with Slagge~d sl.:u1limcs

Figure 9. Accuracy index with FlolI'Mafe

approximately 18 seconds, and the last third after approxi­
mately 36 seconds. Finally, we conduct a third experiment
where flows are divided into 4 groups, each starting allimes
ncar 0, 18, 30, and 48 seconds. The performance results
arc depicted in figure 9(b). A large number of flows starl­
ing during the same period causes an abrupt degradation in
accuracy, unlike the case where flows arc added gradually.
The performance is still reasonably good in the sleady Slate,
and if a dynamic accuracy meuic (that considers transiem
bottlenecks) is used, the accuracy index increases.

4.3 Impact of Network Conditions

The performance of FlolI'Mate is affected by network
conditions. Router buffer size is an important network pa­
rameter since !he delay correlation test performs beller in
networks wiLh large buffer sizes [22). The packet drop,
policy and traffic pallerns may also impact the results. We
demonstrate the effect of !hese parameters on the topology
shown in figure 8. The effect of varying the maximum cor­
relation interval duration dmaz does not have a profound
impact on the results. Results for dma:r: values between 2
and 10 seconds follow almost the same pattern as Lhe re­
sults with 6 seconds given in this seclion as shown in tig-



ure 10. As mentioned above, the "Star Wars" trace is used
as a source of self-similar background lraffic, excepl when
varying background traffic load, when a number of Pareto
sources are multiplexed (in order to easily experiment with
different background rates and on/offperiocls). 24-36 TCP
flows nrc used as foreground tramc, evenly divided among
all 12 receivers, and, as before, the correct partitioning is
three groups- one for each main branch. Simulation time
is 60 seconds. This allows the effecL of the transients to be
visible, even in experiments where the average accuracy is
computed over the simulation period.
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Figure 10. Effect of the maximum correlation
period

4.3.1 Buffer Size

Although the delay correlation is more clearly manifested in
bottlenecked routers with long queues, varying buffer sizes
from 50 Lo 500 packels does not resull in significam perfor­
mance variation in steady state, as illuslrated in figure 11­
(a). Detailed results for specific buffer sizes arc shown in
figure Il.(b). VariaLion in perfonnance is more pronounced
during the transient period, which is expected any time a
large number of connections start aLthe sender simultane­
ously. We believe that having routers with larger buffers
usually enhances perfonnance.

4.3.2 Packet Drop Policy

The most common drop policy used in routers is Drop-Tail.
We usc this policy in all our experiments, except in this ex­
periment, where we use Random Early Detection (RED).
Figure 12 shows the resulting accuracy index in three cases.
One case uses the Drop.Tail policy for all queues, another
case uses some Drop-Tail and some RED queues, and the
last case uses only RED in all queues. Results show that
using RED for all queues reduces the accuracy. This agrees
with the results presented in {12] about Markovian probing
performance with the RED queuing discipline. The reason

"
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(b) Transienl and steady Slale performance

Figure 11. Effect of router buffer size

for RED interference is that random packet drop alters sam­
ples and introduces noise La the correlation process. Varia­
tions among different flow delay pauerns are also reduced
by RED, which complicates the process of determining the
best group for a certain flow. This is consistent with the
results presented in [22]. The Drop-Tail policy currently
prevails in Internet routers, however, and even with the use
of other policies in sOllie routers on a path, FlowMate still
performs reasonably well.
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Figure 12. Effect of packet drop policy



4.3.3 Background Traffic Load 4.3.4 Foreground Traffic Load

We study lhe performance of FlowMate in our two config­
urations (figure 7 and figure 8) under different background
traffic loads: wc multiplex a number of Pareto sources, each
with average ratc of 400 Kbps. The Pareto sources are syn­
chronized to start at the same time (l second before fore­
ground traffic starts). The load values shown on lhc x-axis
in figure 13-(0) arc computed according to the first branch
which has the least physical bandwidth; load is slightly
lower on other branches. Results show that F/owMare is
robust under heavy background traffic. We also conducted
another experimcnt in which the ratio of the on/off periods
of the Pareto sources is varied to demonstrate the effect of
different burst sizes. The results, depicted in figure J3-(b)
illustrated that performance is consistent, which indicates
that different on/off period ratios have a relatively minor
effect on lhe partitioning accuracy. It is worlh noting that
performance on the more complex configuration is superior
to the simpler one. This can be attributed to its asymmetric
nature.

In our experiments thus far, we have used FfP applications
as our foreground traffic sources. In this experiment, we
demonstrate the effect of higher burstiness in foreground
traffic, and determine the number of samples required for
correct results. We use Telnet traffic with bursty packet
inter-arrivals, and control the packet inter-arrival mean t.
Figure 14-(a) shows results wilh dilTerent inter-packet ar­
rival periods. As shown in figure 14-(b), a large t value
reduces lhe number ofsamples available for correlation and
consequently reduces accuracy. For t = 100 ms, the fig­
ure depicts significant perfonnance degradation since very
few samples are used in the correlation tests. In most of the
cases where we saw group splits, lhe number of available
samples was less than 10 per flow. Degraded performance
continues throughout the simulation period. We conclude
that large average packet inter-arrival times limit FlowMate
effectiveness, since the reduced number of samples either
disables the partitioning entirely or impacts the results.

(n) Different bnckground nveroge lond
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Figure 13. Performance under different back­
ground load and burstiness

(b) Tmnsiem iIJld steady stale perfonnilJlce

Figure 14. Performance degradation with
bursty Telnet traffic
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Table 3 HTIP simulation parameters
Number of web clients 12, 18, and 24
Number of sessions/cHenl 20

Mean number of pages/session SO
Mean inter-page interval 10 ms
Mean page size 12KB
Mc.m number of embedded objects/page 2

Mean objecl size 120KB
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4.3.5 HTTPTraffic
(a) Using firsL configurnlion

(b) Using second configur.lljon

Figure 15. Using FlowMale with HTIPI1.1

'.L--:,-;,0,--;;,,-;,0,--:..-;,0,--:..-;,0,--:,7,--!...
TI ... 1• ..,1

5 Application of FlowMate to Coordinated
Congestion Management

some burstiness, connection life-lime is crucial in determin­
ing if partitioning is applicable. When parlitioning is trig­
gered, shon-lived flows have either already lenninated and
their information has been deleted, or they do not exceed the
minimum threshold of samples required to be considered in
the correlation process.
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In this seclion, we demonstrate one application that may
benefit from FlowMate, namely, coordinated congestion
management. As previously slated, groups of flows are pro­
vided as the inpul to any coordinated congestion manage­
ment scheme, such as CM. We implemenl a simple coordi­
nation mechanism that works as follows. Each flow main­
tains its own congestion window. When loss is detected
by any member of a group, all group member windows are
reduced to react to incipient congestion. All group mem­
bers increase their windows after three consecutive window
increases within the group. Thus, flows react morc conser­
vatively to detecled available bandwidth. Experimems are
conducted using the configuration in figure 8. Figures 16(a)
and (b) show the number of ACKed packets during a simu­
lalion period of 120 seconds for one of lhe resulting groups,

Many problems arise when HTfP traffic is considered.
First. most HTI'P connections are shon-lived [15]. This
implies that a connection may very well tenninate before
partitioning is triggered, even for a small d"'in value. Sec­
ond, since HITP packets are sent in short bursts, and since
we only SclCCl samples whose inter-packet spacing exceeds
the inter-flow paekel spacing, then we may have no avail­
able samples during many intervals. The above two prob.
lems are exacerbated by the delayed ACKs option, which
delays receiver ACKs in order to piggyback them on any
available data in the reverse dircction. Fortunately, these
problems arc somewhat mitigatcd by HTfP/l.l with persis­
tent or pipclined connections [10]. The HTfP/I.l specifi­
cation entails that connections are not terminated aftcr each
request/response as in the ca"e of HTfP/I.O. A connection
remains alive to be used for other requests and only limes
out if it stays idle for a specified interval of time. Although
this resolves the short connection problem, burstiness rc­
mains an important concern.

FfowMare was applied to HTI'PIl.1 traffic on the two
configurations in figure 7 and figure 8. We used the SURGE
model [4J for web workload traffic generation. This model
is implemcnted in "nsweb" [27]. Table 3 summarizes the
HTfP/I.1 parameters used in our experimems. SURGE pa­
rameters are chosen as in [4], while other parameters used
in the experiments arc similar to those in [27]. Figure 15­
(a) depicts the performance of FlowMate using different
numbers of web clients on the firsl configuralion with 12
reccivers (figure 15-(b) shows results for the second con­
figuration). Performance is similar with different numbers
of clients. We have found that accuracy is actually higher
than what is computed by our accuracy metric. This is be·
cause the metric compares against slatic groups throughout
the simulation, and docs not capture scenarios where two
flows have samples with totally disjoint sets of send times.
In such cases, correlation fails (correctly), and FlowMare
avoids false sharing. We conclude lhal partilioning HTTP
flows significantly dcpends on two main factors, namcly,
connection lifetime and traffic burstiness. While il is still
possible for FlowMale to perform reasonably well under
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flow and its corresponding probe flow may nOl follow the
same path, and may, consequently, face different bottle­
necks. This emphasizes !he need for a scheme to dynam­
ically group flows based on in-band measurements.

FlowMate will likely produce multi-member groups al
a busy server, due to the locality of requests and Internet
topology eharacleristics. Therefore, FlowMate complex­
ity, which depends on the number of groups, is reasonable.
FfowMate accuracy is high in various configurations with
different propagation delays, bottlenecks, buffer sizes, and
drop policies. The main factor that degrades performance
is the burstiness of the flows being partitioned themselves,
as seen in our H1TP1J.I and TelneL results. Background
traffic load and burstiness do not have a detrimental effecL,
due to our design which considers the history ofcorrelation
statistics.

We have implemented FlowMate in the Linux kernel
v2.4.17. We plan to measure the benefits of FlowMate with
coordination schemes in wide area experiments. UDP flows
may also be considered by measuring delays at the applica­
tion layer. For example, RTP flows can be grouped with
TCP flows or with each other (at large lime scales) and con­
Lrolled according to multimedia application requirements.
Finally, we will integrate F/owMale into other components
in addition Lo congestion management- specifically load
balancing in overlay neLworks.

We would like to thank Dan Rubenstein (Columbia Uni­
versity) for providing us with his correlation computation
code; Anja Feldmann and Jorg Wallerich (University of
Munich) for answering our "nsweb" questions; and the
anonymous reviewers for their valuable comments.
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without and with FlowMate and simple coordination. Fig­
ure 16(b) illustrates thaI the flow throughput values arc more
similar and consequcnUy fairness among flows sharing a
common bottleneck is beUCT with FlowMare. We believe
thal using flow groups generated by FlowMare in schemes
such as [2, 3. 9.18,231 wHi extend the benefits oflhescccn­
gestion coordination schemes to flows with different desti­
nations but common bottlenecks. Moreover, FlowMate will
also false sharing of stale among flows willi dilTcrenl bot­
tlenecks.

(b) One group with coordinaLion using Flow­
Mtlte

Figure 16. Using FlowMate for congestion co­
ordination

6 Conclusions and Future Work

In this paper, we have presented FlowMare, an algorithm
that exploits end-to-end packet delays to periodically par­
tition flows originating at a busy sever into groups, based
upon whether they share bottlenecks. FlowMate does not
require generation and transmission of probe traffic for col­
lecting delay information. Although using out of band
probes introduces little load (usually about 5% of the to­
talload), the overhead of generating probe flows is propor­
tionalto the number of flows to be grouped. Moreover, a
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PROCEDURE TriggerPartitioning(condition)
IF (condition is mel)

TIIEN relum triggered
ELSE return not lriggcrcd

ENDPROC

PROCEDURE SclcctSamples(Flow fl, Flow 12)
Flow f3 t- NULL
Flow f4 r- NULL
f3 t- merge samples from fl and f2
AvgDisl f- average time between consecutive packets in f3
f4 t- f2 packets wilh inter-packet distance> AvgDisl
return f3 and f4

ENDPROC

PROCEDURE Regroup(GroupsList)
1/ optional procedure
n f- numGroups
FORkt-1 TOn-IDO
BEGIN

for each flow Ii of Ok
(fa. fb) t- SeleCISamplcs(j;, G ...representative)
result = Tcst(f". fb)
check (result.CrossCoeff > original coeffwith Gk )

IF (TRUE) THEN BEGIN
remove I; from Gk

add Ii (0 G"
END

END
ENDPROC

FlowMate MAIN PROC
Initialize:

Groups List t- NULL
Flows Table t- NULL

Start
FOR i (- 1 TO numFlows DO

SampIcList(fi) t- NULL
collect delay infonnation from received ACKs
store delay information in Flow Table
check TriggerPartitiol/il/g(condition)
If (triggered) THEN
BEGIN

Partitioll()
generate GroupList
Goto Start

END
ENDPROC

PROCEDURE PartitionO
FOR i .(- I TO numAows DO
BEGIN

IF (GroupsLisL = NULL) TIIEN BEGIN
GI 0(- creaLe new group for h
GI.representative .(- Ii

END
ELSE BEGIN

MaxCoeff.(- NEGATIVE_VALUE
ChoscnGroup .(- NULL
FOR k .(- 1TO numGroups DO
BEGIN
Ik 0(- Gk.representative
(fa.. !b) .(- SelectSamplcs(f;, Id
result.(- Tcst(fa, !b)
j 0(- minO, k)
Ii .CorrLisLadd(resul t)
IF (resuILsuccess) and (result> MaxCoeff)
THEN BEGIN

ChoscnGroup .(- G k

Update MaxCoeff
END

END
IF (ChosenGroup=NULL) THEN BEGIN

numGroups .(- numGroups + 1
k.(- numGroups
Gk .(- creale a new group for 1;
Gk.reprcscntalive.(- Ii
Regrollp(Grollp.vList)

END
END

END
ENDPROC

Figure 17. The FlowMate algorithm
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