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Abstract

This paper introduces a class of join algorithms,
termed stream window join (W-join for short), for
joining multiple infinite data streams. W-join ad-
dresses the infinite nature of the data streams by
joining stream data items that lie within a slid-
ing window and that match a certain join con-
dition. Many practical queries can be answered
efficiently with W-join, especially in multi-sensor
networks. We describe new algorithms for W-join,
and address variations and lecal/global optimiza-
tions related to specifying the nature of the win-
dow constraints. In contrast to existing stream
Jjoin algorithms that store the entire stream pre-
fixes in intermediate structures, we avoid repeated
iterations over non-window-related tuples. We
present a variety of non-blocking and pipelined al-
gorithms for performing W-join and its variations.
These algorithms inclede nested-loop, hash, and
merge-join implementations of W-join (NLW-join,
HW-join, and MW-join, respectively). The algo-
rithms utilize a filter-refine paradigm to handle
the variations in window constraints and filter out
lalse-positive answers. For comparison purposes,
we adapt existing stream join algorithms in the
literature to handle the W-join operation. We ex-
periment with the new and existing algorithms in
a prototype stream database system, developed
at Purdue, using both real and synthetic data
streams, We demonstrate that the newly pro-
posed W-join algorithms outperform the existing
algorithms by an order of magnitude under a va-
riety of stream data rates and stream delays.

1 Introduction

The widespread use of devices for capturing digital
data streams and the importance of the information
that can be extracted from them have led to increased
research addressing query processing techniques for
stream data. The data strearns may represent con-
tinuously incoming data for a variety of applications,
e.g., multi-sensor networks, telecommunication man-
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agement, network traffic analysis, video security mon-
itoring, surveillance applications and financial data
analysis. An important aspect for stream query pro-
cessing is the introduction of operators that are non-
blocking and that can process infinite amounts of data.
Most recently, researchers have expressed interest in
window aggregate operations for data streams [8],
where the window defines a prefix of the stream. Other
studies such as [14, 19] consider a join operation be-
tween a data stream and a typical database relation or
a self-join over a single stream. However, none of these
studies address the join operation among multiple data
streams. The recent stream join techniques such as
ripple-join [10], the non-blocking hash-joins [7, 20, 21]
emphasize on producing early results during join exe-
cution. However, they all require processing the entire
contents of the stream seen thus far (the whole stream
prefix), as well as all incoming tuples. In this paper,
we address joining multiple data streams over a sliding
window of time. We refer to the window join oper-
ation by W-join. The W-join operation is needed to
answer many practical queries that are important for
financially and societally relevant applications such as
the following:

Example 1: To monitor sales from different depart-
ment stores, a marketing administrator wants to find
common items sold by all stores over sliding one hour
intervals. Current transactions from each store rep-
resent streams of data containing information about
items as they are sold.

Example 2: Tracking objects that appear in video
data streams from multiple cameras in surveillance
applications. The objects are identified in each data
stream and the maximum time for the object to travel
between the monitoring devices define an implicit time
window for the join operation.

Example 3: To detect packets that pass through mul-
tiple networks, a network administrator joins traffic
information from these networks where the maximum
time for a packet to travel between any two networks
defines the time window for the join between them.

Such queries can execute separately or are com-
bined with aggregate functions to produce summary



information. While these queries carry some simi-
larity with temporal queries, efficient algorithms for
temporal-joins [13, 22] depend on the underlying ac-
cess structure, which is not available for online stream
data sources. Also, the temporal join algorithms do
not consider answering long running queries over infi-
nite data streams.

In this paper we address the issue of joining
multiple data streams over a sliding window of time
and that match a certain join condition. We refer
to this join operation as W-join. W-join can be of
several forms depending on the variation and/or the
existence of the window constraint between each pair
of the joined streams. We start by describing the
different forms of W-join along with an example.

Form 1: A single window constraint is used to
join all input streams. In Example 1, the monitoring
of the sales from multiple department stores using a
sliding time window, w, the administrator may issue
the query:

SELECT A.ItemName
FROM Storel A, Store2 B, Stored B
WINDOW = w

WHERE A.ItemNumaB.ItemMum AND B.ItemNums(.ItemNum

Form 2: Different window constrainis are considered
between all pairs of the input streams. In Example
2, the tracking of objects by multiple video cameras
where an object needs different times (w,ws,..) to
travel from one camera to the other, the user may
issue the query:

SELECT A.0bjID
FROM Cameral A, Camera2? B, Camara3 C
WINDOW (A,B)=w; AND WINDOW (B,C)}=ws AND WINDOW (A,C)=uj

WHERE A.0bjID=D.0bjID AND B.ObjID=C.0bjID

Form 3: Some window constrainis do not exist be-
tween pairs of input streams. In Example 3, the net-
work packet detection, there may be a direct network
link between the networks (A, B) and (B, C), how-
ever no direct link between the networks (A, C). An
example query is:

SELECT 51.PacktlPb
FROM Networkl A, Natwork? B, Network3 ¢
WINDOW (&,B)=w; AND WINDOW (B,C)=wq

WHERE A.PacktID=B.PacktID AND B.PacktID=C.PacktID

In all these queries, WINDOW(A,B) defines the time
window between tuples in A, B.

We introduce a class of W-join algorithms that can
be used to answer the different W-join forms. For
Form 1, a single window constraint, we present nested-
loop, hash and merge W-join algorithms (NLW-join,
HW-join and MW-join, respectively). All these algo-
rithms are non-blocking to adapt for the variation in
stream data rates. Both algorithms can be easily in-
tegrated in a query pipeline execution. The MW-join

algorithm uses a different approach to seek the pre-
fixes of all streams that always W-join with each other.
The MW-join never iterates over tuples that are not
window-related and its intermediate structures {(join
buffers) always reflect the prefixes of the streams that
actually satisfy the window constraint.

In addressing Form 2 of W-join, different window
constraints exist between all pairs of the streams. We
propose global and locel conservative approaches that
utilize a flter-refine paradigm. The global conserva-
tive approach (GCA) chooses the mazrimum window
constraint to reduce the join into a single window con-
straint and applies any of the NLW-join, HW-join or
MW-join algorithms. In the local conservative ap-
proach (LCA), we adapt the MW-join algorithm to
consider the maximum window constraint per each
stream. For Form 3 of W-join, when some window
constraints are absent, we show how to pre-process the
query in order to utilize the conservative approaches.
Finally, we address a special case of the W-join, termed
the Path W-join (e.g., tracking of objects along a
certain path), and present the solution based on the
conservative approaches, NLW-join and HW-join algo-
rithms.

We present an extensive performance study of all
algorithms using a prototype stream database system,
developed at Purdue, and using both real and syn-
thetic data streams. In the experiments, we compare
with new stream join techniques such as the ripple-
join [10} and XJoin [20], which are adapted to an-
swer the W-join operation. The results illustrate sig-
nificant improvement when using the proposed win-
dow join algorithms in answering W-join queries for
multiple streams. We also test the algorithms when
data streams are of variable rates and illustrate that
the MW-join has a comparable performance to the
HW-join, which is limited to equi-join cases.

The rest of the paper is organized as follows. Sec-
tion 2 introduces background information. Section 3
describes the NLW-join, HW-join and MW-join algo-
rithms. In Section 4 we introduce the performance
study. Section 5 describes the conservative approaches
for the cther forms of W-join. Section 6 discusses re-
lated work and we conclude in Section 7 with a sum-

mary.

2 Preliminaries

In this section we introduce the stream model and our
abstract presentation of the W-join that we use in de-
veloping the algorithms.

2.1 Stiream Model

We consider streams with an infinite sequence of data
items, where the items are added to the sequence over
time and the sequence is ordered by the time-stamp
at which each item is added to the stream. Accord-
ingly, we model each stream data item as a binary
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Figure 1: Variations of W-join.

tuple < v, t >, where vis a value (or set of values) of
the data item, and t is the time-stamp that defines the
order of the stream sequence. The value of the data
item can be a single value or a vector of values, and
each value can be a simple or composite data type.
The time is our default ordering domain. The time-
stamp is considered as the sequence number, which is
implicitly attached to each new data item. This notion
of time may refer to either the valid {ime or the irans-
action time [18], where valid time is the time assigned
to the item at its source stream, and transaction time
is the time assigned to the data item at the query pro-
cessing system. We refer to the source of any stream as
a sensor. A sensor is any data source that is capable of
providing infinite streams of data, either continuously
or asynchronously.

2.2 The W-join Operation

To illustrate the operation of a W-join, Figure 1(a)
shows a W-join among five data streams (A-E). The
position of the tuples on the x-axis represents the
arrival order over time. The black dots correspond
to tuples from each stream that join together. The
window restriction implies that only tuples within
a window of each other can join. Thus, the tuple
< ag,be,¢1,da,e2 > is a candidate for the W-join,
however the tuple < aa,bs,cp,d2, €1 > i3 not, since
e; and d; are more than a window away from each
other.

It is evident from the W-join operation that we
need an efficient approach for verifying window con-
straints between the input streams and for updating
the join buffers to contain only eligible tuples. A brute-
force approach to verify window constraints between
streams requires verifying the constraint between each
pair of N streams, adding C§' additional comparisons
for each input tuple. A more efficient approach is sug-

gested by Aref et al. {1} to verify that N objects, each
from a different class, are within a fixed-radius from
each other. We adopt a similar approach to verify
window constraints among the individual tuples. The
algorithms in [1] cannot deal with infinite streams and
may block if data is delayed. In contrast, our pro-
posed approach is non-blocking and does not require
complete scans over the streams. For updating the
join buffers we provide an online approach in contrast
to a straightforward approach that updates the join
buffers either periodically or as storage overflows. We
will present the details of the algorithms in the next
section.

The W-join in Figure 1(a) represents the single win-
dow constraint form of W-join. If we represent tu-
ples from the streams as nodes in a graph, the W-join
with a single window constraint can be represented
as a complete graph, where edges correspond to the
window constraint (e.g., tuples from stream A and B
must be within window of time from each other). Fig-
ure 1(a) depicts the graph representation of W-join.
The other variations of the W-join that consider dif-
ferent window constraints between the streams and /or
partial window constraints are shown in Figure 1(b).

3 W-join with a single window con-
straint

The single window constraint for W-join is defined as
follows:

Given N data sireams and @ join condition
{a boolean ezpression on the tuples’ values),
find the tuples that satisfy the join condition
and thal are within ¢ sliding time window of
length w units from each other.

We use the term distance to refer to the time difference
between two time-stamps, and the term period {18] to
refer to an anchored interval in time, where the start
and end time-stamps bound the period.

In the following sections, we present the NLW-join,
HW-join algorithms and the MW-join algorithm.

3.1 The W-join Algorithms

We describe the approach followed by both the
NLW-join and HW-join using an example W-join
among five streams, A, B, C, D, E, as shown in Fig-
ure 2. In this example, the five streams are joined
together using a single window constraint of length w
that applies between every two streams. For illustra-
tion of the algorithm, we assume that only the black
dots (tuples) from each stream satisfy the join predi-
cate (e.g., equality over objectID). The W-join main-
tains a buffer for each stream and we assume that the
vertical bold arrows are currently pointing to the lzst
tuple processed from each stream.
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Figure 2: Two iterations of the W-join.

The algorithm processes each stream in order (i.e.,
Stream A is processed first then Streams B, C, D, E,
A ..). At each iteration, a new tuple from a differ-
ent stream is processed. If the current stream has no
tuples, the next stream is processed. In other words,
the algorithm does rot block waiting for tuples from a
single stream.

Figure 2(i) depicts the status of the algorithm when
processing tuple as from Stream A and forming a win-
dow of length 2w centered at as;. The algorithm it-
erates over all tuples of Stream B which are within
the window of tuple a;. These tuples are shown in-
side the rectangle over B. b, is white, i.e., it does not
qualify the rest of the query predicate and hence does
not join with a;. by satisfies the join predicate and is
located within the window of as (i.e., it is included in
the rectangle). The period is modified (shrunk) to in-
clude az, b2 and all tuples within w of either of them.
This new period is used to test tuples in Stream C,
and is shown as a rectangle over Stream C in Fig-
ure 2(i). The process of checking the join condition
is repeated for tuples in C. Since tuple ¢; satisfies
the join predicate and also lies inside the rectangle,
a new period is calculated that includes tuples as, by,
¢, and all tuples that are within w of any of them.
This period is shown as a rectangle over Streamn D.
In Stream D, d; satisfies the join predicate and is lo-
cated within the rectangle formed by a2, 62, €. A
new period is formed which includes the previous tu-
ples and any further tuples within w of any of them.
This period is shown as a rectangle over Stream E.

Figure 3: Tuple removal in W-join.

The step is repeated for Stream E, and the 5_tuples,
< ap,b,c),dz,e2 > is reported as output. The algo-
rithm recursively backtracks to consider other tuples
in Streams D, then C and finally B. The final out-
put 5_tuples in the iteration that starts with tuple az
are: < G.g,bz,C],dz,Ez >y < a29b21631d2182 >,
< a2, b3,C1,d2,82 >, < a21b3r631d21e2 >,
< 32,b4,61,d2,62 > < a2)b4163:d21e2 >.

After finishing with tuple ag, the algorithm starts
a new iteration using a different stream. In the ex-
ample of Figure 2, we advance the pointer of Stream
B to process tuple bs. This iteration is shown in Fig-
ure 2(ii) where periods over Streams C, D, E and A are
constructed, respectively. This iteration produces no
output, since no tuples join together in the constructed
rectangles. Note that tuples in the rectangle over A
are not yet inside A's buffer (after arrow location) and
as such are not considered for the join. Those tuples
will be processed in a later iteration when processing
Stream A. The same applies to tuple ¢5 in Stream C.

The algorithm never produces spurious duplicate
tuples, since in each iteration a new tuple is consid-
ered for the join (the next tuple from a stream). The
output tuples of this iteration must include the new
tuple, thus duplicate tuples cannot be produced.

The algorithm must address the removal of old tu-
ples from the buffer associated with each stream, where
old tuples are those which will never W-join with any
incoming tuples from the streams. We remove a tuple
from a stream if it is located at a distance more than w
from the last tuple in all other streams. In Figure 2 (i},
we remove d; as we process Stream D, since d is lo-
cated at distance more than w from the last tuples of
all streams (namely tuples ap, by, €3, €3). Note that we
cannot remove a tuple if it is at a distance more than
w from only a single stream. This is shown by not-
ing in Figure 3 that although e, is located at distance
more than w from by when tuple by from Stream B is
processed, when we later process Stream C, the tuple
cs can join with e, as well as with ag, ba, d>.

‘W-join is non-blocking in the sense that it does not
stop if one of the streams has no tuples. Rather, it con-
tinues processing the tuples from the other streams.
In addition, W-join can be easily implemented in the
pipeline query plan. This is more evident if we note
that the new tuple from each stream is actually com-
pared with the tuples in the period constructed thus




far, and those tuples can be produced from lower levels
in the pipeline tree.

In the following sections, we show two pipelined
implementations of W-join using nested-loop and
hash approaches. We call these two implementations
NLW-join and HW-join, respectively.

3.1.1 The Nested-Loop W-join Algorithm

We consider a left deep pipelined execution plan of the
joins, where at each level in the pipeline an additional
stream is introduced to the join and the source streams
correspond to the leaves in the execution tree (see Fig-
ure 4.) The left stream may be a source stream or an
intermediate stream from a lower level in the tree. The
right stream is always a source stream. Except at the
lowest node in the tree, tuples in the left stream do not
have a single time-stamp per period. In other words, as
the left m_tuples climbs the tree, an additional time-
stamp is added, where m is the number of streams
joined so far. We store the time-stamps of all tuples
joined so far with the joined m_tuples (to handle the
tuple removal and cover the anomaly case, which is de-
scribed in Figure 3). The period of each m-tuples can
be easily calculated as; [TSmaz — @, TSmin + ], where
T'Snaz is the MAX(time-stamps of the m_tuples), and
T'Smin is the MIN(time-stamps of the m_tuples).

All the tuples received from one stream and not yet
dropped are stored in a siream buffer. The buffer is
gither small enough to fit in memory, or part of it {the
tail) is swapped to disk.

The pipelined algorithm alternates between retriev-
ing tuples from the left and right streams. The algo-
rithm does not block if one of the streams has no tu-
ples; in this case, it continues retrieving tuples from
the other stream. If the other stream blocks as well,
the join produces an empty tuple to higher levels. An
empty tuple signals higher levels to process other non-
blocking streams or call the lower level again. As an
m_tuples arrives from the left stream, it is used to iter-
ate over all qualifying tuples in the right stream. Only
tuples in the right stream that reside inside the pe-
riod of the m_tuples are tested for the join predicate.
If a tuple satisfies the join predicate from the right
stream, a new (m+1)-tuples is reported to higher lev-
els, and the time-stamp of the right tuple is added to
the set of time-stamps already in the m_tuples. The
same process is performed as a tuple arrives from the
right stream.

To remove tuples from the buffer of a source and
an intermediate stream, we need to verify that these
tuples are not included within the window of any ar-
riving tuples from all the other streams. For this pur-
pose, the algorithm keeps a vector of time-stamps per
buffer. This vector is updated to reflect the max-
mum time-stamps that appear in each source stream.
For example, for right streams, the time-stamps vector
Vrigne has a single value that represents the maximum
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Figure 4: Binary Pipelined NLW-join.

time-stamp of the tuples from that stream. For left
streams, Vi is a vector of maximum time-stamps
for each source stream in its subtree. The time-stamps
vector is shown in Figure 4. During the iteration of one
stream, we remove the tuple that is located at a dis-
tance more than w from the tuples in the time-stamps
vector of the other stream. This tuple is guaranteed
not to W-join with later tuples appearing in the other
stream.

In Figure 5, we present the GetNext algorithm
of each join in the pipeline. The subscripts i1 and
j represent left{0) and right(1) streams, respectively.
The stream can be either a source or an intermedi-
ate stream. The variable TurnOnStream indicates the
stream to process when starting the algorithm, the list
CurrentJoinQutput stores the W-joined tuples. The
Function GetPeriod(¢;) returns the period of tuple t;.
Function IsOut(ty, Vi, w) returns true if ¢y is located
at a distance more than w from every tuple in V;.
Function IsIn{ty, CurrentPeriod) returns true if ¢ is
included within CurrentPeriod. The iteration returns
after scanning both streams, ProcessedBothSireams, to
allow higher join nodes to process their streams.

3.1.2 The Hash W-join Algorithm

We now present the hash-hased implementation for
the W-join. We assume that the join predicate is an
equality predicate over the join attribute. This algo-
rithm uses an approach for updating the window that
is similar to the one used by NLW-join. However, the
algorithm builds hash tables based on the join equal-
ity attribute for both streams. The iteration for the
HW-join is similar to the one in Figure 5, except that
the new tuple is used to probe the hash table of the
other stream instead of scanning it. As with the nested
loop algorithm, we need to update the buffer (hash
table) of one stream as tuples arrive from the other
streams. However, for hashing, the probing tuple only
visits part of the hash table, the bucket that has the
same hash key. This may leave some buckets, which
are probed infrequently, occupied with old tuples. To
account for this situation, we call an update routine to
remove cld tuples from the other buckets as well. This
routine is called for the rarely-probed buckets only in



GetNext{}{
if{(CurrentJoinQutput!=NULL)
returm . next_ouiput_tuple;
While(1}{
i = TurmOnStream; j = (i+1) mode 2;
Retrieve tuple, &;;
if (¢ '= NULL) {
Update Vy;
Insert {; in siream;’s buffer;
CurrentPeriod= GetPeriod(¢;);
For all wuples £ in stream;'s bufler
I{&Out(ze, Vi, w))
delete £;
else
if{ IsIn(is, CurrentPeriod))
If{CheckJoinPredicate(;, ik, fresute)

}/* end if */
TurnOnStream = (i+1} mode 2;
il{CurrentJoinQutput!=NULL}
return.firat.output_tuple;
else il{Processed BothStreams)
/* both streams are empty, do not block and return */
return NULL;
}/* end while */

AddToOutlput{t,.,ust, CurrentJoinQutput);

Figure 5: A single iteration of NLW-join

contrast to a naive periodic approach that scans all the
buckets. It is worth noting that with a large number
of arriving tuples and with non-skewed values of the
hashing attribute, the buckets get updated without the
need to call a separate update routine for them.

3.2 The Merge W-join Algorithm

Let "m.tuples” denotes the W-joined tuples between m
streams at an intermediate stage during W-join execu-
tion. In the NLW-join and HW-join algorithms, when
considering a new stream to join the m streams, we
need to verify that the resulting m+1_tuples satisfies
the window constraint. This test requires a boundary
checking (two comparisons) and is repeated multiple
times, for each tuple in the new stream. In this sec-
tion, we present an algorithm where this test occurs
only once, when a new tuple arrives, and the algorithm
controls its buflers to keep only tuples that are within
a window of each other. Our experimental study for
this algorithm shows an order of magnitude speedup
compared to the nested loop W-join algorithm. We
refer to this algorithm as MW-join.

The MW-join iterates between two modes, Mode I
and Mode 2 In Mede 1, a plan sweep is performed
on the time axis [or all incoming tuples. The target is
to locate the first N_tuples at window distance w from
each other. As this tuple is found, a period, v, is con-
structed that includes all the N_tuples. In Mode 1, all
the tuples beyond the starting N_tuples are dropped
from the streams’ bufiers. Then Mode 2 begins, ad-
mitting tuples that follow the starting N_tuples and
that have time-stamps within the peried v. Those tu-
ples are guaranteed to be within w time units from the
tuples already included in the period. As a result, no

repeated verification for the window inclusion is nec-
essary while joining the new tuple to the ones already
in the period.
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Figure 6: The Merge W-join Algorithm.

Figure 6 shows an example of joining five Streams,
A,B, C, D, and E. Assume that a;, b, ¢, d), e; are the
first tuples in each stream. Mode 1 starts with Stream
A and determines the period that includes e, shown in
Step 1 of Figure 6. The algorithm proceeds to Stream
B, and b, is tested to determine if it falls within the
period determined by a;. Since by is included inside
the period, the period is modified (shrunk) to include
ay, b, and all tuples within window of each of them,
the period modification is shown in Step 2. Stream C
is processed next, and ¢; is tested for period inclusion.
As ¢ is also included within the period, the period
is modified to reflect the addition of ¢, and Mode 1
proceeds to Stream D. In Stream D, as d, is to the left
of the current period, as a result, dy is dropped and
the next tuple, ds is considered for Mode 1. Since ds is
to the right of the current period, the current period is
discarded and a new period is created in Step 6 which
is centered at d2. Mode 1 then considers Stream D as
the starting stream, and continues testing the rest of
the streams before looping back to Stream A. Stream
E is now processed. e is to the left of the period, so it
is dropped and the next tuple from Stream E is tested.
es is included within the period, which is updated in
Step 8 to reflect the inclusion. Stream A is processed



again, and since tuple a; is to the left of the period,
it is dropped and pext tuple is tested. a is in the
period, the period is updated, and Mode 1 advances
to Stream B. At Stream B, tuple b; is dropped (to the
left of the period) and tuple b; is added to the period.
Finally tuple ¢; in Stream C is added to the period
and all the streams participate by a single tuple in the
final period, v. This indicates the end of Mode 1. The
final tuple becomes the starting N_tuples. Note that
the join predicate is not considered during Mode 1,
and only the period inclusion is verified.

Mode 2 then begins, iterating over all tuples in the
neighborhood of the N_tuples and included within v.
In Mode 2 we start by verifying the join predicate
for the starting N_tuples only if it includes new tu-
Ples from the streams. Afterwards, Mode 2 processes
the new tuple from each stream repeatedly. Mode 2
admits the new tuple only if it is included within the
period v, otherwise Mode 2 considers a new tuple from
a different stream {(assuming the order A, B, C, D, E,
A, ...). Mode 2 does not block waiting for tuples to
arrive at a specific stream, rather, it considers another
stream meanwhile.

For each new and already admitted tuple, Mode 2
performs a nested loop join that includes the new tu-
ple and all the tuples currently in the other streams’
buffers. For example, as we consider tuple a; we
perform a nested loop to test the join predicate for
the tuple combination < &g,%p,Te, T4,Te >, where
T, represents all tuple currently in the buffer of
Stream B. After considering ags, we check the tuples
< Zn,b3,%c, Ta, Te >, and so on. We stop Mode 2
when the next tuple from each stream is to the right
of the current period v. The output of Mode 2 in our
example is the set of N_tuples: {< as,b2,c1,d2,€2 >,
< ag,b3,01,d2,60 >].

At this point, Mode 1 is restarted by dropping the
tuple ¢, and searching for next starting N_tuples. Note
that, all incoming tuples from the streams will not W-
join with ¢;. After Mode 1 succeeds in locating the
next starting N_tuples, Mode 2 is restarted.

The interesting feature of this algorithm is the sim-
plicity in determining and updating the period in
Mode 1. In addition, Mode 2 only iterates over tu-
ples that are within a window from each other (that is,
those that belong to the period produced by Mode 1).
This means that the algorithm is only performing the
necessary work without checking any luples outside the
window. In addition, Mode 1 updates the buffers of
each stream such that Mode 2 needs to test the window
inclusion only when admitling ¢ new luple. Mode 2,
blindly tests the join predicate with all tuples currently
in the join buffer, with the guarantee that they are lo-
cated at the correct window distance from each other.

Nate that Mode 2 never produces spurious duplicate

tuples. Each time Mode 2 starts, at least one pair
of tuples is enumerated for the first time, and since

we move forward in each iteration (no backtracking),
duplicates cannot. appear in the output.

4 Performance Study

We evaluate the performance of the NLW-join,
HW-join and MW-join algorithms in a prototype
stream database system using both real and synthetic
data streams. We compare their performance with
adapted versions of the ripple join and the XJoin to
consider the window constraint and pericdic updates
of their join buffers. In the following section, we pro-
vide an overview of the implementation of the proto-
type stream database system. We then describe the
workload data and introduce the experimental results.

4.1 Implementation

The three W-join algorithms (NLW-join, HW-join and
MW-join) are implemented on a real database system,
PREDATOR [16], which is modified to accommodate
stream processing. We introduce an abstract data
type stream-lype that can represent source data types
of streaming capability. Any stream-type must pro-
vide the following interfaces, MmitStream, ReadStream,
and CloseStream. This approach in the design is simi-
lar to table functions [15] in introducing external data
sources to the database. The stream table has a sin-
gle attribute of stream-type. In order to collect data
from the streams and supply them to the query ex-
ecution engine, we developed a stream manager as a
new component in the stream database system. The
main functionality of the stream manager is to reg-
ister new stream-access requests, retrieve data from
the registered streams into its local buffers using the
stream-type interfaces and supply data to be pro-
cessed by the query execution engine. To interface the
query execution plan to the stream manager, we in-
troduce a StreamScan operglor to communicate with
the stream manager and retrieve new tuples. If no
tuples are ready because the stream is blocked, the
stream manager replies with a STREAM_NO_VALUE
message and the StreamScan reports a NULL record
to higher nodes in the query tree.

The queries over data streams are long running
queries which are usually terminated by a stop requaest
from the user or by a STREAM.END message recetved
by the StreamScan. The window specification is added
as a special construct for the query. For example, to
W-join 3 streams (A, B, C), the window predicate is
WINDOW = w , where w represents the length of the
window in time units,

4.2 Workload Data

We performed our experiments on both real and syn-
thetic data. For real data, we use the logs of the
transactions from Wal*Mart stores. We consider join-
ing multiple stores, where the join predicate is equal-
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Figure 7: Comparing the performance between the adapted ripple join, NLW-join and MW-join for 2,3 and 4 streams

using real data streams.
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Figure 8: Comparing the performance between the adapted XJoin and HW-join for 2,3 and 4 streams using real data

streams.

ity over the item number which is sold by different
stores. A sold item in a store appears as a transaction
(visit_scan) of customer purchases. A single transac-
tion for each store includes the item number in addi-
tion to other information, such as the item descrip-
tion, the item unit price, the item quantity and the
item purchase date and time. Each transaction is a
tuple with an approximate size of 200 bytes. The sin-
gle store is a stream of items that have been sold. The
time-stamp of each tuple is the time of the transaction,
valid time. Our data is extracted from the NCR Tera-
data machine that holds 70GBytes of Wal*Mart data.
Each store is represented in our system as a stream
data type.

We also constder synthetic data streams, where each
stream consists of a sequence of integers, and the inter-
arrival time between two numbers follows the exponen-
tial distribution with mean A. We consider a small set
of integer numbers as values for the data streams in
order to increase the selectivity of the join and test
the algorithms under a considerably heavy workload.
Note that increasing the selectivity will increase the
number of comparisons in the iteration of any of the
algorithms due to an increased number of joined tu-
ples. The experiments are run on a Sun Enterprise
450 machine, running the Solaris 2.6 operating system
with 4GBytes main memory.

4.3 Experimental Results

Our performance measure is the service time for each
arriving tuple, which represents the time needed to
handle an arriving item in the NLW-join, HW-join
and MW-join algorithms. The service time depends
on the number of comparisons in each iteration and
reflects the efficiency of each algorithm. We collect the
service time averaged by 1000 input tuples during the
time of the experiment. We repeated the experiment
multiple times to consider the trends in all the curves.

Figures 7 and 8 show the results for {2,3,4}-way
join using real data streams with the sliding window
set to 1 hour. In Figure 7 we compare the NLW-join
and MW-join with a version of ripple join that is peri-
odically updating the join buffers every 10,000 tuples
to remove non-window related tuples. In Figure 8
the same experiment is performed for comparing the
HW-join and a version of XJoin where the hash tables
are updated periodically as in the ripple join. The
steep increase and decrease in the curves for 2-way
join are due to the nature of the real data as it rep-
resents transactions at the start and end operational
hours of the stores {7:30 am to 8:00 pm).

Notice that, the plots do not build up as more tu-
ples are processed from the streams (due to the ef-
fect of updating the join buffers). This is more clear
when comparing the plots of our algorithms (NLW-
join, MW-join and HW-join) with the adapted ripple
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Figure 9: The left two graphs represent W-join for 2-6 data streams with variable and comparable data rates, respectively.
The right graph illustrates the sensitivity of MW-join to variation in stream data rates,

join and XJoin that are updated periodically (the two
rightmost graphs in Figures 7 and 8). It is clear that
the NLW-join and HW-join outperform the ripple join
and XJoin in all cases. This was the case in all exper-
iments, so we drop the ripple jein and the XJoin plots
in the remaining figures.

The MW-join algorithm achieves the best perfor-
mance when compared to NLW-join and the ripple
join (almost an order of magnitude faster than the
NLW-join). This is expected since MW-join avoids re-
peated iterations over non-window related tuples and
uses only two comparisons to verify the window rela-
tionship with other tuples.

In Figures 9(a) and 9(b), we test the performance
of the NLW-join, MW-join and HW-join algorithms
as we increase the number of joined streams. We re-
peat this experiment for both synthetic and real data
streams. Figures 8(a) gives the results when using syn-
thetic data streams of variable data rates (between
1000 and 100 tuples/fsec). Figures 9(b) gives the re-
sults of the experiment when using real data streams
{the off-line analysis of the real data streams shows
an average data rate of 5000 transactions/hour per alt
streams). For variable rate data streams, the MW-join
is more than an order of magnitude better than NLW-
join and this relative performance is maintained even
as we increase the number of streams. When we con-
sider data streams with comparable data rates (Fig-
ures 9(b)), the performance of the NLW-join and the
MW-join converges to each other. This is due to the
fact that as more streams of comparable data rates
are joined together, the number of tuples compared
during Maode 2 of the MW-join is increased, and the
saving in comparisons per single tuple is dominated by
the increase in the number of tuples. In other words,
Mode 2 of MW-join (the nested loop) becomes similar
to NLW-join. As a final note from this experiment,
HW-join is more scalable and achieves the best per-
formance. However, hash joins is best used with equi-
join, which is a restricted case compared with NLW-
join and MW-join.

Our next experiment is to test the sensitivity of our
algorithms in situations where one of the streams has
a slow arrival rate. We use the synthetic data for four
streams (A, B, C, D} and measure the service time
per input tuple when all joined streams have com-
parable rates, 1000 tuple/sec or A = 0.001. We run
the expertment again but with Stream D changing its
rate between 10 and 1000 tuples/sec (A = 0.1 and
A = 0.001) every 100 input tuples. As illustrated in
Figure 9(c), MW-join reacts rapidly to changes in the
stream rates and its performance is greatly improved.
In fact MW-join runs most of the time in Mode 1
trying to locate the starting N_tuples. The perfor-
mance for the algorithms NLW-join and HW-join are
not changed significantly.

5 Variations of W-join

In this section, we study the forms of W-join where the
window is not unique between all the streams andfor
some pairs of the streams are not window-constrained,
these refer to Form 2 and Form 3 described in Sec-
tion 1. The path W-join is presented as a special case
of Form 3, the partially constrained form of the W-
join. Finally, we present the experimental study.

5.1 W-join with Different Windows Con-
straints

The NLW-join, HW-join and MW-join algorithms as
described in Section 3 require a single window con-
straint to be applied over all streams. Having different
window constraints between every pair of the streams
requires adaptation of these algorithms. One conserva-
tive approach for solving W-join with different window
constraints is to consider the largest window constraint
as the single window constraint between all streams,
and apply the NLW-join, HW-join or the MW -join al-
gorithm to find all candidate tuples. This step is re-
ferred to as a filtering step. Since the filtering step will
result in false positive answers (tuples that should not
be reported in the actual W-join), we use a refinement




step where all the windows’ constraints are verified be-
tween the tuples included in the output N_tuples. This
final test needs CJ' comparisons, but will only be ap-
plied to the output from the filtering step. We refer to
this approach as a global conservative approach, GCA.

finally the refinement step is performed to the output.
In the refinement step, the window restrictions is ap-
plied for each pair of tuples.

5.2 Partially Constrained W-join
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Figure 10: The local conservative approach.

The GCA may assign an unnecessarily large win-
dow during the join, resulting in an excessive number
of additional comparisons. We propose a variant of the
MW-join algorithm that avoids working with the max-
imum window size. The modified algorithin considers
the maximum local windows for each stream. We call
this approach the local conservative approach, LCA.

The LCA has the same filtering and refinement
steps as the GCA . The filtering step also alternates
between two modes, Mode 1 and Mode 2, similar to the
MW-join. Mode 1 produces the starting N_tuples and
the period, and Mode 2 iterates on all tuples in this pe-
riod to produce the results. However, during Mode 1,
the construction of the period considers the maximum
local window for each stream. We describe the filter-
ing step using the example shown in Figure 10. The
example illustrates a W-join among four streams. We
assume the window sizes are ordered by their indices
(i-e., we is the maximum window size).

As shown in the figure, Mode 1 considers window of
sizes wyg and wy as it processes Stream A and B respec-
tively. Due to space restriction we omit the detailed
description for Mode 1. The final output of Mode 1
is the starting N-tuples < ag,b0,¢2,da > and the
period v. At this point, Mode 2 of the LCA starts
to enumerate all tuples in the vicinity of the N_tuples
< az,bs,¢0,d2 > . The join predicate is applied and
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Figure 11: Graph construction for the partially com-
strained W-join.

If one or more pairs of the streams are not window-
constrained!, the implicit assumption would be that
the two streams join in infinile window sizes. How-
ever, due to the nature of the window constraints, we
can deduce more practical values for the missing con-
straint. Figure 11 shows a 4-way W-join, where the
window constraints between Streams A, C and A, D
are missing. The upper bound to the missing con-
straint is the shortest path between these two streams.
For example, in Figure 11, the window constraint be-
tween Streams A, D is MIN(w; + we + w3, wny + wy).
Note that, the calculation of the shortest path is only
performed at query compilation time.

We repeat the construction of the bound evaluation
for all missing window constraints until arriving at a
complete graph. At this point, the problem can be
solved by either one of the conservative approaches
described in the previous section.

5.2.1 The Path W-join

SELECT ACHID

FROM Seowcr| A, Scie? B, Semar} C, Scasord D

{DWINDDW(A B) = w] AND DWINDOW(B.L) = w2

AND DWINDOW{C.D) = w33 OR

{DWINDOW(D.£) = w3 AND DWINDOW/(C.B) = w2

AND DWINDOW(B,A) = wl}

WHERE A.ObjlDmB.(bjLD AND BOb] D= 051D AND
C.OGIDaD. OID

Figure 12: Path W-join.

In this section, we consider a special query that tar-
gets the partially constrained W-join. The query is to
retrieve tuples from the streams that satisfy the win-
dow constraints along a specific path. Consider the
tracking of an object by multiple monitoring devices
installed along a certain path. The query is to find
the object that follows this path. For example, in Fig-
ure 12, a candidate output needs to appear at any of
the paths: ABCD, DCBA. Tuples from Streams A, B,
C, D need to satisfy the set of the window constraints
{w1,w2,w3}, in addition to the join predicate (e.g.,

1We assume a connected graph with regard to window
constraints among the streams.




equality on the object ids). We consider a simple bidi-
rectional path (no cycles?). The $QL-like represen-
tation is also shown in Figure 12, where DWINDOW
indicates a directed window constraint between tuples
that appear in Stream A first then Stream B (not the
opposite). The query is evaluated, as in Section 5.2,
by reconstructing the complete graph and applying the
conservative approaches.

It is important to note that this query can be
answered using the NLW-join or HW-join discussed
in Section 3.1. However, the detection of the paths
ABCD and the reverse path DCBA requires the union
of two queries. The frst query is evaluated te detect
the path ABCD and the second query is evaluated to
detect the path DCBA. In this case, both algorithms
are modified to iterate in a certain order and prop-
agate a period controlled by only one of the joined
streams. For example, in detecting the path ABCD,
joining A and B propagates a period in the form [T'S,,
TSp+ we], where T'S; indicates time-stamp of a tuple
b at the Stream B and ws is the window between the
Streams B and C.

5.3 Performance Study for the Variations of
‘W-join

We implemented the global and local conservative ap-
proaches for the W-join with different window con-
straints in our prototype system. We add the final
refinement step before producing tuples as output to
higher query operators. In our experiment, we use
synthetic data as in Section 4.2 with data rates equals
1000 tuples/sec (A = 0.001) and a 4-way W-join. The
window among all streams is set to 0.8 second, ex-
cept between one pair of the streams where it is set
to 1 sec. The GCA considers the 1 sec window as the
fixed-size window whereas the LCA considers the lo-
cal windows per each stream (in our example the win-
dow equals 0.8 second per two streams and 1 second
for the other streams). We repeated the experiment
where we choose 0.1 seconds instead of 0.8 seconds.
The results are illustrated in Figure 13. ;From the
figure, the LCA outperforms the GCA even for small
variations between window values.

For testing the Path W-join, we use both the
LCA (where we reconstruct the complete window con-
straints) and the modified NLW-join where we join the
streams pairwise in a pipeline fashion. In Figure 14, we
introduce the results for joining four streams and the
window constraints is described along the path ABCD
or DCBA as in Figure 12. We run the experiment the
first time for streams with small variations between
their data rates and another time with large variation
in data rates. As illustrated in Figure 14, for small
variations, the NLW-join outperforms the LCA, how-
ever for large variations LCA performs the best (LCA

2Complex paths such as the path ABCBCD introduces
a cycle, self-join for Streams B and C.

T T
0—0 OCA - Min. winderw = 08 s
—w GCA - Min. winderw = 0.1 s
A—A LCA - Min. windorw = 008 sa
A——k LCA - kin_ window = 0.1 saa

0 2 20 & ) 100
Numbear of Input tuples {in thousands)

Figure 13: GCA vs LCA for W-join with different window

constraints.

is based on MW-join which is significantly fast in seek-
ing the correct prefixes of the stream to iterate within).

6 Related Work

Praveen et al. [17] provide the SEQ model and im-
plementation for sequence database. The sequence is
defined as a set with a mapping function to a defined
ordered domain. The work in [12] provides a data
model for chronicles { sequences ) of data items and
discusses the complexity of executing a view described
by the relational algebra operators. In [11], the work
includes a study of algorithm complexity on compu-
tation over data stream. Recent work on computing
correlated and approximate average over data streams
is described in [8, 9). The work on [8] proposes a one
pass algorithm to compute the correlated aggregate us-
ing either a fixed or sliding window over data streams.
In [9] the authors propose the use of wavelet transfor-
mation methods to provide small space representations
of the stream for answering aggregate queries. Adap-
tive query processing [2] and execution of continuous
query [5] address reordering of operator during execu-
tion and the execution of long running queries. The
COUGAR  [4] system focuses on executing queries over
sensor data and stored data. Sensors are represented
as new data types with special functions to extract the
sensor data when requested. The STREAM [3] project
discusses the new demands imposed by data streams
on data management and processing techniques. The
band join {6] technique addresses the problem of join-
ing two relations (of fixed sizes) for values within a
“band” of each other. Tribeca [19] is a specialized
query processing system designed to support network
traffic analysis. The system mainly focuses on query
processing over streams of network traffic either on-
line or off-line. Index-based and partition-based algo-
rithins are presented in [22, 13] for temporal-join over
finite relations. The SQL presentation of the sequence
and temporal join is presented in [18].
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7 Conclusion

In this paper we introduce a class of join algorithms,
referred to as W-join, for joining multiple infinite data
streams. We provide a general graph representation of
the W-join, and its different variations. We describe
three W-join algorithms, the NLW-join, the HW-join
and the MW-join. The NLW-join and the HW-join
algorithms can be easily implemented in the query
pipeline plan and use an efficient approach to verify
the window constraint between the streams. The MW-
join algorithm outperforms the NLW-join algorithm in
terms of execution time per input tuple. The MW-join
algorithm provides a major performance speedup and
sensitivity in cases where the streams are of variable
rates. We compared our algorithms with adapted ver-
sions of the ripple join and the XJoin to handle W-join
queries and using a real implementation on a proto-
type stream database system. The performance study
indicates major performance speedup when using our
algorithms. We studied the different ways to solve the
other variations of W-join using adaptation of our al-
gorithms and utilizing the filter-refine paradigm. We
tested the adapted algorithms and we presented the
performance study for each.
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