Microfluidic Pumping based on Dielectrophoresis for Thermal Management of Microelectronics

Dong Liu
University of Houston - Main

Suresh V Garimella
Birck Nanotechnology Center, Purdue University, sureshg@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the Nanoscience and Nanotechnology Commons

http://dx.doi.org/10.1109/ITHERM.2008.4544315

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
ABSTRACT

Micropumps that can be directly integrated into microelectronic devices or microchannel heat sinks are of great interest due to performance, reliability, packaging and cost issues. One alternative is to generate the required flow directly in the microfluidic channels by inducing strong electromechanical forces in the fluid using integrated microelectrodes. In this work, a novel microfluidic pumping approach using traveling-wave dielectrophoresis (twDEP) of microparticles is presented. The dielectrophoretic motion of small particles arises when the suspended particles in a fluid medium are exposed to non-uniform electric fields causing interaction between the induced dipole on the particles and the fields. As the particles move, the surrounding fluid is dragged in the same direction due to viscous effects. The fluidic driving mechanisms due to the particle-fluid and particle-particle hydrodynamic interactions under twDEP are analyzed, and quantitative information on the induced flow field is obtained from numerical simulations. Experimental measurements of the flow velocity in a prototype DEP micropumping device using micro-particle image velocimetry show satisfactory agreement with the numerical predications. Results from this work indicate that the DEP-induced micropumping scheme holds promise for devising chip-integrated micropumping systems for thermal management.

Keywords: dielectrophoresis, traveling-wave field, particle-fluid interaction, micropumping, microfluidics

NOMENCLATURE

a particle radius, m
m mass, kg
p dipole moment, C·m
\(\tau \) time, s
u velocity, m/s

Greek symbols
\(\varepsilon \) dielectric permittivity, F/m
\(\varphi \) phase angle
\(\mu \) viscosity, N·s/m²
\(\rho \) mass density, kg/m³
\(\sigma \) electrical conductivity, S/m
\(\omega \) angular frequency

Subscripts
m medium
p particle

INTRODUCTION

Novel microfluidic devices are being developed for various applications, including drug delivery [1], rapid chemical synthesis [2], biological diagnostics [3] and electronics cooling [4]. The ability to actuate and control fluid in small amounts with high precision and flexibility is critical to the success of microfluidic operations. Conventional pressure-driven pumping methods are inadequate in accommodating these requirements mainly due to the large pressure head needed; moreover, the use of an external pump in a microfluidic system defeats the purpose of miniaturization. Alternative solutions have been sought and a variety of innovative micropumping concepts have been proposed in the literature [5,6]. One particularly attractive scheme is to generate the required flow directly in the microfluidic devices by inducing strong electromechanical forces in the fluid.
Dielectrophoresis is the motion of small particles in colloidal suspensions when exposed to non-uniform electric fields, arising from the interaction of the induced dipole on the particle with the applied field [15]. Dielectrophoresis has been employed extensively as a powerful tool for manipulating particles in biological research, such as in separation [16], trapping [17], sorting [18], and translation [19] of cells, viruses, proteins, and DNA. However, conventional DEP research has focused on controlling the electromagnetic response of the solid particles, while largely neglecting the hydrodynamic interactions between the particles and the surrounding fluid, i.e., the motion of the surrounding fluid induced by drag from the dielectrophoretic particle motion due to viscous effects. In spite of the advances in colloid science and electromechanics [20, 21, 22], a gap still persists in the application of advances in the science of particle dynamics and low Reynolds-number hydrodynamics to the DEP technique. This gap must be bridged to facilitate the implementation of DEP in a broader range of applications. In particular, the potential of traveling-wave DEP (twDEP) as an effective means for microfluidic flow actuation and thermal management has not yet been explored.

The present work aims to develop a novel electrokinetic micropumping concept that capitalizes on the DEP-induced hydrodynamic interaction between small particles and the surrounding fluid, and to utilize this concept to devise self-contained microfluidic delivery systems for application in the thermal management of microelectronics.

THEORY AND ANALYSIS

Re-distribution of the electrical charges in a dielectric particle suspended in a fluid medium upon exposure to an applied external electric field establishes net charges at the interface between the particle and the fluid, and forms an induced dipole across the particle. The induced dipole tends to align with the applied field. The induced dipole moment, \(\vec{p} \), and the dielectrophoretic force, \(\vec{F} \), are given by

\[
\vec{p} = 4\pi \alpha \varepsilon \left(\frac{\varepsilon_p - \varepsilon_m}{\varepsilon_p + 2\varepsilon_m} \right) \vec{E} \tag{1}
\]

\[
\vec{F} = (\vec{p} \cdot \nabla) \vec{E} = 2\pi \alpha \varepsilon \left(\frac{\varepsilon_p - \varepsilon_m}{\varepsilon_p + 2\varepsilon_m} \right) \nabla \vec{E}^2 \tag{2}
\]

in which \(\alpha \) is the radius of the particle, \(\varepsilon \) is the applied electric field vector, and \(\varepsilon_m \) and \(\varepsilon_p \) are the dielectric permittivity of the fluid medium and the particle, respectively. If the applied field is non-uniform (\(\nabla \vec{E} \neq 0 \)), the particle will experience a net force and move by the process of dielectrophoresis [23, 24]. DEP takes place in both direct current (DC) and alternating current (AC) electric fields. Sustained particle motion only occurs in AC DEP (in particular, in traveling-wave DEP), for which case, the permittivity in Eq. (2) is replaced by the frequency-related counterpart,

\[
\varepsilon = \varepsilon - \frac{i\sigma}{\omega} \tag{3}
\]

in which \(\varepsilon \) and \(\sigma \) are the permittivity and electrical conductivity of the dielectric materials, and \(\omega \) is the angular frequency of the electric field.

While the particle travels via DEP in a surrounding fluid, it suffers a retarding drag force if the fluid is either moving slower than the particle or otherwise stationary. The fluid surrounding the particle is in turn dragged by viscous effects to accelerate in the same direction as the particle. The momentum exchange between the particle and the fluid reduces the velocity lag between the phases and eventually leads to an equilibrium state. A steady flow field is then established around the particle in the fluid as a result of this hydrodynamic interaction. In a particle suspension, a large collection of particles are present and the particles further interact hydrodynamically with neighbors. Consequently, the induced flow field is intensified and an appreciable net flow is produced by the collective pumping action. This is the basic electromechanical transport process underlying the DEP-induced microfluidic pumping technique investigated here.

Traveling-Wave Dielectrophoresis (twDEP)

The AC dielectrophoretic force on the particle is expressed using the frequency-dependent permittivity as [25]

\[
\vec{F} = 2\pi \alpha \varepsilon \left(\frac{\vec{E}_p - \vec{E}_m}{\vec{E}_p + 2\vec{E}_m} \right) \nabla \vec{E}^2 \tag{4}
\]

The complex relative permittivity is also referred to as the Clausius-Mossotti factor, \(f_{CM} \),

\[
f_{CM} = \frac{\vec{E}_p - \vec{E}_m}{\vec{E}_p + 2\vec{E}_m} \tag{5}
\]

Assuming the electric field varies with a single angular frequency \(\omega_0 \), the time-averaged dielectrophoretic force can be computed as [26]

\[
\langle \vec{F}_{\text{tw}} \rangle = \pi \alpha \varepsilon \text{Re}[f_{CM}] \nabla |\vec{E}|^2 + 2\pi \alpha \varepsilon \text{Im}[f_{CM}] (\vec{E} \cdot \nabla \phi_0 + \vec{E} \cdot \nabla \phi_0 + \vec{E} \cdot \nabla \phi_0) \tag{6}
\]

where \(\text{Re}[f_{CM}] \) and \(\text{Im}[f_{CM}] \) denote the real and imaginary parts of \(f_{CM} \) and \(E_m \), \(E_p \), and \(E_c \) are components of the electric field vector; \(\phi_0 \), \(\phi_0 \), and \(\phi_0 \) are the phase angles if the electric field is spatially phase-shifted. It is noted that the DEP force depends
on the spatial non-uniformities in both the field strength \(\sqrt{\|\mathbf{E}\|}\) and the phase \(\varphi\). In fact, the first term on the RHS of Eq. (6) determines the alignment of the DEP force with respect to the maxima/minima of the electric field and is the regular DEP force component in DC DEP. The second term on the RHS of Eq. (6) only appears if the electric field has a spatially varying phase, such as in a traveling-wave field, and therefore is the traveling-wave DEP (twDEP) force component.

The alignment of the DEP force with the applied field is contingent upon the Clausius-Mossotti factor \(f_{CM}\) which is frequency-dependent. Figure 1 illustrates the real and imaginary parts of \(f_{CM}\) as a function of the frequency of the applied field for polystyrene particles suspended in water. Clearly, Re[\(f_{CM}\)] is positive in the low-frequency range \((f < 1 \text{ kHz})\) in which the particles are more polarizable than the surrounding fluid, and crosses over to negative values as the frequency increases \((f > 100 \text{ kHz})\) and the particles become less polarizable than the fluid. If Re[\(f_{CM}\)] > 0, the regular DEP force component aligns favorably with the field strength gradient, as indicated by Eq. (6). As a result, the particles move towards the maxima of the electric field, which are usually located at the edges of the electrodes that are used to generate the electric field, and positive DEP occurs. In the opposite situation, a negative Re[\(f_{CM}\)] brings about negative DEP where the particles move away from the maxima of the electric field, distancing themselves from the electrodes. Im[\(f_{CM}\)] vanishes at both extremes of the frequency spectrum but assumes non-zero values in the mid-range around the cross-over frequency. When Im[\(f_{CM}\)] is not trivial, the resulting twDEP force in Eq. (6) propels the particles along or against the propagating traveling-wave field depending on the sign of Im[\(f_{CM}\)]. The twDEP force is generally oriented in parallel to the electrode plane. However, in practice, twDEP does not occur in isolation without the companion negative DEP, since the particles must be levitated from the electrode surface. As such, the criteria for effective twDEP are Re[\(f_{CM}\)] < 0 and Im[\(f_{CM}\)] \(\neq\) 0, which are designated by the shaded area on the frequency spectrum in Fig. 1.

Electric Field

The electric field needed for twDEP is often generated by applying a traveling-wave voltage signal to specially designed electrode arrays. In the present study, three-phase, planar parallel electrodes are fabricated on the bottom surface of the flow channel. As shown in Fig. 2, the electrodes are 9 mm long and have width and uniform spacing of \(d_1 = 20 \ \mu m\) and \(d_2 = 180 \ \mu m\), respectively. The fluid and particles are assumed to be homogeneous linear dielectric materials, so that the electric field in the particle suspension in the flow channel can be solved using Laplace’s equation. Past analytical solutions include approaches using Fourier series [26], the Green’s theorem [27] and the half-plane Green’s function [28], while semi-analytical methods include the charge density method [29] and the Green’s function for a line source with conformal mapping [30]. All these solution approaches have used a linear approximation of the electric potential in the gap between consecutive electrodes as the boundary condition. It will be shown that this is not a good assumption and can cause large errors in the analysis. The calculation can be improved by employing numerical method [31]. Hence, a commercial software package, FLUENT, is used here to simulate the electrical field by solving the scalar transport equations [32].

![Fig. 1 Frequency-dependence of the Clausius-Mossotti factor \(f_{CM}\).](image1)

Fig. 1 Frequency-dependence of the Clausius-Mossotti factor \(f_{CM}\).

![Fig. 2 Three-phase planar microelectrode array.](image2)

Fig. 2 Three-phase planar microelectrode array.
(\frac{\partial \phi}{\partial n} = 0) is assumed since insulating Pyrex glass is used in the experiments to enclose the flow channel. On the bottom surface, the electrodes are represented by sections with specified values of voltages. In the gap regions between neighboring electrodes, the more physically representative Neumann condition is specified for the electric field instead of using the linear approximation.

![Diagram of computational domain](image)

Fig. 3 A schematic diagram of the computational domain for the electric field.

Numerical results for the electric potential and the electric field are shown in Fig. 4. Figure 4(a) shows that the electric potential decays rapidly with increasing distance from the electrode surface. Since the density of the field lines is proportional to the strength of the electric field, Fig. 4(b) shows clearly that the field maxima are located near the edges of the electrodes. Interestingly, the second-phase electrode does not appear to have an influence in Fig. 4(b) as most field lines bypass this electrode and connect directly between the first- and third-phase electrodes. However, the second-phase electrode is indispensable since otherwise, the phase-angle term would vanish in Eq. (6) and no useful traveling-wave field would be generated for twDEP application. Fig. 4(c) illustrates the exact solution for the electric potential at the electrode surface, which exhibits significant deviation from the first-order linear approximation often made in past studies in the literature.

DEP Forces

Once the traveling-wave electric field is solved, the time-averaged DEP force can be obtained.

Negative DEP Force. Negative DEP is required for twDEP to occur. Fig. 5(a) shows contours of the DEP force calculated for a pure negative DEP case, corresponding to Re[f_{C,M}] = -0.5 and Im[f_{C,M}] = 0, which shows the strength of the DEP force is almost uniform except for regions near the electrodes. Figure 5(b) indicates that the DEP force points outwards from the electrode edge against the gradient of the electric field. The streamlines in Fig. 5(c) show more clearly that a particle suspended in the fluid tends to be levitated away from the electrode surface.

![Diagram of negative DEP force](image)

Fig. 5 Negative DEP force for Re[f_{C,M}] = -0.5 and Im[f_{C,M}] = 0.
Traveling-Wave DEP Force. In a three-phase traveling-wave field, the spatially varying phase makes the horizontal motion of the particle possible. Fig. 6 illustrates the pure twDEP force and the streamlines corresponding to Re\([f_{CM}] = 0\) and Im\([f_{CM}] = -0.4\). Figure 6(a) shows a similar profile for the DEP force strength as in the case of negative DEP (Figure 5(a)). Fig. 6(b) illustrates that, at some height above the electrode surface, the twDEP force becomes nearly uniform in magnitude and acts against the propagating traveling wave in the horizontal direction. At lower heights, trajectories of the particle would no longer conform to translational motion and vortices can be found between the electrodes as evident from the streamline plot in Fig. 6(c).

Particle-Fluid Interactions in DEP-Induced Flows
Particle-fluid hydrodynamic interactions are central to the DEP-induced micropumping concept proposed here. A particle experiences a variety of external forces as it travels in the surrounding fluid, including the gravitational force, the random Brownian force, the time-averaged DEP force, and other higher-order forces accounting for the electrical interactions between neighboring particles in a suspension of multiple particles [33]. In the experiments for the present work, polystyrene particles \((\rho_p = 1050 \text{ kg/m}^3)\) of 2.9 \(\mu\)m diameter were used at a very low concentration in an aqueous solution \((\rho_f = 1000 \text{ kg/m}^3)\). Therefore, the gravitational force, the Brownian force and the forces due to multi-particle electrical interactions can be neglected according to a dimensional analysis. Consequently, the particle dynamics can be described by

\[
\frac{m}{\pi \mu} \frac{d\vec{u}_p}{dt} = F_{\text{DEP}} - 6\pi \mu \frac{a}{1 - e^{-\frac{6\pi \mu \frac{a}{\rho_p}}{\eta}}} \left(\frac{6\pi \mu \frac{a}{\rho_p}}{\eta} \right) \vec{u}_p
\]

Solving this equation provides the particle velocity

\[
\vec{u}_p = \left(\frac{F_{\text{DEP}}}{6\pi \mu \frac{a}{\rho_p}} + \vec{u}_e \right) \left(1 - e^{-\frac{6\pi \mu \frac{a}{\rho_p}}{\eta}} \right) \frac{6\pi \mu \frac{a}{\rho_p}}{\eta} \vec{u}_e
\]

The inertia term can be neglected because the relaxation frequency \(f_{\text{r}} \sim \frac{\pi \mu}{a} \approx 10^5 \text{ Hz}\) is considerably higher than the frequency of the applied electric field \((\sim 10^3 \text{ Hz})\). Clearly, the competition between the DEP force and the viscous drag determines the velocity lag between the particle and the fluid. At equilibrium, both forces should balance each other. If the viscous drag is exceeded by the DEP driving force, the particles accelerate until a new equilibrium is established. The dielectrophoretic particle motion perturbs an otherwise stationary fluid and generates a local flow field in the particle’s vicinity, which can be described by Stokes’ equation [21],

\[
\nabla^2 \vec{v} = \frac{1}{\mu_f} \nabla \vec{p}
\]

For simplicity, the torque on the particle due to stresses exerted by the surrounding fluid is not considered, and therefore the angular momentum does not play a role in the flow field.

The Stokes equation must be solved in conjunction with the continuity equation as well as the no-slip boundary condition at the surface of the particle,

\[
\nabla \cdot \vec{v} = 0
\]

The resulting velocity field is plotted in Fig. 7, where the velocity is normalized with the particle velocity \(u_p\). It is seen that, immediately around the particle, the fluid elements attain a velocity almost equal to \(u_p\), as expected. However, the agitation the particle causes in the fluid extends well beyond its vicinity. The entire fluid domain in the plot is influenced, extending over an area of \(20a \times 20a\) which is roughly 100 times larger than the particle size. The fluid in most of the domain reaches a velocity of at least \(u_p/10\). It is thus clear that a single particle can induce an appreciable flow field over a region considerably larger than its own size.

![Fig. 7 Solution of the velocity field around a translating particle](image-url)
In colloidal suspensions where multiple particles are present, additional hydrodynamic interactions between neighboring translating particles could result in an intensification of the induced flow field. The extent of this kind of hydrodynamic interaction depends on many factors such as the particle shape and size, the inter-particle distance and the respective orientation of the particles. Consequently, the flow field induced by the collective motion of a group of particles will differ from that due to a single particle. In view of the difficulty in obtaining analytical solutions for a multiple-body problem, the method of reflections [21] is used; successive iterations are employed to solve the flow field to any degree of approximation by this method. The drag forces can be derived for a pair of identical particles separated by a distance L, as shown in Fig. 8 for the simplest case of a multiple-body system,

\[F_{\mu,x} = \frac{6\pi \mu_p a u_p \sin \alpha}{1 + (3/4)(a/L)} \] \(\text{(12)} \)

\[F_{\mu,y} = \frac{6\pi \mu_p a u_p \cos \alpha}{1 + (3/2)(a/L)} \] \(\text{(13)} \)

The particles in this case are considered to move with the same velocity along a direction at an angle \(\alpha\) to the line joining their centers.

The equations reveal that the drag force experienced by each particle in the pair is strongly affected by the inter-particle distance. If the two particles are very far apart (L→∞), the particle-particle interaction can be neglected and the drag force reduces to the prediction from Stokes’ drag law. As the inter-particle distance decreases, the drag force decreases from the Stokes’ drag law value, as indicated by the term in the denominator in Eqs. (12) and (13). This is because the motion of particle \(a\) induces a flow velocity at the position of particle \(b\), which helps to reduce the velocity lag between particle \(b\) and its surrounding, and leads to lower viscous drag on particle \(b\), and vice versa. However, the DEP force on the particles is not affected by their relative positions. As stated earlier, the imbalance between the unaffected DEP force and the waning viscous drag will accelerate the particles to a higher velocity until a new equilibrium is reached. Consequently, the induced flow field is intensified.

Knowing the particle velocity and the drag force from Eqs.(8), (12) and (13), the flow field at the new equilibrium state can be deduced using the point-force approach [21]. The results are shown in Fig. 9 for two specific situations. In Fig. 9(a), the particles are moving along the line joining their centers, that is, \(\alpha = 0\); and in Fig. 9(b), the particles are moving perpendicular to the centerline, that is, \(\alpha = 90^\circ\). For both cases, the inter-particle distance is decreased to inspect its effect on the induced flow field. Indeed, the flow fields are found to be enhanced, which can be attributed to two sources: the larger particle velocity due to the reduced viscous drag as a result of the particle-particle interaction, and the superposition of flow fields due to the individual particles.

The analysis in this section indicates the feasibility of generating substantial flow velocities based on hydrodynamic interactions between particles.

NUMERICAL SIMULATION

DEP and the induced flow field were analyzed with simplified particle-fluid systems to elicit an understanding of the DEP driving force and the particle-fluid interaction as a mechanism for microfluidic actuation. However, it is difficult to extend this analysis to general particle suspensions due to the complexity of solving a problem with the simultaneous presence of many particles. Hence, a numerical model is developed to study the flow physics for particle suspensions and to extract detailed information of the DEP-induced flow field.

In the numerical model, the computational domain is shown in Fig. 3. The electric and the flow fields are decoupled from each other and solved sequentially using a commercial software package, FLUENT [32]. The solution of the electric field has been described earlier, and yields the DEP forces.
The DEP force is computed for every point in space. However, only if a particle passes, will there be a force acting in the fluid. Since the particles are present discretely in space, the DEP force is also dispersed in the fluid. However, there are ample particles in the suspension and their random passage in space makes their presence ergodic. As such, the DEP force, although actually acting on the discrete particles, can be treated as a continuous body force in the fluid by volume-averaging. In other words, the DEP force on one particle is averaged over the fluid volume surrounding the particle with the size of the averaging volume determined by the particle volume fraction. This DEP force is then introduced as a body force in the Navier-Stokes equations to solve for the induced flow field. By following this procedure, the complex solid-liquid two-phase flow problem is converted to a more straightforward single-phase fluid flow problem.

The computational domain used for the flow field simulation is shown in Fig. 3. Periodic velocity boundary conditions are specified at both ends of the domain along the x-direction, and no-slip boundary conditions are assumed for the top and bottom walls. The convective term is discretized using a first-order upwind scheme. The computational domain is discretized using a 600 × 200 (x-y) grid. Simulations with different grids showed a satisfactory grid-independence for the results obtained with this mesh. The simulations are performed for 15 cases to study the effects of varying the frequency and voltage of the applied field on the induced flow field. The simulation matrix is shown in Table 1. The inter-particle distance is maintained at \(L = 8a \) for all cases, which corresponds to the actual spacing for a particle concentration of ~ 1%. For the selected frequencies, the particles experience both negative and traveling-wave DEP forces.

<table>
<thead>
<tr>
<th>(f) (kHz)</th>
<th>(\text{Re} \left[\phi_{CM} \right])</th>
<th>(\text{Im} \left[\phi_{CM} \right])</th>
<th>(V) (Volt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.562</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.562</td>
<td>15.6</td>
</tr>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.562</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.562</td>
<td>28.6</td>
</tr>
<tr>
<td>10</td>
<td>-0.008</td>
<td>-0.562</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>-0.451</td>
<td>-0.162</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>-0.451</td>
<td>-0.162</td>
<td>15.6</td>
</tr>
<tr>
<td>50</td>
<td>-0.451</td>
<td>-0.162</td>
<td>22</td>
</tr>
<tr>
<td>50</td>
<td>-0.451</td>
<td>-0.162</td>
<td>28.6</td>
</tr>
<tr>
<td>50</td>
<td>-0.451</td>
<td>-0.162</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>-0.468</td>
<td>-0.0823</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>-0.468</td>
<td>-0.0823</td>
<td>15.6</td>
</tr>
<tr>
<td>100</td>
<td>-0.468</td>
<td>-0.0823</td>
<td>22</td>
</tr>
<tr>
<td>100</td>
<td>-0.468</td>
<td>-0.0823</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Figure 10 shows the DEP-induced velocity field in the flow channel. Velocity profiles at various streamwise locations resemble the parabolic shape of pressure-driven flows. However, the profiles are asymmetric along the y-direction with appreciable distortions in regions right above the electrodes. Reverse flows also occur in the near-wall area, as indicated by the inset in the velocity contour plot. Velocity profiles of this type differ from other electrohydrodynamic flows, such as the plug profile observed in electroosmotic flows [10]. This difference is related to the traveling-wave DEP force shown in Fig. 6, which demonstrates an almost constant driving force in the bulk fluid, similar to pressure-driven flows, except for regions near the electrodes.

Flow velocities midway along the flow direction in the channel \((x = 0.0003 \, \text{m})\) are plotted in Fig. 11 for selected cases. For a given frequency, the velocity increases with increasing applied voltage as a result of the enhanced driving forces. However, modulating the frequency of the electric field appears to be a far more effective way to increase the flow velocity. For instance, the induced velocities at 10 kHz even at lower voltages \((22 \, \text{and} \, 22.8 \, \text{V})\) exceed that at the maximum voltage \((50 \, \text{V})\) at 100 kHz.

![Fig. 10 DEP-induced velocity profiles at various streamwise locations for \(f = 10 \, \text{kHz} \) and \(V_0 = 28.6 \, \text{V} \).](image)

![Fig. 11 Velocity profile midway along the flow direction \((x = 0.0003 \, \text{m})\) for selected conditions.](image)

EXPERIMENTS

To demonstrate the proposed DEP-induced microfluidic pumping concept, a prototype device was designed and fabricated. The device consists of an array of interdigitated microelectrodes fabricated using photolithography. The microelectrodes are made of a layer of 100 nm thick gold that is e-beam evaporated onto a silicon wafer. The array contains 10 parallel thin-bar microelectrodes, 20 \(\mu \)m wide each and separated by 180 \(\mu \)m gaps. The rather large gap was chosen to reduce electrical leakage between electrodes and to alleviate...
electrothermal effects caused by Joule heating. A layer of Parylene C (thickness 500 nm) was deposited over the electrode array to avoid electrolysis and corrosion of the electrodes when the device is in contact with the particle suspensions. The prototype DEP device is shown in Fig. 12(a). A flow channel is constructed by placing a 500 μm thick Pyrex glass slide over two 200 μm thick spacers on either side of the device, which are sealed with epoxy as shown in Fig. 12(b). The particle suspensions are prepared by thoroughly mixing polystyrene microparticles of 2.9 μm diameter (Duke Scientific, CA) with deionized water using a Thermolyne stirrer. The volume fraction is estimated to be 1%.

In the experiments, the wire-bonded DEP device is mounted on a printed circuit board and the electrodes connected to an AC voltage of frequency f. The applied electric signals are controlled by a pulse generator (Berkeley Nucleonics Model 565, CA) and a custom-built timing circuit. The applied voltage ranges from 10 to 30 V, with frequencies ranging from 1 to 1000 kHz. A digital oscilloscope (Tektronix TDS 3032B, OR) is used to monitor the frequency and waveform of the applied signals during the experiments. The particle motion is recorded with a CCD camera (Olympus C5060) under an Olympus BXFM microscope. An Olympus LMPLFL 20X objective lens (N.A. = 0.4, working distance = 12 mm) is used for the measurement.

Figure 13(a) shows the random dispersion of particles before application of the electric field. The particles oscillate a little around their equilibrium positions due to Brownian motion. Once a low-frequency signal (below 1 kHz) is applied, the particles collect at the edge of the electrode, as shown in Fig. 13(b), designating the occurrence of positive DEP. Upon increasing the frequency to 1000 kHz, a negative DEP force causes the particles to be repelled from the electrode to the gap region, as illustrated in Fig. 13(c). If the frequency falls in the effective twDEP range (10 ~ 100 kHz), the particles experience traveling-wave DEP forces and travel in the transverse plane parallel to the microelectrode array. In the measurements, the microscope was adjusted to focus at a distance from the wall where the particle velocity is visualized to reach its peak. Micro-particle image velocimetry (μPIV) was used in conjunction with the images to obtain quantitative measurements of the spatially resolved velocity field.

The measurement uncertainty in the flow velocity was estimated to be 5.14 μm/s. Figure 14 shows a sample result of the measured velocity field. It can be seen that the velocity field is nearly uniform within the measurement plane. From Eq.(8), it is expected that a velocity lag exists between the particle and the surrounding fluid at equilibrium, which has to be considered in deriving the flow field from the μPIV measurement. Note that the traveling-wave DEP component is the driving force of the observed particle motion. Therefore, the velocity lag can be estimated from

$$\left| \vec{v}_p - \vec{u}_w \right| = \frac{F_{\mu \text{DEP}}}{6\pi \mu \alpha}$$

where

$$F_{\mu \text{DEP}} = 2\pi \alpha ^3 \epsilon ^n \Im \left[f_{CU} \right] \left(E_x \nabla \phi_x + E_y \nabla \phi_y + E_z \nabla \phi_z \right)$$

552
For instance, for experimental conditions associated with the μPIV measurement in Figure 15 (V₀ = 28.6 Volts and f = 10 kHz), the velocity lag is about 5.2 μm/s and a flow velocity of 47.1 μm/s is achieved. The average maximum flow velocities extracted from the μPIV measurements are plotted in Fig. 15. With f = 10 kHz and V₀ = 28.6 V, a flow velocity of 50 μm/s is achieved.

Comparison of the experimental data with the numerical results shows satisfactory agreement. In addition, the numerical results imply that the flow velocity could be tripled to 180 μm/s upon doubling the voltage to 50 V at 10 kHz. For optimized electrode design and appropriate selection of particle concentration, it is expected that the induced flow field can be significantly enhanced.

In ongoing work, the potential of this novel technique is being explored further by extending it to the pumping of nanofluids in microfluidic devices. Nanofluids are novel engineered colloids that exhibit superior thermal transport properties owing to the presence of the dispersed nanoparticles [35]. However, the concomitant increase in viscosity poses a challenge for circulating nanofluids in microfluidic systems with traditional pumping methods [36]. The DEP-induced micropumping technique will be used to actuate and control nanofluids such that the nanoparticles themselves act as the fluid mover while, at the same time, contributing to enhancement in thermal transport.

CONCLUSIONS

A novel microfluidic pumping scheme based on traveling-wave dielectrophoresis (twDEP) is proposed for generating flow in situ in microfluidic devices. This technique utilizes the dielectrophoretic motion of small particles and their hydrodynamic interactions with the surrounding fluid to achieve a self-contained microscale fluid delivery system with no moving parts. Fundamental aspects of this technique, such as the traveling-wave electric field, DEP force, particle dynamics and particle-fluid hydrodynamic interactions, are discussed in detail. A numerical model is formulated to simulate the DEP-induced flow field. A prototype DEP micropumping device is fabricated and characterized with polystyrene-water suspensions. This technique provides a powerful, versatile tool for actuating colloidal suspensions in microfluidic devices that can be used in thermal management of microelectronics.

ACKNOWLEDGEMENTS

The authors acknowledge assistance from Vaibhav Bahadur and Brian Iverson of Purdue University with different aspects of this work.

REFERENCES

Heat Flux Cooling,

