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On the Nonlinear Dynamics of Electromagnetically
Transduced Microresonators

Andrew B. Sabater, Student Member, ASME, Vijay Kumar, Student Member, ASME, Aamer Mahmood, Member, IEEE,
and Jeffrey F. Rhoads, Member, ASME

Abstract—This paper investigates the dynamics of electromag-
netically actuated and sensed microresonators. These resonators
consist of a silicon microcantilever and a current-carrying metal-
lic wire loop. When placed in a permanent magnetic field and an
alternating current is supplied, the devices vibrate due to Lorentz
interactions. These vibrations, in turn, induce an electromotive
force, which can be correlated to the dynamic response of
the device. The nature of this transduction process results in
an intrinsic coupling between the system’s input and output,
which must be analytically and experimentally characterized to
fully understand the dynamics of the devices of interest. This
paper seeks to address this need through the modeling, analysis,
and experimental characterization of the nonlinear response of
electromagnetically transduced microcantilevers in the presence
of inductive and resistive coupling between the devices’ input
and output ports. A complete understanding of this behavior
should enable the application of electromagnetically transduced
microsystems in practical contexts ranging from resonant mass
sensing to micromechanical signal processing. [2012-0223]

Index Terms—Electromagnetically transduced, input/output
coupling, MEMS, nonlinear.

I. Introduction

OVER THE PAST two decades, resonant MEMS devices
have become an integral part of numerous technologies

in the transportation, health, consumer electronics, and defense
sectors. While MEMS devices can be actuated and sensed
through a wide variety of mechanisms, this paper focuses on
electromagnetic (also known as magnetomotive) transduction.
In microscale contexts, electromagnetic transduction is appeal-
ing because it offers the benefits of scalability, self-sensing,
and near-seamless integration with external electronics and as-
sociated hardware elements. These advantages render electro-
magnetically transduced microresonators suitable for a variety
of applications, including mass sensing and micromechanical
signal processing [1]–[8].
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A majority of the electromagnetically actuated devices intro-
duced to date consist of a compliant structural resonator with a
current-carrying wire loop affixed to its surface (in some cases,
the resonator itself acts as the current-carrying conductor).
When placed in an external magnetic field, the flow of current
through the wire loop induces a Lorentz force on the resonator,
which results in mechanical motion. The movement of the
current-carrying conductor through the external magnetic field,
in turn, results in an induced electromotive force (EMF), which
can be utilized for sensing purposes.

The microresonator detailed herein is similar in form to
those previously introduced in [9]–[14]. The system consists
of an electrically and mechanically isolated silicon microcan-
tilever, which has two current loops (one for actuation and
one for sensing) affixed to its surface. While this simplicity
in physical design allows for high-yield device fabrication,
the electromagnetic transduction approach introduces some
complexity into the design due to the intrinsic coupling which
exists between the input and output ports of the device. To
minimize these coupling effects and achieve frequency sepa-
ration between the input and output signals, many of the works
detailed above exploited the dynamic behaviors of electromag-
netically transduced devices which were parametrically excited
[9]–[12]. In order to utilize such devices under direct excita-
tion, the coupling between the input and output ports must
be fully characterized. While input/output coupling mecha-
nisms akin to those investigated here have been previously
considered within the context of carbon nanotube and piezo-
electric crystal resonators [15], [16], the present paper seeks to
characterize the impact of these mechanisms on the dynamic
response of electromagnetically transduced microresonators.

The paper begins in Section II with the modeling and
subsequent analysis of the dynamic response of the electro-
magnetically transduced microresonators of interest, building,
in part, upon the results of [17]. The work then continues
in Section III with the development, and subsequent analysis
of a model for the microresonators’ induced EMF in the
presence of coupling between the devices’ input and output
ports, due to both resistive and inductive sources. Section IV
briefly describes the design and fabrication processes utilized
for the electromagnetically transduced microresonators, and
then proceeds with the experimental characterization of a
representative device. Ultimately, the paper concludes with a
brief summary and a discussion of current and future research
directions.

1057-7157 c© 2013 IEEE
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Fig. 1. Scanning electron micrograph of a representative electromagnetically
transduced microresonator. The device consists of an electrically and mechan-
ically isolated silicon microcantilever and two Au/Cr wire loops, which follow
the perimeter of the microcantilever.

Fig. 2. Schematic diagram of the beam in three dimensions. As shown in
the inset, the magnetic field �B is oriented at an angle α with respect to the
vertical reference. Note that only one of the two wire loops is depicted.

II. Dynamics of an Electromagnetically

Actuated Microbeam

As previously noted and highlighted in Fig. 1, the devices
of interest consist of an electrically and mechanically isolated
microcantilever with two integrated Au/Cr wire loops, which is
placed in a permanent magnetic field. To differentiate between
the two wire loops in Fig. 1, the outer wire loop has been
colored yellow and the inner loop has been colored red.
Note that the magnetic field is oriented at an angle α with
respect to the vertical reference (Fig. 2), and, due to the scale
of the device and the permanent magnet that is employed,
the magnitude and direction of the field are assumed to be
constant.

Assuming that the beam has a negligible rotational inertia,
the specific Lagrangian L̄ of the device is defined as

L̄ =
1

2
ρA

[
u̇2 + v̇2

] − 1

2
EIψ′2 (1)

where ˙(•) and (•)′ denote the derivatives with respect to time
and the arc length variable s, respectively, and u, v, and ψ are
defined as in Fig. 3. Note that ρ is the mass density of the
microbeam, A is the cross-sectional area, l is the undeformed

Fig. 3. Schematic diagram of the beam element and dynamic variables used
for modeling. Note that u, v, and ψ are the longitudinal, transverse and angular
displacements of the differential beam element, respectively, and s is the arc
length variable.

length, g is the width, E is the modulus of elasticity, and I is
the cross-sectional moment of inertia.

The application of extended Hamilton’s principle results in
the following variational equation of motion for the system:

δH = 0

= δ

∫ t2

t1

∫ l

0

{
L̄ +

1

2
λ

[
1 − (1 + u′)2 − (v′)2

]}
dsdt

+
∫ t2

t1

∫ l

0
(Quδu + Qvδv)dsdt (2)

where λ is a Lagrange multiplier used to enforce an inextensi-
bility constraint and Qu and Qv are the nonconservative forces
in the longitudinal and transverse directions, respectively. The
longitudinal and transverse components of the Lorentz force
are assumed to be point loads applied an infinitesimally small
distance from the tip of the beam, such that the nonconser-
vative forces do not need to be included in the boundary
conditions. There is an additional force contribution in the
transverse direction attributable to viscous damping. Note that
c represents the specific viscous damping coefficient.

Integrating (2) successively by parts yields the two equa-
tions that govern the longitudinal and transverse vibrations
of the system. While the details of this step have been
excluded here for the sake of brevity, similar derivations can
be found in [18] and [19]. Utilizing third-order Taylor’s series
expansions for u and ψ, an approximate solution for the
Lagrange multiplier λ can be found, and subsequently used to
reduce the two equations to a single equation which governs
the transverse vibrations of the system. Nondimensionalizing
the variables in the model, such that

v̂ =
v

v0
, ŝ =

s

l
, t̂ =

t

T
(3)

where v0 is the beam’s thickness, and

T =

√
ρAl4

EI
, ĉ =

cT

ρA
(4)

yields a distributed-parameter model for the system. To study
the dynamics of the system near the primary resonance, the
distributed-parameter model can be reduced to an ordinary dif-
ferential equation via modal projection. Introducing a single-
mode expansion of the form

v̂(ŝ, t̂) = z(t̂)�(ŝ) (5)

where � is the first mode shape of an ideal cantilever and z is
the displacement in the first mode, projecting the result onto
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TABLE I

Definitions of the Nondimensional Parameters Used in (6)

ω2
0 =
∫ 1

0
��ivdŝ

τ = ω0 t̂

(•)′ =
∂(•)

∂τ

εk3 =
v2

0

l2ω2
0

(
4
∫ 1

0
��′�′′�′′′dŝ +

∫ 1

0
��′′3dŝ

+
∫ 1

0
��′2�ivdŝ

)

ελ1 =
gBl2 cos α

EIω2
0

∫ 1

0
�′2dŝ

ελ3 =
v2

0gB cos α

2EIω2
0

∫ 1

0
�′4dŝ

εβ =
v2

0

l2

(∫ 1

0
��′′

∫ ŝ

1

∫ ŝ2

0
�′2dŝ1dŝ2dŝ

+
∫ 1

0
��′
∫ ŝ

0
�′2dŝ1dŝ

)

εη1 =
gBl3 sin α

EIv0ω
2
0

�|ŝ=1

the first mode shape, and rescaling the time variable (again)
yields the final lumped-parameter equation of motion for the
system

z′′ +
ε

Q
z′ + [1 + ελ1i(τ)] z + [εk3 + ελ3i(τ)] z3

+ εβ(zz′2 + z2z′′) = εη1i(τ). (6)

Here, Q represents the resonator’s quality factor, i(τ) is the
excitation current, and ε is a bookkeeping parameter intro-
duced to facilitate analysis. The remainder of the parameters
included here are defined in Table I. Note that a second
dimensionless time scale τ has been introduced here such that
the natural frequency of (6) is close to unity. This time scale
is used instead of the first dimensionless time scale t̂, as the
natural frequency of the equation of motion using the first
dimensionless time scale is ω0, which itself is dependent on
the boundary conditions of the microbeam.

Assuming all parameters with an ε scaling in (6) are
sufficiently small, the method of averaging can be used to
generate the frequency response of the resonator. Employing
the following coordinate transformation:

z(τ) = a(τ) cos[τ + φ(τ)],

z′(τ) = −a(τ) sin[τ + φ(τ)] (7)

assuming that the excitation current is at a single frequency �

i(τ) = i0 cos �τ (8)

and introducing a detuning parameter to characterize the
difference between the natural frequency of the microbeam
and the excitation frequency

εσ = � − 1 (9)

the slow-flow equations are given by

a′ = − ε

2

[
a

Q
+ i0η1 sin(φ − εστ)

]
+ O(ε2),

aφ′ =
ε

8

[
(3k3 − 2β) a3 − 4i0η1 cos(φ − εστ)

]
+ O(ε2).

(10)

To further simplify the slow-flow equations, two additional
coordinate transformations of τ̂ = ετ and θ = φ − εστ can be
introduced. This yields

a′ = −1

2

[
a

Q
+ i0η1 sin θ

]
,

aθ′ =
1

8

[
(3k3 − 2β) a3 − 4i0η1 cos θ − 8σa

]
. (11)

Note that in (11), implicitly

(•)′ =
∂(•)

∂τ̂
(12)

and that a and θ are functions of τ̂. By solving for the steady-
state solutions of (11), a third-order polynomial equation that
relates the displacement amplitude to the excitation frequency
can be derived

16Q2i2
0η

2
1 = A

[
16 + Q2 (α3A − 8σ)2

]
(13)

where α3 = 3k3 − 2β and a2 = A. From this equation, it can
be seen that the maximum amplitude is given by i0η1Q, and
it occurs at σ = α3i

2
0η

2
1Q

2/8. The threshold value of current
corresponding to the onset of bistability (icr) can be calculated
by invoking the implicit function theorem

icr =
4
√

2

33/4Q3/2
√|α3||η1| . (14)

Note that below this critical value the response is single valued
and stable, and above the critical current there exists a finite
range of frequency where multiple steady-state solutions exist
[20].

Using (13), the frequency response characteristics of the
system can be investigated. Fig. 4 depicts the velocity of
the resonator as a function of the excitation frequency, for
a representative device with parameters given as shown in
Table II. Here, the stable steady-state solutions are represented
by dashed lines with long solid segments, while unstable so-
lutions are denoted by dashed lines with short solid segments.
Note that the quality factor employed here was selected to
match experimental values obtained from frequency sweeps
conducted within the linear response regime. Also, note that
while the solutions to (13) are dependent on the supplied
current, and the responses in Fig. 4 depend on the excitation
voltage, in the following section a circuit model is presented
which links these two quantities.

III. Induced Electromotive Force

As noted earlier, the vibration of the microcantilever in
a permanent magnetic field results in an induced EMF. As
previously noted in [17], the induced EMF due to mechanical
vibrations (VEMF ) is approximated to third order by

VEMF = κ1z
′ + κ2zz

′ (15)
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TABLE II

Dimensions and Material Properties of a Representative

Electromagnetically Actuated Microcantilever

Physical Parameter Value
Length of beam (l) 250 μm

Width (g) 50 μm

Thickness (v0) 2 μm

Modulus of elasticity (E) 159 GPa

Mass density (ρ) 2330 kg/m3

Magnetic field strength (B) 1 T

Magnetic field orientation (α) π/3 rad

Au/Cr trace resistance (RAu/Cr) 30 �

Quality factor (Q) 7100

Based on these values, the natural frequency is expected to be
approximately 42.70 kHz. The quality factor was chosen to match the
experimental values obtained from frequency sweeps conducted within
the linear response regime.

where

κ1 = −Bg sin αv0ω0

T

∫ 1
0 �

∫ 1
0 �′dŝdŝ∫ 1

0 �dŝ
,

κ2 =
Bg cos αv2

0ω0

lT

∫ 1
0 �

∫ 1
0 �′2dŝdŝ∫ 1

0 �dŝ
. (16)

An equivalent circuit, which describes the electrical cou-
pling between the input and output of this device, is shown
in Fig. 5. An excitation signal is provided by a voltage
source Vin, which supplies a current iin through the Thévenin
equivalent resistance of the source Rs and a coaxial cable
of resistance RCo. Note that RCo is henceforth assumed to
be 50 � and that in an effort to minimize noise effects
and the supplied current, the source output impedance Rs

was set to 10 k� during experimentation. This current is
then split into two components, i(τ) flowing into the outer
Au/Cr wire trace and another flowing through the resistor
RSi. This lumped resistor RSi is used to describe several
effects related to conduction between the inner and outer
wires, including metal–semiconductor junctions formed by the
contact pads and silicon substrate, which are assumed here
to be ohmic contacts, and the finite resistivity of the silicon
substrate. The induced EMF is included in the model as two
current-controlled voltage sources in series with the lumped
resistances for the Au/Cr wire traces, denoted as RAu/Cr. The
polarities of the voltage sources are opposite due to the polarity
of the inner and outer wire traces being opposite. To account
for the inductive coupling effects, which are primarily due to
the probe station used for measurement and the contact pads,
two inductors of self-inductance L and mutual inductance M

are added in series with the coaxial cables used to actuate
and sense the device. The resistor RM is the input impedance
of the lock-in amplifier used to acquire the measured voltage
VM . Since the input impedance of the lock-in amplifier used
is nominally 10 M�, it is assumed that iout is effectively
zero. It is worth noting that in previous works [14], issues
with inductive coupling have been accounted for and observed;

Fig. 4. Steady-state velocity amplitude plotted as a function of the excitation
frequency for a device with dimensions and material properties given as shown
in Table II. Note that in this figure, and in Figs. 6–8, the responses shown in
red with short solid segments, blue with medium solid segments and black
with long solid segments correspond to excitation voltages of 328 mV, 655 mV
and 983 mV, respectively. The response shown in blue with medium solid
segments corresponds to the onset of bistability. In the absence of inductive
and resistive coupling between the input and output, the vertical axis on
the right depicts the induced EMF. The results of these coupling effects is
discussed in the following section.

however issues with resistive coupling have not been reported
with electromagnetically transduced devices.

In regards to the lumped-parameter model of the mutual
inductance between the transduction circuits, three factors have
been identified that contribute to the measured value: the probe
station, the contact pads, and the geometry of the Au/Cr wire
traces. While all of these factors contribute to the mutual
inductance, the relative influence of each of these sources is
not the same. It is believed that the primary contributions
to the mutual inductance are from the probe station and
the contact pads, because in the absence of these factors,
the mutual inductance would be several orders of magnitude
less. Specifically, if the device was modified such that the
probe station and contact pads were not needed, an estimate
for the upper bound of the mutual inductance between the
transduction circuits would be the self-inductance of a closed-
loop wire trace of similar size, since as the spacing between the
two wire traces decreases, the mutual inductance approaches
the self-inductance (see [21] for methods to estimate self- and
mutual inductance). This value is on the order of 1 nH, while
the experimentally determined value is close to 10 μH. Ac-
cordingly, with the current implementation of the device, the
contributions of the wire geometry to the mutual inductance
are largely insignificant. This, however, may not be true in
integrated devices where a probe station is not needed.

To develop a simplified model for the measured voltage, it
is assumed that the self-inductance of the outer wire loop L is
small, RSi is much larger than RAu/Cr and that the induced
EMF in the outer loop is small enough that the supplied
current and the excitation voltage are in phase and are linearly
related. Note that experimentally RSi has been measured to be
greater than 1 M�, however in cases where resistive coupling
effects dominate the response, a RSi as low as 1 k� has been
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Fig. 5. Equivalent circuit diagram used to the model the electrical coupling
between the input and output ports of the presented device. An excitation
signal is provided by a voltage source Vin, which supplies a current iin
through the Thévenin equivalent resistance of the source Rs and a coaxial
cable of resistance RCo. The inner and outer wire loops are modeled as
resistors RAu/Cr and the induced EMF is included as two current-controlled
voltage sources. Note that the polarities of these sources are opposite due to
the polarities of the inner and outer wire loops being opposite. To account
for the conduction between the inner and outer wires, a lumped resistor RSi

is used. Effects related to inductive coupling are included with two inductors
with self-inductance L and mutual inductance M. The resistor RM is the input
impedance of the lock-in amplifier used to acquire the measured voltage VM .
Note that RSi is assumed to be very large such that iin ≈ i(τ), RM is assumed
to be very large such that iout ≈ 0 and the induced EMF in the outer wire
trace does not influence the supplied current to the device.

observed. Accordingly, the current supplied to the device iin
is approximately equal to the current in the outer wire i(τ), or

i(τ) =
Vin

R
(17)

where R = Rs + RCo + RAu/Cr. As mentioned in the previous
section, this is the relationship between the supplied current
and the excitation voltage used in Fig. 4. Note that under these
assumptions, Vin−V1 = i(τ)[Rs+RCo]. By applying Kirchhoff’s
current law to the node where V2 is present and using the
fundamental relationship between the current and voltage for
an inductor, under the assumption that iout is effectively zero,
two additional equations are generated that can be used to
solve for the measured voltage

V1 − V2

RSi

=
V2 − VEMF

RAu/Cr

,

V2 − VM = −M
ω0

T
i′(τ). (18)

These equations reveal that, under the stated assumptions,
the measured voltage is effectively the superposition of three
effects: the induced EMF due to the vibration of the micro-
cantilever, the inductive coupling between the wire loops, and
the resistive coupling due to conduction in the silicon of the
microcantilever

VM = c1VEMF [i(τ)] + c2Vin(τ) + c3V
′
in(τ) (19)

where

c1 =
RSi

RSi + RAu/Cr

,

c2 =
R2

Au/Cr

(RSi + RAu/Cr)R
, (20)

c3 =
Mω0

TR
.

Note that for physically consistent systems, c1 is approxi-
mately one, c2 is nearly zero, and c3 is related to the mutual
inductance, scaled to account for the nondimensionalized time.

Since the EMF is measured in experiments using a lock-in
amplifier that is set to measure at the excitation frequency,
higher order harmonics in the induced EMF due to vibration
are filtered out. Thus, using the results from above

VM = −c1κ1a sin(�τ + θ) + c2V0 cos(�τ) − c3V0 sin(�τ) (21)

where V0 is the amplitude of the excitation voltage Vin.
Equation (21) can be rewritten such that the amplitude and
phase of the measured EMF can be easily identified

VM = am cos[�τ + θM],

aM =
√

C2
M + S2

M,

CM = c2V0 +
c1κ1AR

V0Qη1
, (22)

SM = −
(

c1κ1AR(Aα3 − 8σ)

4V0η1
+ c3V0

)
,

tan[θM] =
Q

(
c1κ1AR (Aα3 − 8σ) + 4c3η1V

2
0

)
4

(
c1κ1AR + c2η1QV 2

0

) .

When the quality factor is large and the effects of resistive
coupling are small, CM is effectively zero. Since the value of
SM can be positive and negative, it is possible that this term
can equal zero, thus when inductive coupling is dominant,
an effective antiresonance can be created. This antiresonance
due to inductive coupling is in general observed at a specific
frequency, however, a much broader antiresonance regime can
be observed if resistive coupling is large, as the two terms in
CM are always of opposite sign. In addition, the equation for
aM predicts that the magnitude of the input voltage V0 biases
the response such that nonresonant responses are nontrivial and
are scaled in an approximately linear fashion by V0. The phase
response of (22) also predicts that the phase of the response
in the nonresonant regime is dependent on the input/output
coupling. For example, if the input and output are strongly
inductively coupled, the phase of the nonresonant response
will approach 90°, but if the input and output are strongly
resistively coupled, the phase of the nonresonant response will
approach 0°.

Though not necessarily obvious from (22), in the presented
sensing configuration, where the positive excitation and sens-
ing probes are placed on opposite sides of the microcan-
tilever, strong resistive coupling can significantly degrade the
amplitude of the response (note that κ1/η1 < 0). It is also
worth noting that in the absence of inductive and resistive
coupling, the input and output are 180° out of phase at
resonance. As such, reversing the polarity of the sensed voltage
can exploit constructive interference in the response between
the parasitic resistive coupling voltage and the induced EMF
due to vibration, because at resonance the resistively coupled
voltage and induced EMF due to vibration are in phase. Mathe-
matically, reversing the polarity of the sensed voltage changes
the sign of c1 and c3, but not c2. The authors acknowledge
that polarity-dependent responses are unusual, but examples
of polarity-dependent responses caused by parasitic effects
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Fig. 6. Analytically predicted measurable EMF plotted as a function of
the excitation frequency for a moderately low input coupling case where
M = 1 μH and RSi = 1 M�. The response is very similar to the one in Fig. 4,
however the amplitude response contains an antiresonance and exhibits a
response bias. In addition, the phase response approaches 90° for nonresonant
responses due to the input/output coupling primarily being caused by inductive
coupling.

can be found in the literature on transformers for integrated
circuits, which have many similarities to the presented device
[22], [23].

Figs. 6–8 depict the amplitude of the measurable EMF for
the same excitation levels used in Fig. 4, with different values
of the mutual inductance M and the silicon substrate resistance
RSi, and, in one case, the reversed polarity response. The same
convention for classifying the excitation levels and stability
used in Fig. 4 is employed. For the case shown in Fig. 6,
where the effects of mutual inductance and resistive coupling
are small, the amplitude response is very similar to those
depicted in Fig. 4. Yet even in this case, the three distinct
phenomena are demonstrated: an effective antiresonance, input
voltage biased nonresonant responses, and the nonresonant
phase response approaching a constant that is dependent on
the input/output coupling. If the effects of inductive and
resistive coupling are significantly increased, as in Fig. 7,
then not only is the effect of the antiresonance increased, but
the shape of the amplitude response is dramatically changed
such that bistability of the response manifests in an amplitude
response for a reverse frequency sweep sometimes being
larger than the forward frequency sweep, even though the
mechanical response is characterized as hardening. While it
is predicted that effects related to inductive coupling can
be mitigated with wire bonding, resistive coupling will still
exist. Fig. 8 demonstrates how effective the reversed polarity
configuration is at combating the effects related to resistive
coupling. It is worth noting that the mutual inductance and
silicon substrate resistances are the same in Figs. 7 and 8,
yet the antiresonances are quenched and the signal return
is increased.

Clearly, from the results presented here, input/output cou-
pling significantly alters both the qualitative and quantitative
nature of the measurable EMF signal, and thus must be
accounted for in the course of predictive design. It is also
important to note that due to the coupling between the input
and output ports, broadband noise in the input can significantly
degrade the signal-to-noise ratio associated with the device.
Likewise, since the amplitude of the frequency response is
nontrivial away from resonance, excitations at those frequen-
cies are not filtered from the response.

Fig. 7. Analytically predicted measurable EMF plotted as a function
of the excitation frequency for a strong input coupling case where
M = 10 μH and RSi = 500 �. In addition to an antiresonance and response
bias, this response is an example of a case where the amplitude response of
the reverse sweep is sometimes larger than the forward sweep, even though
the mechanical response is characterized as hardening. Due to the inductive
and resistive coupling effects being of similar magnitude, the phase response
in the nonresonant response regime approaches a value between 0° and 90°.

Fig. 8. Analytically predicted measurable EMF plotted as a function of the
excitation frequency for a strong input coupling case where M = 10 μH
and RSi = 500 �. Here the polarity of the measurable EMF is reversed.
While response bias effects are still observed, the antiresonance is significantly
reduced. While it is expected that inductive coupling issues could be reduced
with wire bonding, resistive coupling effects will still be present. This method
provides a means of exploiting resistive coupling for enhanced signal return.

IV. Experimental Results

To validate the results presented in the previous section, a
series of devices were fabricated at the Birck Nanotechnology
Center using standard silicon-on-insulator (SOI) microfabri-
cation processes (Fig. 9). The process used an SOI wafer, 4
inches in diameter. The device layer was p-type doped silicon
with very high resistivity (>1000 � cm and was 2 μm thick,
the oxide layer was 2 μm thick and the handle layer was 500
μm thick. Wire loops were formed by evaporating Cr and Au
on the surface and then using a lift-off process. The cantilevers
were formed using reactive ion etching on the device layer.
The oxide layer was exposed using deep reactive ion etching
on the handle layer and then the devices were released using
hydrofluoric acid.

To experimentally characterize the response of these de-
vices, a Polytec MSA-400 laser Doppler vibrometer (LDV)
was used in conjunction with a SUSS MicroTec PLV-50
vacuum probe station. Fig. 10 shows a part of the experimental
setup used to study the optical response. The probe station
consists of a vacuum chamber, whose pressure is controllable
to a minimum set point of 75 μTorr. The devices are placed
in a permanent magnetic field with a field strength of approx-
imately 1 T near the poles. The permanent magnet used for
these experiments is a NdFeB slab magnet with dimensions
2.5 cm × 2.5 cm × 0.25 cm.
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Fig. 9. Fabrication process flow used to produce the electromagnetically
transduced microresonators.

The device was placed in the probe station at a pressure
setting of 75 μTorr and the device was positioned on the
magnet such that the fixed edge of the microcantilever was
on the edge of the magnet. Based on results collected with
the vibrometer, the quality factor for this device was 7100 and
the natural frequency was 51.236 kHz. Note that the difference
between the experimentally determined natural frequency and
expected natural frequency can be explained by the variation of
the thickness of the device layer. The quoted thickness of the
device layer was 2± 0.5 μm, but it was observed during fabri-
cation that the thickness was closer to the maximum nominal
value, thus if it is assumed that the thickness of the device
layer was 2.5 μm, a more accurate estimate of the natural
frequency would be 53.378 kHz. The combined resistance of
the outer Au/Cr trace with the coaxial cable was 58 �, while
the same measurement for the inner loop was approximately
107 �. To approximate how resistively coupled the device was,
or in terms of the circuit model, estimate RSi, the measured
resistance between the probes used for the positive excitation
and sensing was determined to be 176 k�. Note, however,
that these resistance values are based on measurements that
were conducted immediately after trials were completed and
that during trials, these parameters would drift. Specifically,
the estimate for RSi tended to decrease as more trials were
conducted. The input waveform was generated using an Agi-
lent 33250A arbitrary waveform generator operated in a high
output impedance mode and the response was measured using
an SR830 lock-in amplifier. Due to issues with the short
term frequency stability of the Agilent 33250A, an Agilent
8648D synthesized signal generator was used as an external
10 MHz reference for the Agilent 33250A. Fig. 11 shows the
block diagram of the experimental setup used to perform these
electrical measurements. The devices were actuated using the
outer current loop. To perform the electrical measurements,
the induced EMF from the inner loop was measured using the

Fig. 10. Part of the experimental setup used to characterize the dynamic
response of the electromagnetically transduced microresonators. A Polytec
MSA-400 laser Doppler vibrometer was used in conjunction with a Suss
Microtec PLV-50 probe station for this purpose. The devices were placed
in a permanent magnetic field, in the chamber with a pressure of 75 μTorr.

Fig. 11. Block diagram of the electrical setup used to perform electrical
measurements on the electromagnetically transduced microresonators.

lock-in amplifier, while for the optical measurements, the out-
put from the LDV was measured using the lock-in amplifier.

As can be extrapolated from the discussion presented in
Section III, noise in the input can render significant noise in
the output. Primarily due to the inductive coupling between
the input and output, high frequency components of noise
from the source are not filtered from the response. If the
measurement was devoid of noise, the time constant used for
the lock-in would be set to filter the response at twice the
excitation frequency, which is produced from signal mixing
in the lock-in. Based on the excitation frequencies used, this
time constant would be on the order of less than a millisecond.
Without using the Agilent 8648D as an external reference,
time constants greater than 1 s are needed for measurements
to have a small standard deviation; however, due to the Agilent
8648D having significantly lower phase noise than the Agilent
33250A, a time constant of 300 ms was used. Since a 12 dB/oct
filter slope was used, the recommended dwell time is 7 time
constants, to ensure that the measurement settles to within 99%
of its final value. A slightly longer than needed dwell time of
3 s was used to guarantee that the dwell time was not an issue
with the experiment.
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Fig. 12. Frequency response from optical, in blue (left axis), and electrical,
in green (right axis), measurements, for an excitation of 20 mVpp. The ampli-
tude of the electrical response demonstrates two effects related to input/output
coupling: an effective antiresonance and input voltage biased nonresonant
responses. The peak of the electrical response is not commensurate with the
optical response due to input/output coupling. The phase of the electrical
response shows that the input/output coupling is primarily due to inductive
coupling, as the phase of the nonresonant responses more closely approach
90° than 0°.

Fig. 12 depicts a representative experimentally recovered
response, obtained optically from the LDV and electrically
from the measured EMF, for an excitation level of 20 mVpp. It
is evident that the measured electrical response correlates well
with the optical response in terms of the natural frequency.
However, the recovered electrical response demonstrates ef-
fects related to resistive and inductive coupling, such as a
nontrivial response away from resonance and the presence of
an effective antiresonance. Note that the peak of the electrical
response is not commensurate with the optical response due
to input/output coupling.

Fig. 13 shows the experimentally recovered electrical re-
sponses as a function of excitation amplitude. Excitation volt-
ages of 20, 60, and 100 mVpp are shown in red circles,
blue squares, and black diamonds, respectively, and forward
and reverse sweeps are denoted with dots and open markers,
respectively. The responses clearly show that the resonator
vibrates with a higher velocity as the excitation amplitude

Fig. 13. Amplitude and phase responses from electrical measurements at 20,
60, and 100 mVpp, shown in red circles, blue squares, and black diamonds,
respectively. Forward and reverse sweeps are denoted with dots and open
markers, respectively. The responses clearly show that the resonator vibrates
with a higher amplitude as the excitation amplitude increases. The response
also becomes increasingly nonlinear, as is characterized by both the frequency
at which the peak amplitude is measured and slope of the phase response near
resonance increasing with the excitation amplitude. When the supplied current
exceeds the critical current, as is the case at the 100 mVpp excitation, the
response shows clear hysteresis with respect to the excitation frequency. Note
that even though the mechanical response is characterized as hardening, for
some frequencies within the bistable region, the reverse sweep response is
greater than the forward sweep response.

increases. Correspondingly, the response becomes increasing
nonlinear as the excitation amplitude increases, which is
consistent with the behavior predicted by the model developed
in the previous section. When the supplied current exceeds the
critical current, as is the case at the 100 mVpp excitation, the
response shows clear hysteresis with respect to the excitation
frequency. Since the output is strongly coupled to the input
via inductive and resistive effects, as predicted in the previous
section, for some frequencies within the bistable region, the
reverse sweep response is greater than the forward sweep re-
sponse, even though the mechanical response is characterized
as hardening.

As discussed in the previous section, using the reverse
polarity configuration can exploit constructive interference
effects due to resistive coupling between the input and output
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Fig. 14. Amplitude and phase responses from electrical measurements using
the reverse polarity configuration, shown using the same convention as in
Fig. 13. Due to constructive interference between the induced EMF and the
resistive coupling between the input and output, the effects related to an
antiresonance are decreased and the response structure more closely resembles
a classical hardening response than the response shown in Fig. 13.

for improved signal return and aid in the preservation of the
response structure. To be more specific, the response from
the reverse polarity configuration more closely resembles a
classical hardening response than the standard polarity config-
uration. Fig. 14 shows the same experiments as Fig. 13, except
the polarity of the sensed voltage was reversed. Not only are
the effects related to an antiresonance decreased, but the hard-
ening nature of the response structure is preserved. As noted
in Section III, the polarity-dependent nature of the response
is quite unusual. While the presented experimental results can
be explained by the model, it is possible that other unmodeled
physics exists, including additional effects attributable to the
measurement system or the metal–semiconductor junctions
present in the device.

A. Parametric Estimation

In order to validate that the presented analytical model
for an electromagnetically transduced microcantilever can
reproduce the experimentally observed results, parametric
estimation was conducted. To do this, a least squared method
was employed, where the minimum of the following cost

TABLE III

Averages of the Parameter Estimates Generated Using a Least

Squared Method

Estimated Parameter Value
fn 51.236 kHz

Q 6500

κ1 -1.22 ×10−4 V

α3 4.1 ×10−2

M 9.24 μH

RSi 8.1 k�

These estimates are for the data shown in Fig. 13.

function was found using a simplex search method (imple-
mented with MATLAB’s fminsearch algorithm)

E =
1

N

N∑
i=1

|106aEie
iθEi − 106aMie

iθMi |2. (23)

Here, N is the number of data points collected in a given set
and aEi and θEi are the experimental estimates for the values
aMi and θMi predicted by (22), respectively. Note that the
scaling of both the experimental and theoretical values by 106

was done to account for the magnitude of the response. Also
note that this fitting procedure requires good initial guesses for
each parameter, as inappropriate guesses may lead to conver-
gence issues. To mitigate this concern, once estimates for the
parameters were found, they were randomly perturbed 1000
times to ensure that the estimated parameters were reasonably
close to the ones that would be found at the absolute minimum
of the cost function. Here, the criteria for reasonably close was
that in order to reject the set of estimated parameters, a new
set of estimated parameters must decrease the cost function
by 1 × 10−13. Since the estimated natural frequency fn was
fairly sensitive to poor initial guesses, and a good initial guess
for fn can be found from a measurement with the vibrometer,
its initial guess was only perturbed by up to 0.002%. The
remainder of the parameters were randomly varied by 20%.

Overlays of the data shown in Fig. 13 with the frequency
response predicted by the analytical model, created using
the estimated system parameters, are shown in Fig. 15. The
responses generated using the fitted parameters for 20, 60, and
100 mVpp are shown in green upward-pointing triangles, cyan
rightward-pointing triangles, and magenta leftward-pointing
triangles, respectively, and again forward and reverse sweep
responses are shown with dots and open markers, respectively.
The parameters used in the model are shown in Table III.
These are the averages of the estimates from the six trials
shown in Fig. 13. While a very high degree of correlation
exists between the analytical and experimental results, it is
important to note that there are caveats associated with these
estimates.

First, numerical experiments suggest that the least squared
method adopted here can provide estimates of the parameters
with either a small bias or no bias (i.e., the expected value of
a given estimate is very close to the true value). Furthermore,
the variance of most of these estimates was small enough that
the probability that a given estimate was close to its true value
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Fig. 15. Overlays of the experimentally recovered amplitude and phase
responses shown in Fig. 13 with the response predicted by (22) using the
parameters estimated by a least squared method. These estimates are shown
in Table III. Responses generated using the estimated parameters for 20, 60,
and 100 mVpp are shown in green upward-pointing triangles, cyan rightward-
pointing triangles and magenta leftward-pointing triangles, respectively, and
again forward and reverse sweep responses are shown with dots and open
markers, respectively. Despite the issues with this fitting procedure, which
are discussed in the text, and possible parameter drift, these plots provide
validation of the presented model.

was quite high. This, however, was not true for α3 and RSi.
In general, the parameter with the largest relative variance is
RSi, and when the excitation is small, the variance for α3 is
so large that an impractical number of trials are needed to
produce a good estimate. This, however, should be expected
for α3 as the influence of nonlinear effects is small when the
excitation is small.

The second caveat is that not all of the parameters used in
(22) can be uniquely determined. Specifically, in the presence
of noise, it is possible to find a set of η1 and κ1 that produce
the same response and a set of RAu/Cr and RSi that produce the
same response. Thus, to produce a single set of parameters,
η1 was defined to be

η1 = −κ1
1

lgρ (v02πfn)3 (24)

and RAu/Cr was assumed to be 58 �. The new definition of
η1 is consistent with the previous model derivation, however,

Fig. 16. Plot of the percent differences between the estimate of a given
parameter for a given trial relative to the average of the estimates. On the
horizontal axis, note that an F after an excitation denotes a forward sweep
trial and an R after an excitation denotes a reverse sweep trial. This plot
shows that in the presence of noise, the least squares method employed is
capable of accurately determining several of the parameters, in particular fn.
As discussed in the text, this method has issues with determining α3 for small
excitations and in general with RSi. Due to possible parameter drift during
trials, it is not possible to determine if the relative change in RSi is due to the
actual value changing or the fitting procedure. For Q, however, the relative
change in that parameter is most likely due to its value changing slightly
during experimentation.

since in experiments the observed natural frequency is greater
than the theoretical natural frequency, the thickness v0 was
assumed to be 2.5 μm and the assumed value for RAu/Cr was
based on an experimentally determined value.

The final caveat is that assuming all of the estimates for a
given parameter come from the same distribution, provided
a large number of estimates are available and that the bi-
ases of these estimates are small, the sample mean should
be close to the parameter’s true value. In this case, only
six data sets were used for parameter estimation, and it is
unknown if the estimates came from the same distribution.
Furthermore, it is unknown how different excitation levels
change the distribution of the parameter estimates, and more
importantly, there is evidence that suggests some of the
parameters drifted during trials. Fig. 16 highlights the percent
change in the estimated parameters relative to the average
estimates shown in Table III. While the relative change in
some of the parameters is insignificant, specifically fn, and
in some cases can be explained due to the fitting procedure,
such as α3, the relative change in Q is most likely due to that
parameter changing during experiments. The relative change
in RSi may also be due to the fitting procedure, but it is not
possible to rule out that RSi may also have drifted during
trials.

It is important to note that despite the frank issues associated
with parametric estimation, the responses for the parameter es-
timates in Table III closely match the experimentally observed
results. In addition, the estimate for the mutual inductance
M is large enough to support the theory that the primary
contributions to the mutual inductance are the probe station
and contact pads.
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V. Conclusion and Future Directions

In this paper, a model to describe the dynamics of an elec-
trically and mechanically isolated electromagnetically actuated
microcantilever was developed. The model accounted for the
intrinsic coupling between the device’s input and output ports,
which introduces additional features in the response. Specifi-
cally, the inductive and resistive coupling effects introduced an
antiresonance and a bias, which significantly alter the dynam-
ics of the device. Experimental results recovered from SOI-
based devices validate that the model qualitatively captures
the behavior of the device. Current and future research efforts
include redesigning the wire loops so as to mitigate or exploit
the effects of coupling and noise, modifying the experimental
setup such that the parameters η1 and κ1 can be independently
estimated and demonstrating the utility of these devices in
signal processing applications.
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