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Path planning for planar articulated robots using
configuration spaces and compliant motion

Elisha Sacks

Abs/rae/_This paper presents a pnlh planning algorithm for an artic
ulated planar robot wllh II 5WtiC obstacle. The Blgorlthm selects II mbot
part. findsa path to lis goalconfigurallon by sysl.ematic conligumtion space
!ielIIt:h, drags the entire robot nlong !he path using compllnnt mollon, and
repeals the cycle until C\"l!ry robot pllrt reoches lis goal. The planner Is
1l'5ted on 11,000 random problems, which span do;r.e1\S ofroboVobslacle ge.
omelrilS with up 10 43 moving pnru and with narrow channels. II solvl'5
every problem In seeonds, whcn.'llS randomlzed a1goriUuns appear 10 fllil
on 1111 of them.

KeyH'ords-palh planning, cunfigumtioD space, compliant motion.

I. INTRODUCTION

T HIS paper presents a path planning algorithm for an artic
ulated planar robot with a static obstacle. The task is 10

compute a valid robot path from a start configuration to a goal
configuration. A palh is valid when no two parts ever overlap
and every joint equation always holds. Path planning is crucial
in robot navigation and is important in robot manipulation, de
sign for assembly, virtual prolotyping, computer graphics, and
computational biology.

Path planning is a subtask of motion planning. The larger task
is to devise a control policy thai drives a robot from a stan state
to a goal along a valid path. The policy must respect the robot
control authority and the task dynamics, and ideally should gen
eratean optimal path. Motion planning is normally factored into
path planning followed by controller design [1], although there
is current research on an integrated approach [2]. This paper
does not address motion planning issues beyond path planning.

Path planning has been studied extensively over the past
twemy years and many algorithms have been developed. The
algorithms can be formalized as searching a configuration space
for a free.space path between stan and goal configurations.
Early work constructed exact or resolution complele free space
representations and searched them systematically [3]. The key
measure of complexity is the configuration space dimension,
which equals the number of independent pan trnnslations and
rotations. The worst-case computation time is exponential in
this dimension for planar and spatial systems. Practical algo
rithms have been developed for dimension three, notably for
polygonal robots and obstacles {4], [5]. But the approach ap
pears impractical for dimension six, which is the minimum for
spatial planning or for multi-part planar planning.

The impracticality of systematic search led to the develop
ment of probabilistic algorithms that construct free-space road
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maps by random sampling [6]. Although extremely promising,
probabilistic algorithms have some drawbacks. The probability
of finding a path when one exists is a function of geometric con
stants that are hard to estimate. The constants are large when
the configuration space contains many narrow channels, most of
which do not link the start and goal configurations. Hence, there
is no efficient way 10 select enough samples to guaranlee a spec
ified error rate. Nor is there a way 10 prove that no path exists.
The running time is dominated by pan intersection tests, which
can be slow for curved parts. Robots with closed loops ofjoints
pose problems for random sampling because the joint equations
must hold at the sample configurations.

This paper presents a planning algorithm thal addresses the
impracticality of systematic search and the limitations of prob
abilistic algorithms. The planner selects a robot part, finds a
path to its goal configuration by systematic configuration space
search, drags the entire robot along the path using complianl
motion, and repeats the cycle until every robot part reaches its
goal. The pan selection heuristic focuses the planner on man
ageable subtasks. The systematic search finds narrow channels.
The dragging heuristic explores a tiny subset of the system con
figuration space based on the intuition that the nonselected parts
should slide along the obstacle and along each olher. A heuristic
algorithm seems unavoidable given the exponential complexity
of path planning. However, the algorithm is complete for one
moving part, which is a common case in robotics and in design
for assembly.

The algorithm has been implemented for general planar sys
tems with curved parts. closed loops, and narrow channels. Pia·
nar systems are important and common, yet are more tractable
than spatial syslems. Many robots are planar or can be treated
as planar, including wheeled vehicles and legged robots that op
erate in buildings, on ships. and on roads. Most mechanical sys
tems are planar. The planner has been validated on 11,000 ran
dom problems, which span dozens of roboflobstacle geometries
with up to 43 moving parts and with narrow channels. It solves
every problem in seconds, whereas randomized algorithms ap
pear to fail on all of them.

The rest of the paper is organized as follows. Section 2 con
tains a review of prior work. Sections J-5 describe the planner.
Seclion 6 assesses its performance: running times on sample
systems, a comparison with randomized algorithms, and limita
tions. Section 7 contains conclusions and plans for fUlure work.

n. PRIOR WORK

Motion planning has spawned a large literature that is sur
veyed by Latombe [7J. This section summarizes the portion that
is related to path planning. The most common cases are a planar
polygonal robot with a polygonal obstacle, a polyhedral robot
with a polyhedral obstacle, and a six degree-of-freedom robot
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manipulalOf with a polyhedral obstacle. Latombe [3] describes
most algorithms in detail.

The configuration space approach originates in the work of
Lozano-P6rez [8] and underlies most path planning research.
The configuration space of a system of rigid parts is a differ
entiable manifold that encodes their positions and orientations.
Poinls in this space, called configurations. are classified as free
when no two parts touch and as blocked when [wo parts over
lap. The free and blocked configurations fonn open sets, called
free and blocked space. Their common boundary, called con
tact space, contains the conligurn.tions where two or more parts
touch without overlap and the other parts are free. Figure 3
shows the configuration space of a planar part with respecllO an
obstacle. which is three-dimensional and can be parameterized
by the position and orientation of lhe part. Contact space, drawn
in grey, consislS of two connected componenls. Freelblocked
space are the regions oUlSidelinside these components.

Complete planning algorithms based on e",act configuration
space representalions have been developed for parts bounded by
algebraic curve segmenls [9J. The condition that the parts not
overlap yields multivariate polynomial inequalilies in the con
figuration space coordinates. The equations are solved by al
gebraic methods, such as cylindrical decomposition or Grtibner
basis calculation. The solulion set is searched for a path from
the start (0 the goal configuration. Canny [10] presents an
exact planning algorithm that conslructs and searches a one
dimensional subset of configuralion space called a road map.
None of the algorithms for algebraic curves has been imple
mented. perhaps because of their intricacy and high compUla
tional complexity. Complete, exact algorithms have proven ef
fective for a polygonal robol with a polygonal obstacle [4], [5].

An alternative planning approach is to construct an approxi
mate representation of free space and to search it heuristically.
Lozano-Perez [8] decomposes the configuration space of a pla
nar polygon into a stack of slices along the rotalion axis. Brooks
[11] decomposes the configuration space into a graph of free,
blocked, and mixed cuboids. He perfonns A* search for a
piecewise linear path through the free nodes. If none is found,
heuristics are used to select mixed nodes and lo split them into
smaller cuboids, the graph is updated, and the search is re
peated. Takahashi and Schilling [l2J plan for a rectangular robot
with a polygonal obstacle via heuristic search of the generalized
Voronoi diagram. Approximate approaches perform well in di
mension three, as long as the part fits are not too light, but are
impractical in dimension six or higher because the number of
cells is exponential in the dimension.

There are also heuristic planners for a polyhedral robot with a
polyhedral obstacle, which have six-dimensional configuration
spaces. The key concepl is a contact patch: a connected subset
of contact space where the contact point lies on a fixed pair of
robot/obstacle features (vertices. edges. or faces). Donald [l3)
constructs robot paths via A* search. He develops parametric
expressions for contact patches and their intersections, but does
not compute the free space topology. His planner moves through
free space and from patch to patch via heuristic motions, such
as sliding along the obstacle. Trinkle and Hunter [14] plan robot
manipulation by searching a graph of contact fonnations-sets
of touching robot/object feature pairs-that are akin to contaCl

patches. Joskowicz and Taylor [15J construct linearized con
tact patches and infer patch transitions for a complex polyhedral
model of a prosthetic hip.

Recent path planning research focuses on probabilislic algo
rithms. Potential field algorithms [16J, [17] numerically mini
mize a potential function that is designed to have a global min
imum at the goal. Local minima are escaped by short random
walks. Road map algorithms [6] generate many random con
figurations, prune the blocked ones, and link adjacent free ones
into a graph (normally wilh line segments). Path planning is
performed by linking the inilial and goal configurations to the
graph then searching for a path between them.

Another approach is to build a roadmap between the start and
goal, rather than over the entire free space. One algorithm [18]
generates random trees rooted at the start and goal configura
lions. Tree nodes are generaled and linked in the same way as
road map nodes. A path is found when a node in one tree can
be linked to a node in the other tree. Another algorithm [19]
grows a tree from lhe start configuration and test for paths from
each new node to the goal. Randomized optimization is used to
maximize the distance between nodes and to generate paths that
minimize the distance to the goal.

Barraquand et al [20J unify the treaunent of probabilistic al
gorithms and prove them probabilistically complele. Their the
ory predicts that cluttered envirollmenls and narrow passages
can require excessive numbers of samples, as has proven true.
Recenl work addresses this problem via improved sampling
methods [21]. [22]. Ji and Xiao [23] develop a road map al
gorithm for compliant motion between two polyhedra. Other
work [24], [25] develops efficient sampling methods for closed
loops of joints. The configurations mUSl satisfy the joint equa
tions, which are coupled systems of algebraic equations in the
configuration space coordinates. The challenge is to cover the
solution space quickly and thoroughly.

Compliant motion is very useful in fine motion planning with
uncertainty [26], [27J, [28]. The canonical task is to insert a peg
in a hole by adapting a nominal path lO work with imperfect sen
sors, imperfect actuators, inexact geometric models. and incom
plele dynamical models. Compliant motion with force feedback
along a nominal insertion path can compensate for some enors.
The robot tries to follow a direct path to the goal. When the peg
hils the obstacle, the robot modifies its velocity by sublracting
the component that is normal to the obstacle. The challenge is
lo construct a sequence of motions that achieves a planning goal
whenever the errors lie within given bounds. In this paper, com
pliant motion allows a selected robot part to move in a specified
direction by assigning compliant velocities to the other parts.
Incomplete and imperfect infonnation is nOl addressed.

In summary, prior work provides theorelical planning algo
rithms for general systems, complete practical algorithms for
planar pairs, heuristic algorithms for spatial pairs, and proba
bilistic algorithms for general syslems. This paper describes a
heuristic planner for general planar systems based upon a com
plete planner for planar pairs.

III. PATH PLANNING ALGORITHM

This seelion describes the input, output, and high-level stnlc
ture of the path planner. which are summarized in Figure 1.



Input: parts, obstacle, joints. Slart, goals, configuration spaces.
While goals remain

Select goal.
ConstruCl graph plan.
Construct full path.

Output: path that achieves goals.

Fig. I. Path planning algorithm.

The inputs are parts. an obstacle, joints, a start configuration,
goals, and configuration spaces. The output is a valid path from
the start configuration to a configuration that achieves the goals.
The next two seclions describe the main components of the plan
ner: the graph planner and the full planner.

A pan is a rigid body that consists of a stack of cross sec
tions. A cross section is oblained by extruding a profile in the
xy plane along an interval on the z axis. A profile is a circular
list of line and circle segments in which the head of each seg
ment equals the tail of the following segment_ Any planar part
can be modeled with a moderate number of line and circle seg
ments according to our survey of 2500 mechanisms [29]. In our
examples, every part has one cross section. Multiple sections
occur in some mechanical syslems and are needed to approxi.
mate spatial geometry.

The parts uanslate and rotate in the xy plane. The configu
ration of a part is a biple (x,y,8) where (x,y) is the position
of the part frame in a global coordinate frame and 8 is the angle
between !he frames. The obstacle consists of zero or more stalic
parts. A part can be connected to the obstacle or to another part
by a revolute or a prismatic joint. The start configuration is a
valid system configuration, a list of pan configurations, which
means that no two parts overlap and all joint equations are sat
isfied.

The goals input is a list of part/goal configuralion pairs. A
single pair suffices to specify a goal configuration for a robol
end effector. The planner must generate a robot path that brings
the end effector to the goal and that leaves the other parts in an
arbilral)' valid configuration. Several input pair.; are required
to specify a complele configuration for a multi-part robot_ The
planner must generate a path that achieves all the goals, hence
that brings the robot to the specified configuration. Intennediate
cases also arise where some, but not all, parts have goals, as in
the room example below.

A configuration space is provided for every part/part and
part/obstacle pair. The configuration spaces are constructed by
our program [30]. The output is a boundary representation of the
free space of the first part in the the second part frame, which
is the global frame when the second part is the obstacle. The
boundary is encoded in a co1ltact graph whose nodes and links
represent contact patches and patch adjacencies. A patch is a
connected subset ofcontactspace where the contact point lies on
a fixed pair of part features (line segments, circle segments, or
segment endpoints). The surface equation is represented implic
itly as f(x, y, 8) = 0 and parametrically as (x(u,8),y(u, 8), 9).
An adjacency occurs when two patches share a boundary Clll"Ve.
The algorithm guarantees that every patch has four boundaries:
bottom and top curves of the fonn 8 = k and lefl and right
curves of the form (x(8),y(O), 8).

3

The algorithm achieves the goals iteratively. It maintains a
list of achieved goals, a list of failed goals, and a path. Initially.
the goal lists are empty and the start configuration is the sole
element of the pa!h. Each iteration selects an inpul goal and Dies
to extend the path lo a configuration that achieves it. If a path is
found, the goal is moved to the achieved list and the failed goals
are returned to the input list. The reason for the second step
is lhat path extension can clear the way for a formerly blocked
part to reach its goal. If a path is not found, the goal is moved
to the failed lisl. The iteration ends when the input list is empty.
The algorithm outputs lhe path when the failed list is emp!y and
reports failure otherwise.

Each iteration consists of three steps. The first step selects the
input goal 81c that minimizes the distance from the current con
figuration of part 8. which comes from the last configuration of
the current path, to its goal configuration c. This greedy heuris
tic tries the goal that appears easiest. The second step searches
the .sfobstacle contact graph for a path to lhe goal configuration,
meaning a pa!h where 8 avoids the obstacle and the other parts
are ignored. The third step integrates a velocity field thal moves
s along the path. holds fixed the parts with achieved goals, and
moves the olher pans compliantly. If 8 reaches C, the integralor
output is returned. Otherwise. the conlact graph is searched for
another palh.

Figure 2 illustrates the planner. There are four parts: a robot
comprised of linkl and link2. a door, and a chair. The house
is the obstacle. The door is attached to the house by a pin
joint. The goal is to move linkl to lhe displayed goal config
uration. The robot starts outside, moves to the door and pushes
it open, removes the chair from the bedroom doorway. enters
the bedroom, and parks. The !hick black line is the projeclion
of the link1 graph path. The path is generated by navigating
the link1/house configuration space without considering Iink2,
lhe door, and !he chair. The robot path is represented by se
lecled snapshots. It is generated by dragging linkI along the
graph path and assigning link2. the door. and the chair compli
ant velocities. The compliant velocities salisfy the Iink1flink2
and door/house joint equations, cause lhe door lo rotate when
linkl pushes it, cause the chair to move left when Iinkl pushes
it. and cause Iink2to follow the house profile.

IV. GRAPH PLANNER

The graph planner searches a configuration space for a path
from a start to a goal configuration. It tests if the start and
goal lie in lhe same connected component of free space. which
is a standard computational geometry operation. If not, it re
pons that there is no path. If so, it finds a path via A* search.
The search space consists of patch/configuration nodes where
the patch is in the contact graph and the configuration lies on
the patch. The start and goal are represented by nodes with 0
patches. Search nodes are stored in a heap that is sorted by a
heuristic quality measure. The heap is initialized to a single
node with the stan configuration. The minimum node is re
moved from lhe heap and its children are added to the heap.
Each untraversed neighbor of the minimum patch generales a
child whose configuration is the midpoint of the shared patch
boundary curve. There is also one child for the path that fol
lows a straight line mm the minimum configuration to the goal
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Fig. 2. Robol navigming a house. Top and bonom piclIll'l:S show rm;( and second
halves orthe palh from sian [0 goal.

through free space. Its configuration is lhe first imersection with
a patch or me goal configlJr.l.tion. The cycle repeats until the
minimum configuration equals the goal configuration.

Figure 3 illustrates me aIgorilhm. The conlac( space has two
connected components. The patches are shaded and their bound
ary curves are drawn as thin lines. The path is the lhick curve
from the Slart to CI-cS 10 the goal. The start node has a free space
child with patch PI and configuration Ct. This node has no free
space child because lhe line toward the goal points directly into
blocked space. It has four untraversed neighbors of which 112
is closest to !.he goal, so CP2, cz) is expanded next where Cz is
the midpoint of the PI /P2 boundary curve. The search proceeds
to (p;h C3) and (p4, ct) on lhe left hand connected component
of contact space. This node has free space child (Ps, cs) on the
right hand connected component, which is the first intersection
of the line from C4 to the goal. The search follows this connected
component to ca. which has the goal as a free child. The path is
(0, slan), (PI, CI), ... , <Pa, cal, (0, goal).

The heuristic quality measure is f =: 9 + h where 9 approxi
mates the dislance from the stan configuration to the node con
figuration and h is a lower bound on the distance from the node
configuration to the goal configuration. The metric is Euclidean
dislance in the cylinder coordinates (x,y,S) with the () term
modulo 211". The 9 value is the sum of the distances between
the configurations on the path from the node 10 the start node.
The h value of the stan node is the distance from its configu
ration to the goal. The h value of any other node is the mini
mum distnnce 10 the goal from the four patch comers where the
toplbouom curves intersecl the left/right curves.

Care is required in intersecting the line between a node

Fig. 3. Path planning A- search.

configuration and the goal configuration. The "line" between
(Xl, YI, (}Il and (X2' Y2, (}2) with (). < 92 is really a closed curve
that is represented by two lines in~: one from (xl,YI,9I) 10
(X2,Y2,92) and the other to (X2,Y2,(}2 - 211"). Each line/patch
intersection is computed by substituting the line equation into
the implicit patch equation. solving the resulting polynomial in
closed form (the degree is 3 or 4), and returning the roots that
lie on the patch. The last step maps each root to patch parameter
space and checks ifit lies in the region bounded by the paramet
ric boundary curves.

The planner is complete. Compleleness is trivial when the
start and goal are in different free space connected compo
nents. We add a first step to the planner that makes it com·
plete when they are in the same connected component. The
new first step inrersects the start/goal line with the contact
space and adds the intersection points, ql>"" qll' to the search
graph. In Figure 3, these are Ct, dl,~, d3 along lhe dashed line.
Each pair (ql' q2), (Q3. Q4), ... (qll_l, qll) lies in the same con
necled component of conlact space, hence in the same com
ponent of the original search graph. The free space paths
(q2, q3), (Q,s,q7), .•• (qll-2, qll-Il merge these components into
a single component in the ex.tended graph. The start and goal
nodes are linked into this component by free space paths to qI
and q", hence they will be connected by the A· search. The in
tersection step takes linear lime in the configuration space size
and adds a linear number of nodes to the graph.

The planner runtime is linear in the configuration space size,
as measured by tbe number of palches, because each patch is
visited at most once. This size is worst-case O((nm)3) when n
and m are the number of part and obslacle features. It is much
smaller in practice because most contacts are prevented by other
conlacts, so most patches lie in blocked space and can be ig
nored. The performance evaluation in Section 6 shows that the
planner is very fast in practice.

V. FULL PLANNER

The full planner generates 3 path in the system configW'3tion
space lhatlinks a stan configuration to a configuration in which
3 selected pan is at its goal configW'ation. It processes the palh
nodes sequentially. Each step moves the selected part from its
current configuration to the goal configuration of tbe next node



by integrating a velocity field that implements compliant mo·
tion. The step fails when the velocity equals zero before the
goal is reached. If a step fails, the planner fails. Otherwise, it
returns the concatenation of the step paths.

The parts with achieved goals are assigned zern velocity.
The remaining velocities are computed in three steps. Step 1
computes a selected pan velocity that drives it toward its goal.
Step 2 computes a compliant system velocity. Step 3 adjusts
the compliant velocity to reslore the selected part velocity to its
step I value. The computations are performed in the coordinates
(XI, VI, 810 •• -, Xm, 11m, 8m) of the m non-fixed parts where the
selected part has index I. Elements of this space are displayed
in boldface.

A. Selected pan velocity

The selected part velocity, (Xl, ill, ( 1). is determined hy the
current configuration c, the current palch nonnal n. and the goal
configuration Cg' The velocity is cg - C when there is no patch,
which occurs when the part moves from the initial configuration
to a patch, from a patch to the goal configuration. or between
connected components of contact space. Otherwise, it is the
component of cg - C thai is tangent to the patch. which equals
(cg - c) - [(Cg - c) . nJn. This velocity implements compliant
motion of the selected part relative to the obstacle. It is written
as d = (Xl, ill' 81 , 0, ... ,0) in syslem coordinates.

B. Compliant system velociry

A compliant system velocity is computed by modifying the
normal velocities at the contaci points where parts are colliding.
The selected part/obstacle contact is never modified because it
is tangential by construction. Every other contact may be modi
fied, including selected part/obstacle contacts. The velocity at
the ith contact is d . D. where Di is the contact normal that
points into free space. The normal has 3m elements of which
6 are nonzero part/part pairs and 3 are nonzero for part/obstacle
pairs. If the velocity is positive, the contact breaks immediately
and can be ignored. Otherwise. overlap is prevenled by a con
tact velocity aiD; with a.; positive. The new system velocity
is e = d + L~I a.;D, where k is the number of conlacts. The
a;:s are computed from the symmetric system of linear equations
e'D; = °with j = 1, ... , k.

Figure 4 illustrates the computation. Pan 1 is selected with
configuration (XI' 111, 81 ) = (-3, 0, 0) and part 2 has configura
tion (X2' 112, 92) = CO, 0, 0). Contact occurs between the point p
with part I coordinates (I, 0) and the linesegmentabwith part 2
coordinales ({-3, -2), (-I, 2)). The contact patch equation is
(p - a) x (b - a) = 0. Substituting the coordinate expressions
and simplifying yields

(X2 - xI){sin82+ 2cos 82) + (Y2 - Yl)(2sin82 - 00882 )

+sin{81 - 92) - 2cos{9l - 92) - 4 = 0.

The contact normal is the gradient vector of lhis function D =
(-2,I,I,2,-l,-1). Slep 1 computes a syslem velocity of
d = (l,O,O,O,O,O) because the part I goal is (-2,0,0) and
it does not touch the obstacle. (The arrows labeled D and
d are their projections into the pan 1 frame.) Step 2 makes
part I comply with part 2. The normal velocity, d . D =

,

Fig. 4. Velocity compuwtioo example.

-2, indicates a collision, so the system velocity is changed to
e = d + an. The unknown a is computed from the equa
tion e· D = 0. which yields a = -d· D/D • D = 1/6 and
e ~ (2/3, 1/6, 1/6, 1/3, -1/6, -1/6).

C. Modified system velociry

In step 3, the system velocity is modified from e to e + f
where f satisfies the following linear equations

f, ~ XI - el

" = ill - e2
j, = 81 - e3

f·D; ~ O.

The first three equations state that f restores lhe selected part
velocity to the step I value. The following equations state that
f is tangential to every contact point, hence preserves compli
ancy. In the final equation. i ranges over all contacts other than
the selected part/obstacle, since that velocity is tangent by con
struction. There are k + 2 equations when this pair is in contact
and k + 3 equations otherwise. This system is normally under
constrained, but is over constrained given enough contacts. It is
solved by singular value decomposition [31].

In our example, the part I velocity is restored from
(2/3,1/6,1/6) to (1,0,0). The equations are II = 1/3, h =
-I/6,h = -1/6 and f· D = 0. Substituting the first three
into the fourth and simplifying yields 214 - Jr. - /0 = -1. One
solution is h = -1/2, Is = 0, /0 = 0, which yields a system
velocity of e +f = (I, 0, 0, -1/6, -1/6, -1/6).

D. Killelnatic simulator

The kinematic simulator is a utility program that integrates a
velocity field for a system of rigid parts. It is identical to our
dynamical simulator [32], except for the vector field that it inle
grales. The inputs are the initial configuration.lhe velocity field,
the joints, the configuration spaces. and an integration accuracy.
The simulalor integrates the velocity field with a Runge-Kutta
integrator. At each step, il enforces the joint equations and the
current contacts via Newton iteration and checks for collisions.
A collision between two parts is detected when their relative
configuration enters blocked space. The simulator backs up to
the instant where the configuration crosses from free to blocked
space, updates me currenl contacts, and resumes integration.

VI. PERFORMANCE EVALUATION

This section presents an empirical evaluation of the palh plan
ner based on 11.000 random problems, which span dozens of
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rohal/obstacle geomelries with up to 43 moving parts and with
narrow channels. The experiments are perfonned on a 933 MHz
Pentium 3 processor running Linux-. The planner solves every
problem in seconds. whereas randomized algorithms appear to
fail on all of them.

A. COlljiguration space constructioll

Configuration space construction combines numerical com
putation with compUlationai geomelry on large dalasels. This
type of computation is prone to robustness problems due to the
fundamental mismatch between f10aling point arithmetic and
real geometry [33J. These problems are addressed via heuris
tics. software engineering, and extensive testing. The program
has no known failures on the 11,000 test inpuls below oron hun
dreds ofother inputs, but it might fail on some degenerate inputs.
A canonical example is two line segments thal are almost col·
inear: floating poim error could cause the program to infer that
the lines intersect and that both endpoints of one segment lie on
the same side of the other segment, which could produce incon
sistent output. A fast. provably robust algorithm is a topic for
future research.

B. Graph plawler

Table I conlains runtime statistics for the configuration space
constructor and the graph planner. For each problem. 1000 pairs
of pseudo random startlgoal configurations were generaled in
a bounding box roughly twice the size of the obstacle. The
statistics for 1000 pairs are the same as for the first 500. which
indicates thai the sample size is adequate. The configuration
space construction times confirm our experience that moderate
size pairs take under 10 seconds. The mean planning times are
low because most start/goal configurations can be connected by
free space paths. which require no search. The maximum times
indicate that the worst-case performance is good on moderate
size problems. We see that the planner visits few patches on av
erage, and performs well even when it visits almost all patches.
The planner found paths for all 10,000 trials, as a complete al
gorithm should.

We briefly describe two test problems. Problem 2 (Figure 5) is
an expanded version of a challenging lest case by Boor {34]. The
fit between the horizontal and the vertical arms is very tight: in
creasing the center square size from 0.2825 units to 0.283 units
blocks the channels. which causes the planner to compute a path
around the obstacle in 6.2 seconds. Problems 9-10 are a cross
shaped robot with an obstacle comprised of six randomly placed
triangles (Figure 6). Problem 9 is the easiest and problem 10 is
the hardest out of20 such obstacles.

C. Full planner

Table II contains runtime statistics for the full planner based
on five problems with 200 random tests per problem. The statis
tics for 200 lests are the same as for the first 100. which indicates
that the sample size is adequate. The purpose of the tests is 10
validate the effectiveness of the compliant motion heuristic. so
the random selection is biased toward the hardest cases for each
problem. The planner found paths for all 1000 tests.

The first problem is the robot in the house (Figure 2). The
table describes paths to the displayed goal configuration from

TABLE I

GRAPH PLANNER STATISTICS; n IS THE NUMBER OF PART FEATURES: m IS

THE NUMBER OF OBSTACLE FEATURES: PATCHES [S THE NUMBER OF

PATCHES IN THE CONTACT GRAPH; CS TIME IS TilE CONTACT GRAPH

CONSTRUCTJONTIME IN SECONDS: A· TIME IS THE AVERAGEfMAXIMUM

GRAPH PLANNING TIME IN SECONDS: AND VISITED IS THE

AVERAGE/MAXIMUM PERCENTAGE OF PATCHES V[SITEO.

# n m patches cs time A* time visited
I. 8 20 656 0.0 0.0/0.0 15n9
2. 16 160 16868 5.9 0.6/6.7 7/51
3. 8 24 300 0.0 0.0/0.0 11/92
4. 8 48 600 0.0 0.0/0.1 8/82
5. 16 40 4973 '0.6 0.1/0.6 7/50
6. 24 16 8422 0.6 0.1/0.7 2167
7. 8 16 248 0.0 0.0/0.0 7/48
8. 8 36 754 0.0 0.0/0.1 7/84
9. 24 36 2008 1.8 0.0/1.6 1110
10. 24 36 34220 3.2 0.113.4 1114

TABLE II

FULL PLANNER STATISTICS: np IS THE NUMBER OF PARTS: ne IS THE

TOTAL NUMBER OF PATCHES [N ALL CONTACT GRAPIlS; CS TIME IS THE

CONTACT GRAPH CONSTRUCTION TIME IN SECONDS; PLAN TIME IS THE

AVERAGE/MAXIMUM TOTAL PLANNING TIME IN SECONDS: VISITED IS THE

AVERAGEfMAX[MUM PERCENTAGE OF PATCHES VIS[TED: AND PATHS IS

THE AVERAGE/MAX[MUM NUMBER OF GRAPH PLANS PER FULL PLAN.

" pI""
# np ne time time visiled paths
1. 4 4llO 0.1 0.9/1.0 84191 5/13
2. 4 992 0.0 0.412.4 22166 6/22
3. 2 1200 0.1 0.3/0.8 75/99 4/10
4. 2 600 0.0 0.0/0.1 23148 3/10
5. IS 3680 0.5 4.9/5.1 3/22 115

random start configurations outside the house and inside a 50%
larger square. Linkl failed as the first selection in 12% of the
cases where link2 blocked against the house. Link2 never failed
as a selected part. The link width is 1 unit and the doorway
clearances are 1.1 units. Decreasing the clearance has no effect
on performance.

The second problem is a floating linkage, comprised of four
bars connected by revolute joints. that must traverse a narrow
channel through the obstacle (Figure 7). The planner moves
the bottom link 10 its goal while dragging the other links along
then moves the left link 10 its goal while holding the bottom link
fixed. The linkage rotates until the fourparts are almost parallel.
translates through a narrow gap in the vertical wall, then opens.
The table describes paths from the displayed start configuration
to random goals to the right of the wall. No pan selections fail.
Decreasing the gap width has no effect on performance.

The third problem is a two-bar linkage with a two-part obsta
cle (Figure 8). The table describes paths from the displayed start
configuration to random goal configurations inside the upper ob
stacle part. The selected part is horizontal in the goal configu
ration shown in the Figure. The fourth test case is identical. but
without the upper obstacle part. The running time. number of
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FIg. 5. ElIpandcd Boor challenge with a dClail of one channel. Solidldnslled
lines show palbs fora robot thaI fiWblocks in the channels.

goal

Fig. 6. Random obslac1c wiLh 50 p;llh<; between rnndom stan/goal conJigur.!
lions. SJmplc conJigurntiOlL'i shown along Lhe Lhick paLh,

prime example of compliant motion in which all the pans must
move to achieve the tensioner goal. The configuration space
dimension is 119. The 38 linklleft driver pairs have 148 patches
apiece, while the 38 link/right driver and 38 linkltensioner pair.;
have 116 patches apiece. The planner computes the assembled
configuration in 17 seconds.

Fig.7. Four-bar link.:lgc palh.

D. COlI/parisOII witll Talldomized plG/wers

I tested the MSL implementation (http://msl.cs.uiuc.edulrnsll)
of Kavraki's road map planner [6] and of Kuffner and Lavalle's
random tree planner [18] on every test problem. A single repre
sentative start/goal pair was chosen for each problem. In prob
lems with multiple parts, every part/obstacle pair was tested.
The optional files were as follows: Holonomic, PlannerDeltaT
equals 0.001, ModelDeltaT equals 0.01, and helpful Lower
State!UpperState values. A test was declared a failure when it
exceeded one million nodes or one CPU hour. Both planners
failed every test. The only exception was the cross-shaped robot
from Figure 6 with an empty corridor between the start and goal
configurations. Although nothing can prove lIlat a randomized
planner cannot solve a problem, the tests show that the configu
mtion space planner solves in seconds a broad range ofproblems

I"'J
goal

:].....
• " •• 'pr,

:r·····. '.. '.
'!!.. --'. ~, .

•

start

graph paths, and percenlage of patches visited are much lower
because the goal is easier 10 reach. No part selections fail in
either case.

The fifth problem is a snake robot with random obslacles (Fig
ure9). The snake consists of8 round pins and 7 rectangular links
connected by pinjoinlS. The fir:st pin is attached to the first link,
which is auached (0 the second pin, and so on. Each obstacle is
50 triangles randomly placed in the box «0, 10)(0, 10)). The ta
ble describes paths from the displayed configuration to random
goal configurations for the first snake pin in «0,20)(-20,20)).
The resulls are for 4 geometries with 50 lesls apiece. The right
most snake pin is always selected first and never fails.

We conclude the evaluation with two problems on which ran
dom testing was not performed. Figure 10 shows how lhe snake
robot navigates a kitchen sink in 6.8 seconds. Adding a pin and
a link increases the time to 11.4 seconds.

The final problem is a mechanical design application in col
laboration with Ford Motors Company (Figure II). A designer
wishes to compute an assembled configUralion for a chain gear.
There are two drive gears, one tensioner gear, and 38 chain
links. In the assembled configuration, the gears rotate around
their centers and the chain is taut. The designer constructs a
start configuration in which the drive gears are attached 10 the
frame with pin joints, the chain links are connected with pin
joints, the chain is slack, and the tensioner is disengaged. This
configuration is easy to compute by hand, but could also be con
structed from a fully disassembled configuration by a sequence
of planning steps.

The path planning task is to engage the tensioner. A free space
path would suffice if it were not for the chain. The challenge is
to follow this path, while avoiding pan overlap. The solution is a
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Fig. 8. Two-bar linkage path.

that they cannot solve in an hour.

E. Limitati01ls

The evaluation shows that the plannerperfonns well on many
problems. including ones with many moving parts, tight fits. and
closed loops. However, there are simple problems on which the
compliant motion heuristic fails. Figure 12 shows three cases
where the house robot fails to reach its goal from a random start
configuration with linkl as the selected part. In the graph plan
for failure I, linkl follows a free space path loward the goal, hits
the left wall of the house, and follows the house profile lhrough
the doorway. The full planner fails to move Iinkl into conlact
with the wall because link2 hits it first. The link21wall con
tact blocks link2 's horizontal motion and the linkInink2 joinl
blocks link! 's horizontal motion. The other failures are analo
gous: linkl cannot reach the bottom of the house in failure 2 and
cannoL reach the right wall in failure 3.

It is possibl~ for every selection to fail, which causes the plan
ner lo fail. For example, suppose in Figure 8 that the robot links
are connected at their centers and that the initial configuration is
an x-shape inside the lower obstacle pan. The robot cannot leave
the obstacle: if one link tries to drag it through the mouth, the
other link will rotate horizontally then block against the mouth
bottom. The problem can be solved by steering the second link,
but not by complianL motion. Another type of failure occun;
when the robot is blocked by a part. For example, the chain gear
tensioner cannot traverse a free space path from above the chain
to the goal because it cannot push the chain out of the way. Nor
can steering the chain clear the path. This type of problem can
be solved by selectively treating pans as static.

The planner uses one-point contacts LO manipulate parts that
move freely in the plane. It assumes zero friction between these

Fig. 9. SD:lkc robol wiLb 50 random goals. Obstacle is 50 random lriangles.
Lines are graph paths rorihe righLmost pin. Sample robol oonfigunuiollS are
shown along the Lhick paLb.

Fig. 10. Plumbing snake in sink.

parts and the sUiface on which they move. The only example in
the paper is where the robot pushes the chair from the doorway
in Figure 2. The true effect of such a push depends critically on
the pressure distribution of the free part. If the distribution were
known, we could solve this problem by replacing the kinematic
simulator with a quasi-sUltic simulator. But pressure distribu
tions are rarely known. One point pushing might still suffice for
simple wks like clearing a part from a path, bUl it is inadequate
for fine path planning.

VII. CONCLUSIONS

This paper has presented a planar path planning algorithm
thal combines systematic configuration space search with com
pliant molion. The algorithm handles systems with many mov
ing parts, closed kinematic loops, narrow channels, and curved
pans. EXlensive testing shows that it solves hard problems in
seconds, whereas prior algorithms appear incapable of solving
them. The main areas of future research are very large sysLems,
defonnable parts, geometric uncertainty, non holonomic con-



tensioner
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goal

Fig. II. Cllain g~ assembly.

Fig. 12. Represeraative railurcs of complianl molion.

srraints, and spatial planning.
Some applications have very high geomeuic complexity, for

example detailed models of indusuial plants with over 100,000
part fearures. Computing full configuration spaces appears in
feasible. The best alternative may be a hierarchical strategy that
decomposes the environment into manageable regions, plans in
each region, and links the results at region boundaries. Incre
menlal and dislributed algorithms should also prove important.

The snake examples suggest a methodology for path planning
with deformable parts akin to finite element analysis. Break
each deformable pan into rigid elements connected by joints,
plan with these elements, and apply the result. Round elements

,
were chosen in the example, but other shapes are acceptable.
The results in Section 6 suggest that tens of elements can be
handled efficiently. The question is whether this is enough for
applications. Applying paths to defonnable pans poses control
problems, such as how to drive the snake along a path by means
of its handle.

Geometric uncenainty plays a significant role in practical
path planning, but is barely addressed in prior research. The firsl
task is 10 quanlify the effect on path planning of imprecise mea
surements of the robot configuration and of the environment.
The larger goal is to generate plans thal succeed (always or with
high probability) despite a bounded amount of uncertainty. We
have developed a kinematic tolerance analysis algorithm [35J
that has the potential to automate the first task. It provides a
detailed understanding of how small variations in geometry af
fecl nominal contact relations. The next step is explore ways to
incorporate this analysis into path planning. A natural starting
point is manipulation planning, which is very sensitive 10 the
contact geometry and to the environment.

Wheeled robots can follow only those free space paths that
satisfy non holonomic sleering constraints, which are non
integrable equalions in the derivatives of the configuration space
coordinates. A path planner must inlegrate obstacle avoidance
with non holonomic constrainl satisfaction to obtain traversable
palhs. There is some prior work on this problem [36], but it is
far from solved.

The planar algorithm applies 10 spatial systems in theory, but
it is impractical because it requires a subrouline that computes
the configuration space of a pair of spatial parts. A possible
solution is to restrict the selected pan 10 a series of planar mo
tions. Each motion plane defines a three-dimensional configura
tion space for two spatial pans. These spaces can be constructed
by a generalization ofour algorithm for planar pans [37] and can
be searched by the graph planner. The challenge is 10 pick mo
lion planes that contain a goal path. Heuristic or probabilislic
algorithms are worth invesligating. Compliant motion can be
implemented as before, ellcept that contact changes must be de·
tected by collision detection instead of by configuralion space
queries. Collision detection has proven practical for very large
polyhedrnl models and may extend to curved pans. This hybrid
algorithm preserves the heart of the planar algorithm, system·
atic configuration space search and compliant motion, although
it sacrifices one-part completeness and some efficiency.
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