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a b s t r a c t

A three-dimensional numerical model is developed and validated to study the effect of geometric param-
eters such as microchannel depth and width, manifold depth, and manifold inlet and outlet lengths on the
performance of a manifold microchannel (MMC) heat sink. The manifold arrangement used to distribute
the flow through alternating inlet and outlet pairs greatly reduces the pressure drop incurred in conven-
tional fluid supply arrangements due to its shorter flow paths, while simultaneously enhancing the heat
transfer coefficient by limiting the growth of thermal boundary layers. The computational analysis is per-
formed on a simple unit-cell model to obtain an optimized design for uniform thermal boundary condi-
tions, as well as on a porous-medium model to obtain a complete system-level analysis of multiple
microchannels across one manifold. The porous-medium approach can be further modified to analyze
the performance under asymmetrical heating conditions. Along with conventional deterministic optimi-
zation, a probabilistic optimization study is performed to identify the optimal geometric design param-
eters that maximize heat transfer coefficient while minimizing pressure drop for an MMC heat sink. In
the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic
optimization approach yields a design that is robust and reliable, in addition to being optimal. Such an
optimization analysis provides a quantitative estimate of the allowable uncertainty in input parameters
for acceptable uncertainties in the relevant output parameters. The approach also yields information such
as the local and global sensitivities which are used to identify microchannel width and manifold inlet
length as the critical input parameters to which the outputs are most sensitive. The deterministic analysis
shows that the heat transfer performance of the MMC heat sink is optimal at a manifold inlet to outlet
length ratio of 3. A comparison between the deterministic and probabilistic optimization approaches is
presented for the unit-cell model. A probabilistic optimization study is performed for the porous-medium
model and the results thus obtained are compared with those of the unit-cell model for a uniform heat
flux distribution.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional microchannel heat sinks are characterized by long
microchannels that run parallel to the base of the heat sink, as pro-
posed by Tuckerman and Pease [1]. These microchannel heat sinks
have been successfully investigated for use in electronics cooling
applications [2]. Several analytical and numerical models for pre-
dicting pressure drop and heat transfer through such heat sinks
have been proposed in the literature [3–5]. Although conventional
microchannels provide substantial heat transfer augmentation,
they are also associated with very high pressure drops. Microchan-
nel heat sinks with various modified configurations have been pre-
viously studied for improved performance over conventional

single-layered rectangular microchannels. Deterministic optimiza-
tion studies have been performed on microchannel heat sinks with
double-layered channels [6] and tapered channels [7] to obtain
optimum geometric parameters. An alternative configuration that
has been proposed to lower the incurred pressure drop while
simultaneously increasing the heat transfer is the manifold micro-
channel (MMC) heat sink. An MMC heat sink consists of a manifold
system which distributes the coolant via multiple inlet–outlet
pairs, thereby reducing the flow length of the coolant through
the microchannels, as shown in Fig. 1(a). Such an arrangement re-
sults in a significant reduction in the pressure drop, while also
reducing the thermal resistance by interrupting the growth of ther-
mal boundary layers. This design was originally proposed by Har-
pole and Eninger [8], who demonstrated a significant reduction in
thermal resistance relative to conventional microchannel heat
sinks at a constant pumping power. Their MMC system consisted

0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.067

⇑ Corresponding author. Tel.: +1 765 494 5621.
E-mail address: sureshg@purdue.edu (S.V. Garimella).

International Journal of Heat and Mass Transfer 69 (2014) 92–105

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.09.067&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.067
mailto:sureshg@purdue.edu
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.067
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


of 10 to 30 manifolds spanning the entire flow length. Kermani [9]
and Kermani et al. [10] performed experiments to demonstrate the
use of MMC heat sinks to cool concentrated solar cells, and re-
ported a significant increase in heat transfer coefficient as com-
pared to conventional microchannel heat sinks of similar
dimensions. Experimental investigations were also reported by
Copeland et al. [11] who observed the thermal resistance to be in-
versely proportional to the volume flow rate of the coolant. Kim
et al. [12] demonstrated a 35% reduction in thermal resistance rel-
ative to a conventional arrangement for forced air cooling. Cope-
land et al. [13] conducted a simplified 1D analysis to predict the
pressure drop and thermal resistance of MMC heat sinks based
on correlations for a straight rectangular channel. This analytical
model was reasonably accurate at high flow rates, but was found
to be inadequate for the geometry under consideration at low flow
rates. The thermal resistance obtained using the analytical model

was found to be about 50–70% lower than that predicted using a
simplified 3-D isothermal numerical model. Ryu et al. [14] per-
formed a detailed 3-D numerical analysis for quantifying the ther-
mal performance of an MMC heat sink configuration, and included
a consideration of the manifold depth and the bottom solid wall
which were previously excluded from analysis [13]. Further, an
optimization study was also performed using the steepest-descent
method for arriving at the optimal design that would yield the
minimum thermal resistance at different pumping powers. It was
observed that the optimal geometric parameters as well as the
optimal thermal resistance had a power-law dependence on the
pumping power.

Microchannel-based heat sinks involve uncertainties in a num-
ber of parameters, such as those due to inherent limitations of the
fabrication technique, and in the operating conditions such as the
inlet flow rate and the input heat fluxes. In the presence of such

Nomenclature

ai coefficients in the gPC response function
Bi polynomials in the gPC response function
Cp specific heat, J/kg K
Dc depth of microchannel
Dh hydraulic diameter of microchannel
Dm depth of manifold
Dsub depth of substrate
f friction factor
h heat transfer coefficient, W/m2 K
k thermal conductivity, W/m K
L total length of coolant flow path, lm
Lin length of inlet path, lm
Lm length of manifold, lm
Lout length of outlet path, lm
Nu Nusselt number
OF objective function
P pressure, Pa
DP pressure drop, Pa
q’’ heat flux input, W/m2

r manifold ratio
R response function
Re Reynolds number

T temperature, K
u velocity, m/s
w1, w2 weight functions
Wc width of microchannel

Greek symbols
ai coefficients in the response function
ni random variable
l dynamic viscosity, Ns/m2

q density, kg/m3

r standard deviation
wi polynomials in the gPC response function

Subscripts
det deterministic mean value from outer loop
f fluid
in inlet
int interface
out outlet
s solid
w bottom wall

Fig. 1. Computational domains for the MMC heat sink: (a) complete heat sink with coolant path, (b) unit-cell model used for direct simulation, showing geometric parameters
and boundary conditions and (c) computational domain for the porous-medium model along with boundary conditions.
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uncertainties, a conventional, deterministic optimization approach
may not provide a truly optimized design that is also robust. The
challenge is to quantify these uncertainties and include them in
the optimization procedures to produce designs meeting the de-
sired reliability and robustness levels. The typical approach in
the presence of such uncertainties is to perform an optimization
by considering the uncertain variables as design parameters fixed
at their mean values (or at bounds), and then include a post-design
factor of safety to produce a conservative design that accounts for
uncertainties heuristically. However, in the presence of large
uncertainties or when there are strict constraints (such as expen-
sive design parts, designs with constraints on overall mass, etc.),
this approach fails to produce a truly optimal design. Instead, it
merely provides a heuristic, conservative estimate and does not in-
volve explicit quantification of the output uncertainties relative to
input uncertainties.

An improved alternative strategy is to adopt a probabilistic
optimization approach using the optimization under uncertainty
(OUU) method which combines the optimization procedure with
uncertainty quantification (UQ) [15]. Optimization under uncer-
tainty is a powerful approach that ensures reliable design of sys-
tems by considering the input uncertainties as part of the design
process. The OUU approach may be used for ‘‘design for reliability’’
and for ‘‘design for robustness’’ [16]. The goal of the former prob-
lem is to produce an optimized design with a reduced probability
of failure, while in the latter case, the objective is to produce de-
signs that are less sensitive to variable inputs. As discussed by El-
dred et al. [16], the latter problem is often the simpler one to
address and does not always require UQ. However, non-UQ-based
approaches rely on local derivatives to assess robustness and are
hence not recommended. In the design for reliability problem,
UQ is performed and design parameters are estimated based on
the tail (end) statistics of the output probability density function
(PDF). This problem places a greater demand on the UQ and is often
computationally more expensive compared to the design for
robustness problem.

The objective of the present study is to optimize the geometry
of a manifold microchannel heat sink based on a probabilistic ap-
proach to account for the inherent uncertainties in fabrication
and operating conditions. A 3-D numerical unit-cell model for
the MMC heat sink is first developed and validated by comparing
against previous experimental results [9]. The geometric parame-
ters and input conditions for the model are similar to those used
in the experiments. Further, a 3-D porous-medium model is also
developed to perform a system level analysis and optimization.
In this model, the microchannel heat sink is represented as a por-
ous medium with equivalent porosity and permeability [17], so as
to reduce computational complexity. After validating the numeri-
cal model, an OUU analysis is performed by using a nested ap-
proach as discussed in detail in [15]. In this approach,
uncertainty quantification is performed in an inner loop, which is
nested within an outer optimization loop, as described in
Section 3.2.

The cost incurred by multiple CFD simulations is alleviated by
using a generalized polynomial chaos (gPC) based response
surface approach for the inner loop UQ [18]. Robust optimal de-
signs, restricting the standard deviation of the output – the heat
transfer coefficient – are obtained for a variety of cases. Further,
the computed results are compared against those obtained via a
traditional deterministic approach, i.e., an optimization study
with mean values assumed for the uncertain variables. The
OUU analysis is also performed for the porous-medium model
using the same geometric parameters and optimization condi-
tions and constraints, and the results are compared against those
obtained from the probabilistic optimization using the unit-cell
model.

2. Numerical modeling

This section describes the numerical modeling approach em-
ployed in the current work. The models are described only briefly
here, and a detailed discussion on the UQ and OUU methodology
employed may be found in Bodla et al. [15]. In the present study,
two sets of computations are performed. In the first, a unit-cell do-
main is employed for a detailed numerical analysis of the fluid-
flow and heat transfer, and the results are compared with past
experiments; the performance of the unit cell is optimized using
traditional deterministic as well as the probabilistic (OUU) ap-
proaches discussed above. Following this, a complete system-level
analysis is also performed using a porous-medium model, wherein
the simulations are performed over several microchannels
throughout the length of one manifold. A porous-medium treat-
ment of the microchannel heat sink is employed in this analysis
using a two-temperature non-thermal equilibrium model. The
two kinds of computations are discussed below.

2.1. Unit-cell model

A schematic diagram of the MMC heat sink considered in the
present work is shown in Fig. 1(a). The manifold distribution sys-
tem is placed on top of the microchannels, in a direction transverse
to the main flow direction. The coolant is pumped in through a
common inlet port, which branches out into parallel manifold inlet
channels. Upon entering the microchannel, the fluid undergoes a
90-degree turn, traverses along the microchannel length removing
heat from the substrate, and subsequently flows through another
90-degree turn and then exits upward through the outlet manifold
channels and into the common outlet port. Exploiting symmetry
and periodicity, only a unit cell of the MCC heat sink is considered
for detailed numerical analysis. Fig. 1(b) shows the unit cell em-
ployed, along with the applicable boundary conditions. The conti-
nuity, momentum, and energy equations for steady-state, laminar,
incompressible flow with constant thermophysical properties may
be written as [19]:

@

@xj
ðqujÞ ¼ 0 ð1Þ

@

@xj
qujui
� �

¼ � @P
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þ @

@xj
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@xj
kf
@Tf

@xj

� �
ðliquidÞ ð3Þ

0 ¼ @

@xj
ks
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Here uj, P, and T represent the velocity, pressure and temperature
fields, while the subscripts s and f refer to the solid and fluid med-
ium, respectively. Without loss of generality, water is used as the
coolant in the current study and the walls of the microchannel
and manifold are assumed to be made of silicon. The low Reynolds
numbers considered for the flow justify the assumption of laminar,
steady flow.

At the inlet, a constant mass flow condition is specified with the
fluid entering at a constant temperature of Tin = 300 K, while a con-
stant pressure condition is imposed at the outlet. Symmetry condi-
tions are specified for both velocity and temperature at the four
outer boundary planes, i.e., at x = 0, x = xmax, and at z = 0, and
z = zmax. A uniform heat flux of q00w ¼ 100 W=cm2 [14] is specified
on the bottom wall of the substrate, while the top wall of the man-
ifold is assumed to be adiabatic. Also, as the problem involves
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conjugate heat transfer, continuity of temperature and heat flux is
employed at all the solid–fluid interfaces, as given by [20]:

Ts;int ¼ Tf ;int ð5Þ

�ks
@Ts

@n

� �
int
¼ �kf

@Tf

@n

� �
int

ð6Þ

The geometry is modeled and meshed using the mesh genera-
tion package CUBIT [21]. The governing equations along with the
boundary conditions described are solved using the commercial
CFD package FLUENT [22]. Pressure–velocity coupling is addressed
via the SIMPLE algorithm, along with an algebraic multigrid algo-
rithm (AMG) for solving the linearized system of governing equa-
tions. The governing equations are solved using a first-order
upwind scheme to obtain an approximate solution that is em-
ployed as the initial condition for a more accurate, second-order
upwind scheme analysis. The number of iterations for this initial
first-order solution were chosen by observing the overall time
reduction achieved relative to a purely second-order scheme with-
out a precursor first-order solution. Allowing the scaled residuals
with the initial first-order scheme to converge close to the final
convergence criteria employed reduced the number of second-or-
der iterations required. As a comparison, the overall solution time
with this approach was observed to be approximately 60% of that
required with just the second-order scheme employed from the
beginning. Employing the flow and temperature fields so obtained
as the initial conditions, the equations are then solved using a
second-order upwind scheme until convergence, to obtain more
accurate converged solutions. The use of the initial conditions
obtained from the first-order scheme reduces the computational
time required for second order convergence. The equations are also
suitably under-relaxed, and convergence criteria of 10�6 for scaled
residuals of continuity and momentum equations, and 10�9 for
energy equation are specified. In addition, the average pressure
at the inlet and the average temperature of the bottom wall are
also monitored to check for convergence of the flow and energy
equations.

2.2. Porous-medium model

Unit-cell models, though accurate, have certain limitations.
First, owing to the underlying assumptions of periodicity, non-uni-
form heat fluxes such as those encountered in a realistic scenario
cannot be incorporated. Second, modeling the entire heat sink
using such an approach is not computationally feasible. In lieu of
these limitations, a porous-medium model was developed for a
system level flow and heat transfer analysis and optimization of
the manifold microchannel heat sink.

Microchannel heat sinks have previously been modeled as
equivalent porous medium successfully [17]. In this approach,
the hydrodynamic performance of the heat sink is modeled via
an equivalent permeability and porosity, without the need to re-
solve the heat sink geometry down to scale of individual fins and
channels. For the current configuration, shown in Fig. 1(c), we em-
ploy the following parameters described in Liu and Garimella [17]:

e ¼ Wc

Wc þWfin

jy;z ¼
eW2

c

12
; jx ¼

jy;z

100

ð7Þ

In these definitions, e denotes the porosity of the microchannel and
Wfin is the width of the fin, which in this study is assumed equal to
the width of the microchannel, Wc. The permeability is anisotropic
and is denoted by j. The permeability in the x-direction, transverse
to the main flow direction, is assumed to be lower by two orders of

magnitude relative to the value in the flow direction (y and z) so as
to account for the impermeable walls of the microchannel. Further,
the complexity of the problem is reduced by excluding the bottom
wall of the heat sink (included in the unit-cell model) from the com-
putational domain for the porous-medium model. The implications
of this change are described in Section 4.1.2. The hydrodynamic per-
formance of such a porous medium may be modeled using Navier–
Stokes equations in conjunction with Darcy’s equation, as discussed
in Escher et al. [20]:

@
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qf ujui
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¼ � @P
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�
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ui ð8Þ

Here, lf is the viscosity of the fluid. The last term on the right hand side
of Eq. (8) denotes the additional viscous pressure drop (Darcy pressure
drop), owing to the presence of the solid microchannel walls.

The thermal performance of the porous medium can be mod-
eled using the two-temperature model as discussed by Kaviany
[23] and Kim and Kim [24]. In this work, we employ this two-tem-
perature model to account for the local thermal non-equilibrium
between the solid and fluid phases within the control volume of
the porous medium. The energy equations for the solid and fluid
phases of the porous medium are thus modeled as follows:

kse
@2hTis
@y2 ¼ hsf asf ðhTis � hTif Þ ð9Þ

eqf Cp;f uf
@hTif
@x
¼ hsf asf ðhTis � hTif Þ þ kfe

@2hTif
@y2 ð10Þ

kse ¼ ð1� eÞks; kfe ¼ ekf ð11Þ

Here, asf is the wetted surface area per unit volume, while kse and kfe

are the effective thermal conductivities of the solid and fluid phases,
respectively [17]. The volume-averaged temperatures of the solid
and fluid phases are represented by hTis and hTif, respectively. The
right hand side of Eq. (9) represents the interfacial heat transfer
and may be modeled via a suitable value for the interfacial heat
transfer coefficient, hsf. In this study, we employ a developing flow
correlation for single-phase heat transfer in microchannels pro-
posed by Lee and Garimella [5]. The interfacial heat transfer coeffi-
cient and the Nusselt number are dependent on location in the flow
direction, and are given as follows:

hsf ;z ¼
Nuzkf

Dh

Nuz ¼
1

C1ðz�ÞC2 þ C3

þ C4

ð12Þ

In this equation, z⁄ denotes the non-dimensional axial distance from
the inlet, and C1, C2, C3 and C4 are empirical constants. The values of
the empirical constants, and details on limitations and applicability
of the correlation may be found in Lee and Garimella [5].

The computational domain shown in Fig. 1(c) is meshed using
the mesh generation package CUBIT [21]. Again, exploiting symme-
try, the computational domain consists of one half each of an inlet
and outlet manifold in the flow direction, while the entire heat sink
length is considered in the transverse direction. The use of such a
porous-medium model allows a system-level analysis with re-
duced geometrical complexity, thereby providing greater flexibility
at significantly reduced computational cost, as will be discussed in
Section 4.1.2. A constant mass flux boundary condition is applied at
the inlet, while a constant pressure condition is imposed at the
outlet. Further, a constant heat flux boundary condition is applied
on the bottom wall of the microchannel section, simulating the
heat source. All other interfaces are assumed to have a no-slip
boundary condition along with temperature and heat flux
continuity between the solid and fluid zones of the porous
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medium, as appropriate. The governing equations, along with the
boundary conditions as described above, are solved to conver-
gence, using the built-in porous-medium non-equilibrium thermal
model in the commercial CFD package FLUENT [22]. Pressure–
velocity coupling is addressed via the SIMPLE algorithm, along
with an algebraic multigrid algorithm (AMG) for solving the linear-
ized system of governing equations. For monitoring convergence,
we employ a solution procedure similar to that employed for the
unit-cell model, whereby the governing equations are first solved
using a first-order upwind scheme for a few iterations. Employing
the flow and temperature fields so obtained as the initial condi-
tions, the equations are then solved using a second-order upwind
scheme until convergence is achieved. The governing equations
are also suitably under-relaxed to ensure proper convergence.
Moreover, the average pressure at the inlet and the average tem-
perature of the bottom wall are also monitored to check for con-
vergence of the flow and energy equations, respectively.

3. Solution methodology

The optimization methodology and the uncertainty quantifica-
tion (UQ) procedure are described briefly. Further details may be
found in Eldred [25] and Xiu and Karniadakis [18].

3.1. Uncertainty quantification

The first step in the optimization under uncertainty procedure
is uncertainty quantification (UQ). This procedure entails determi-
nation of uncertainties in outputs for given input uncertainties.
Uncertainties are commonly categorized as being aleatoric or epi-
stemic. The aleatoric uncertainties (also known as statistical uncer-
tainties) in inputs result from an inherent randomness which
occurs every time an experiment is run, while the epistemic uncer-
tainties (also known as systematic uncertainties) result from lim-
ited data and knowledge [25]. In the present work, the analysis is
restricted to aleatorically uncertain variables, for which probabilis-
tic methods such as polynomial chaos expansions (PCEs) may be
used to determine the output statistics.

The most common UQ methods used are random sampling
techniques. Random sampling methods employ standard algo-
rithms such as Monte Carlo or Latin Hypercube sampling, for ran-
domly drawing samples based on input probability distribution
functions. In this method, the simulation is performed for each
sample drawn, and when the entire range of input variations is
covered, response statistics and PDFs of outputs are computed
[16,23]. This entails performing thousands of simulations to cover
the entire the range of input variations. For complicated problems,
this becomes untenable owing to the large number of simulations
involved. Other methods such as the sensitivity method based on
moments of samples are also used for UQ, but these methods are
less robust and depend on the model assumptions.

For moderate numbers of input random variables, the polyno-
mial chaos expansion (PCE) method is more efficient and computa-
tionally tractable than random sampling methods. In the present
work, the generalized polynomial chaos (gPC) approach is used
with the Wiener–Askey scheme [18]. In this approach, uncertain
variables, represented by normal, uniform, exponential, beta, and
gamma PDFs, are modeled by Hermite, Legendre, Laguerre, Jaco-
bian and generalized Laguerre orthogonal polynomials, respec-
tively. It has been shown that these orthogonal polynomials are
optimal for the corresponding distribution types since the inner
product weighting function and its support range correspond to
the PDFs of these distributions [18]. In theory, this selection of
the optimal basis allows for exponential convergence rates.
The gPC method may be either intrusive or non-intrusive. The

stochastic collocation method is a non-intrusive method based
on gPC [18]. In this method, the polynomials mentioned above
are used as an orthogonal basis to estimate the dependence of
the stochastic form of the output on each of the uncertain inputs.
Deterministic simulations are performed at the collocation points
in random space. The coefficients in the polynomial expansion
are determined by making use of the orthogonality properties of
the polynomial basis function. Further details may be found in
[18] and in the comprehensive review by Eldred [25]. The utility
of such a non-intrusive gPC approach in the design of electronics
cooling equipment such as pin–fin heat sinks, and its advantages
compared to an intrusive approach, were demonstrated recently
by Bodla et al. [15].

The polynomial chaos expansion for a response R is expressed
as

R ¼
X1
j¼0

ajwjðnÞ ð13Þ

Each of the terms wj(n) consists of multivariate polynomials obtained
from the products of the corresponding one-dimensional polynomi-
als. Neglecting the higher-order terms in Eq. (13) results in a finite
number of evaluations needed to compute the response function R.
The Smolyak sparse grid technique can be used to select the specific
evaluation points. This sparse grid technique has proven to be com-
putationally more efficient than other methods such as quadrature
grids for each random variable (which gives a tensor product grid
when there are more than one random variables) [25]. The Smolyak
sparse grid requires fewer computations than the tensor product grid
when there are a large number of uncertain parameters. Hence, the
Smolyak grid has been used for the present work.

Deterministic simulations are performed at the points selected
by this method, and the response surface of the outputs is gener-
ated. This response surface is then used as a surrogate model for
the dependence of the output on inputs. The PDFs of the response
R may be computed by sampling the space of input random vari-
ables using random sampling algorithms such as Monte Carlo or
Latin Hypercube sampling. Output response statistics, such as
PDFs, and the mean and standard deviation of the outputs, may
then be readily computed [15].

The gPC-based UQ analysis also provides other useful informa-
tion such as Sobol’s indices [26]. Sobol’s indices indicate the sensi-
tivity of output parameters to the various uncertain input
parameters; such information is valuable in identifying critical in-
put parameters. The sensitivity information obtained from the So-
bol indices from a coarse UQ analysis may be used to exclude some
of the parameters which do not affect the outputs significantly. The
subsequent refined UQ analysis can then be performed with fewer
uncertain variables, thereby reducing the computational effort sig-
nificantly. In the present study, the open source UQ and optimiza-
tion toolkit, DAKOTA (Design Analysis Kit for Optimization and
Terascale Applications) [27], is used for performing the UQ analysis
as well as the corresponding optimization.

3.2. Optimization under uncertainty

Optimization under uncertainty (OUU) refers to probabilistic
optimization, which involves optimization of a design by taking
into consideration the uncertainties in inputs and the correspond-
ing output response statistics. The optimization toolkit DAKOTA
used in the present study consists of various OUU formulations,
as described in detail by Eldred et al. [16]. In this work, the nested
approach is used for the probabilistic optimization in which the UQ
performed in the inner loop is nested within an outer optimization
loop [18]. DAKOTA consists of various gradient and non-gradient
based optimization algorithms; we choose the gradient-based
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Fletcher–Reeves conjugate gradient method for unconstrained
optimization, and the method of feasible directions for constrained
optimization. These tools are available in the CONMIN library [28]
of the DAKOTA package.

The nested OUU approach employed in the present work is
shown schematically in Fig. 2. The initial guesses for the various
design variables are provided by the user. Starting with these val-
ues, the gPC-based method described earlier is used to perform the
complete UQ analysis in the inner loop for the specified uncertain-
ties in the input parameters. The uncertain design variables gener-
ated from the outer optimization loop are mapped into the inner
UQ loop as required, using nested model controls available in DA-
KOTA [14]. The output response metrics from the UQ loop are used
to evaluate the statistics of the objective function such as the mean
and standard deviation. These output statistics are then passed on
to the optimizer in the outer loop. The optimizer verifies if the
objective function is maximized (minimized), in addition to satis-
fying the various constraints that are imposed, such as those to re-
strict the standard deviation in an output. If the convergence
criteria are not met, i.e., if a constraint is violated, or if the objective
function is not at its maximum (or minimum), a new set of design
variables is selected and the whole procedure is repeated. Thus, at
convergence, the set of design variables that optimizes the objec-
tive function and simultaneously satisfies the specified constraints
is obtained [15].

For performing probabilistic optimization effectively, the entire
process involved in the nested loops as described above must be

automated. This is achieved by using DPREPRO, the built-in pre-
processor available in DAKOTA [27]. A simple Python script is writ-
ten to automate the entire process shown in Fig. 2. The geometry is
parameterized for meshing, and the journal features of the mesh-
ing package CUBIT [21] are utilized for generating meshes at the
Smolyak collocation points. Once the computational model is
parameterized, actual values of the parameters for individual eval-
uations are obtained using DPREPRO with little or no manual inter-
vention. The governing equations are solved using the commercial
CFD package FLUENT [22]. To increase computational efficiency,
the parallel CFD capabilities of FLUENT are employed. The various
inner loop UQ evaluations at the Smolyak collocation points are
also performed in parallel to reduce the overall computational
time. The outputs from the FLUENT evaluations are generated in
the format required by DAKOTA by the use of suitable user-defined
functions. After the first outer-loop iteration, the results are passed
back to the optimizer, which then decides the next set of design
variables. The process is repeated until the convergence criterion
and the constraints are satisfied. The OUU process described here
has been validated for a simple heater block design and used for
pin–fin heat sink optimization by Bodla et al. [15].

With the available computational resources and with the use of
parallelized CFD solvers, each simulation (one complete inner loop
evaluation) required approximately 90 min of real time for the
unit-cell model and about 45 min of real time for the porous-med-
ium model. The simulations were performed using 4 Intel E5410
processors in parallel. The Smolyak grid determines the number
of inner loop simulations required for each outer loop set of design
variables. A sparse grid of level 1 was used for the inner uncer-
tainty loop for the probabilistic optimization, which resulted in 7
inner loop evaluations for 3 uncertain variables. The computational
time can be reduced by first performing a deterministic optimiza-
tion and then using the optimized values obtained as initial guess
values for the probabilistic optimization. The optimization under
uncertainty is first carried out for the unit-cell model and then re-
peated for the porous-medium model.

4. Results and discussion

We now present results for OUU of manifold microchannel heat
sinks obtained via the unit-cell and the porous-medium models,
respectively. The optimal designs obtained through deterministic
and probabilistic optimizations, performed using the unit-cell

Fig. 2. OUU approach employed in the present work, adapted from [15].

Fig. 3. Mesh-independence study, performed for an overall inlet mass flow rate of 0.5 g/s: (a) unit-cell model with channel dimensions Wc = 80 lm, Dc = 200 lm,
Dm = 300 lm, Lout = 120 lm, r = 0.5, and L = 160 lm, and (b) porous-medium model with channel dimensions Wc = 80 lm, Dc = 200 lm, Dm = 300 lm, Lout = 72 lm, r = 4.0, and
L = 1000 lm. The optimum mesh size for which the pressure drop matches to within 0.3% of the value with the finest mesh size considered is highlighted.
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model, are compared. Further, results of probabilistic optimization,
obtained using the porous-medium model, are discussed.

4.1. Verification and validation

Before performing the optimization, the numerical models are
first verified by comparing against experimental results performed
in the literature on geometrically-similar heat sinks. A mesh-inde-
pendence study is also performed prior to parameterizing the
model for use in the automated OUU study.

4.1.1. Unit-cell model
For assessing mesh independence of the unit-cell model, the

average pressure difference between the inlet and outlet ports is
computed and compared for different grid sizes for a test case.
The meshing is performed in CUBIT [22] employing the tetmesh
scheme. Also, for lowering the overall mesh count, a graded mesh
with a gradually increasing mesh size ratio, finer at the solid–fluid
interface and coarser towards the bulk volume, is employed. The

mesh size ratio is defined as the ratio of the cell size furthest from
the heated boundary wall to that of the cell nearest to the bound-
ary wall. By this means, the level of mesh refinement for which the
percentage error with respect to the finest grid size falls below an
acceptable value is selected as the optimum mesh size for all the
subsequent evaluations. The results of the mesh independence
study for the unit-cell model are shown in Fig. 3(a), performed
for an MMC heat sink with parameters, Wc = 80 lm, Dc = 200 lm,
Dm = 300 lm, Lout = 120 lm, r = 0.5, at a fixed inlet mass flow rate
of 0.5 g/s. For this case, a mesh size of 655,360 (40 � 64 � 256)
cells, corresponding to a mesh size ratio of 6.25, is observed to re-
sult in a pressure drop value which is within 0.3% of that obtained
employing the finest grid size, consisting of about triple the num-
ber of mesh elements. Hence, results obtained via this mesh size
may be deemed mesh-independent and this mesh is used for the
results presented in this work.

To characterize flow and heat transfer phenomena and to vali-
date the unit-cell model, simulations are first performed for fixed
geometric parameters. Fluid is pumped through the inlet manifold

Fig. 4. Velocity vectors and temperature contours for channel dimensions Wc = 40 lm, Dc = 200 lm, Dm = 500 lm, Lin = 60 lm, Lout = 120 lm: (a) Velocity vectors at center
plane of microchannel (plane shown in red dashed lines in the inset) for overall inlet mass flow rate = 0.5 g/s; (b) Temperature contours at center plane of microchannel for
overall inlet mass flow rate of 0.5 g/s; and (c) Temperature contours at center plane of microchannel for overall inlet mass flow rate of 5.0 g/s. Velocity values are in m/s and
temperature values are in Kelvin.

98 S. Sarangi et al. / International Journal of Heat and Mass Transfer 69 (2014) 92–105



of an MMC heat sink with fixed dimensions at varying mass flow
rates, and a heat flux of 75 W/cm2 is applied to the bottom surface.
Fig. 4(a) shows the velocity vectors obtained at the center plane of
microchannel. As the fluid enters the microchannel, due to the sud-
den contraction, it accelerates rapidly. The fluid turns through 90�
and travels through the channel. At the end of the manifold, the
fluid again turns through 90� and exits via the outlet. Fig. 4(b)
and (c) show the thermal contours at the center plane for two dif-
ferent inlet mass flow rates of 0.5 g/s and 5.0 g/s. It is observed that
the maximum cooling effect is seen at the channel inlet region,
where the thermal boundary layer is thinnest. Fig. 4(c) also shows
the enhanced heat transfer obtained at higher flow rates.

In order to validate the numerical procedure, the heat transfer
coefficient for various flow rates is compared with experimental
results from Kermani [9]. The heat transfer coefficient is calculated
as [9]:

h ¼ q00w
Tw � 0:5ðTin þ ToutÞ

ð14Þ

Fig. 5 shows the heat transfer coefficient values as a function of the
flow rate, for the case of a channel with an aspect ratio (Wc/Dc) of
0.1. It may be observed that as the flow rate of the coolant increases,
the heat transfer coefficient increases as expected. Further, the re-
sults from the present computations are found to be in close agree-
ment with the experimental results of Kermani [9], within limits of
the experimental uncertainties reported. This validates our numer-
ical unit-cell model.

Having verified and validated the numerical model, simulations
are performed to observe the effects of varying geometric parame-
ters. For all subsequent simulations, fluid is pumped through the
inlet manifold at an overall mass flow rate of 0.5 g/s [9], and a heat
flux of 100 W/cm2 [14] is applied on the bottom wall, unless other-
wise mentioned.

4.1.2. Porous-medium model
A mesh-independence study, similar to that for the unit-cell

model, is also performed for the porous-medium model. For the in-
let and outlet fluid volumes, a graded mesh, made finer near the
solid–fluid and porous-fluid boundary interface walls and coarser
away from these boundaries, is used, similar to the unit-cell model.
The comparatively simple microchannel porous medium volume is
meshed with coarse grids. A manifold length of 1000 lm (equal to

the heat sink size in the transverse direction) and a coolant flow
rate of 0.5 g/s is considered. Fig. 3(b) shows the results obtained
from the mesh-independence study. The computed inlet-to-outlet
pressure drop with a mesh size of 309,000 cells, corresponding to a
mesh size ratio of 6.1, was found to be within 0.3% of that obtained
employing the finest mesh size, consisting of approximately
1,600,000 cells. For all the subsequent simulations, a mesh size
of approximately 309,000 cells is used. For the unit-cell model, this
manifold length of 1000 lm corresponds to 25 microchannels of
width Wc = 20 lm each, with a mesh size of 655,360 cells per
microchannel unit cell. The porous-medium model not only re-
duces the required mesh size by half, but also represents the full
array of microchannels, unlike the single microchannels consid-
ered in the unit-cell model.

Numerical computations with the porous-medium model are
performed for same values of coolant flow rates and heat fluxes
as in the case of the unit-cell model, to facilitate a one-to-one com-
parison of the models. Table 1 shows the pressure drop obtained
with the unit-cell and porous-medium models, for different inlet
flow rates and a constant channel width of 20 lm. Similarly,
Table 2(a) shows a comparison of pressure drops obtained by these
models, computed for a variety of microchannel widths at a con-
stant inlet mass flow rate of 0.5 g/s. As may be noted from Tables
1 and 2(a), the results obtained via the porous-medium model
are within 8% of those obtained via the detailed unit-cell model.
Nusselt number values at an imposed heat flux of 100 W/cm2 are
also computed and compared. Table 2(b) shows the variation of
the average Nusselt number Nu with width of the microchannel
for the porous-medium model, computed at a constant mass flow
rate of 0.5 g/s. The average Nusselt number values match the re-
sults from the unit-cell model to within 6%. This further validates
the porous-medium model. It may be mentioned here that the por-
ous-medium model is based upon assumed values for porosity,
permeability as well as interstitial heat transfer coefficient, repre-
sentative of regular microchannels, wherein the flow enters nor-
mal to the cross-section of the microchannel and travels along its
length. However, in MMC heat sinks, the flow enters in a direction
normal to the top of the microchannel, undergoes a 90-degree turn
at the inlet, travels through the length of the microchannel, again
undergoes a 90-degree turn, and then exits through the manifold
outlet. Due to this complex flow path which is not accounted for
in the inputs to the model, we see a slight discrepancy in the out-
put hydrodynamic and thermal performance of the porous-med-
ium model. Further, the bottom solid substrate which is a part of
the unit-cell model, is not included in the porous-medium model
in order to reduce complexity. This also contributes to the discrep-
ancy in thermal performance results, since any conduction heat
loss through the bottom substrate has been neglected. However,
since the variation in outputs obtained from the porous-medium
model are within 8% of those obtained from the unit-cell model,
these differences in model conditions are neglected in the rest of
this analysis.

Fig. 5. Heat transfer coefficient as a function of flow rate for a channel aspect
ratio = 0.1. Also shown are experimental results along with reported uncertainties
from Kermani [9].

Table 1
Effect of mass flow rate and comparison of hydrodynamic performance of MMC heat
sink, as predicted by the unit-cell and porous-medium models. The present case
corresponds to Wc = 20 lm, Dc = 200 lm, Dm = 500 lm, Lin = 60 lm, and
Lout = 120 lm.

Mass flow rate
(g/s)

DP (Pa) unit-cell
model

DP (Pa) porous-
medium model

% Difference
(±)

0.5 352.7 331.1 6.1
1.0 693.5 675.3 2.6
1.5 1041.3 1032.6 0.8
2.0 1390.6 1403.1 0.9
2.5 1741.6 1786.7 2.6
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After validating and verifying both models, the unit-cell model
is employed for assessing the effect of various input parameters on
friction factor and Nusselt number. The model is then employed for
uncertainty quantification and optimization. Optimization results
obtained for the probabilistic optimization using the porous-med-
ium model are also reported and compared with those from the
unit-cell model in Section 4.5, so as to demonstrate the utility of
the approach for performing a system-level optimization, as
against the single unit cell discussed earlier.

4.2. Effect of parameters

As a first step, the effect of microchannel width and depth and
manifold depth on the outputs is assessed. Each input geometric
parameter is individually varied and the outputs – the hydrody-
namic and thermal performance of the heat sink – are studied.
The non-dimensional Nusselt number, Reynolds number and fric-
tion factor for the different cases are defined as:

Nu ¼ hDh

kf

Re ¼ uDh

t

f ¼ DPðDh=LÞ
0:5qu2

ð15Þ

where u is the velocity at the inlet of the microchannel, Dh the
hydraulic diameter of the microchannel, and L is the total length
of flow through the channel. The hydraulic diameter of the micro-
channel is calculated as [14]:

Dh ¼
2DcWc

ðDc þWcÞ
ð16Þ

The effect of the aspect ratio of the microchannel (Wc/Dc) and
the manifold depth (Dm) on the non-dimensional outputs is
shown in Fig. 6, computed for a fixed inlet coolant mass flow
rate of 0.5 g/s. It may be observed that as the channel aspect
ratio increases, both Nu and fRe increase. This may be attributed
to the increase in the hydraulic diameter of the channel, which
results in a higher Reynolds number. An increase in the manifold
depth is seen to increase the value of fRe due to increased
pressure drop. However, as may be observed from Fig. 6(a), a
change in the manifold depth does not have a significant effect
on Nu. This may be attributed to the definition of the heat trans-
fer coefficient which uses the base area of the heat sink, and is
therefore not significantly affected by the manifold depth. Hence,
a smaller value of Dm would lead to a better overall perfor-
mance. For the optimization procedure in this study, Dm is fixed
at a small value of 100 lm, and is not included as an optimiza-
tion parameter.

4.3. Response surfaces

Representative response surfaces capturing the effects of the in-
put parameters on the output parameters of interest – pressure

drop and heat transfer coefficient – are shown in Fig. 7(a) and
(b), respectively, for a fixed overall inlet mass flow rate of 0.5 g/s.
With all other parameters remaining constant, a fixed overall inlet
mass flow rate results in fixed flow speed at the inlet of each
microchannel, independent of microchannel, for a base heat sink
of fixed dimensions. The influence of individual input parameters,
Wc and r, computed at the mean values of the fixed input parame-
ters, is also shown in the insets of Fig. 7. As expected, the pressure
drop decreases as the microchannel width increases due to the
lower flow resistance. Similarly, as the manifold ratio (r = Lin/Lout)
increases at a constant flow speed for each microchannel, DP in-
creases due to the increased inlet area, leading to an increased con-
traction area ratio at the inlet. Similarly, the heat transfer

Table 2
Effect of channel width and comparison of (a) hydrodynamic and (b) thermal performance, as predicted by the unit-cell and porous-medium models. The present case
corresponds to a fixed mass flow rate of 0.5 g/s.

(a) (b)

Channel
width Wc (lm)

DP (Pa) unit-cell
model

DP (Pa) porous-medium
model

Difference (±%) Nu unit-cell
model

Nu porous-medium
model

Difference (±%)

20 341.3 315.2 7.6 2.10 2.11 0.4
40 106.1 98.4 7.2 3.87 3.79 2.1
60 58.7 55.3 5.8 5.32 5.05 5.0
80 41.1 39.9 2.9 6.39 6.02 5.8

Fig. 6. Effect of the geometric parameters on outputs: (a) Nu, and (b) fRe, computed
for the case of fixed coolant mass flow rate of 0.5 g/s.
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coefficient h decreases as the microchannel width increases. How-
ever, it is observed to have an optimum value relative to the man-
ifold ratio r which may be explained as follows. As the manifold
ratio increases, the inlet length Lin increases while the manifold
length Lm decreases so as to keep the overall flow length L constant.
Hence, as the manifold ratio increases, there is an increase in mass
flow rate at the inlet, leading to an increase in h. However, the de-
crease in length of manifold Lm also leads to a reduction in area
available for heat transfer, thereby leading to a reduction in the
heat transfer coefficient. Owing to these competing factors, the

heat transfer coefficient displays an optimum value relative to
the manifold ratio, which for this case was found to be at approx-
imately r = 3.

4.4. Uncertainty quantification results

The first step in the solution procedure is to perform uncer-
tainty quantification to study the variation of the outputs relative
to uncertainties in the various input parameters. For the purpose
of demonstration, without loss of generality, geometric parameters

Fig. 7. Representative response surfaces of (a) pressure drop, and (b) heat transfer coefficient, shown as a function of variation in channel width and manifold ratio. The insets
show variation of the outputs relative to variation in each input parameter, obtained by holding the other input parameter at its mean value as indicated.
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such as channel width Wc, channel depth Dc, manifold depth Dm,
manifold inlet length Lin and manifold outlet length Lout are as-
sumed to be uniformly distributed random variables. The wide
range of variation considered in the input parameters is summa-
rized in Table 3. The uncertainty quantification is performed using
the Smolyak sparse grid of second order. For this case of 5 uni-
formly distributed uncertain variables, 71 evaluations are neces-
sary for constructing the response surface. All the simulations are

performed at an overall inlet mass flow rate of 0.5 g/s and temper-
ature Tin = 300 K. Once the explicit gPC representation of the re-
sponse surface is obtained, 10,000 samples are randomly drawn
to calculate the output response characteristics. The PDFs of the
heat transfer coefficient and pressure drop obtained for the range
of uncertain inputs considered are shown in Fig. 8(a) and (b),
respectively. The corresponding mean and standard deviation of
the outputs are computed and compared against the deterministic
values obtained by fixing the uncertain variables at their mean val-
ues. The results of both the probabilistic and deterministic simula-
tions are reported in Table 3. For the probabilistic runs, the mean
values are reported along with the standard deviation r.

Due to the wide range of variation of inputs under consider-
ation, we obtain a widely spread-out PDF for the variation in out-
puts. Also, there is a significant difference between the mean
values of pressure drop obtained from the UQ study and that from
the deterministic study obtained by fixing the uncertain variables
at their mean values. We also note the large observed standard
deviations of the outputs, h and DP. This demonstrates the impor-
tance of using a probabilistic approach for design and optimization
of MMC heat sinks.

Apart from UQ, a sensitivity analysis is also performed employ-
ing DAKOTA. In order to assess the sensitivity of outputs to various
inputs under consideration, uncertainty quantification analysis is
performed by varying a single input parameter for which the sen-
sitivity is being assessed, while keeping all the other inputs fixed at
their mean values. The inputs relative to which a higher standard
deviation is obtained in the outputs are identified as the more sen-
sitive variables. The standard deviations of the outputs, heat trans-
fer coefficient and pressure drop, obtained as the various input
parameters are varied are listed in Table 4. Of all the variables con-
sidered, the outputs are most sensitive to variations in the width of
the microchannel Wc and the length of the inlet manifold Lin. This
information is valuable for design of experiments [16], since the
primitive UQ results can be used to obtain an estimate of the most
sensitive parameters, and the uncertainties in these parameters
can then be resolved by a finer UQ analysis. Also, the insensitive
parameters may be assumed as deterministic, thereby enhancing
computational efficiency [16].

4.5. Optimization

The results of the deterministic and probabilistic optimization
obtained by employing the unit-cell model are presented here,
along with results of probabilistic optimization from the system-
level porous-medium model.

A conventional, deterministic optimization study is first per-
formed to arrive at the optimum geometry without considering

Table 3
Uncertainty quantification for MMC heat sinks.

Parameter Deterministic
approach

Probabilistic approach, uniform
random distribution of inputs

Inputs (lm)
Dc 200 Minimum = 100

Maximum = 300

Wc 260 Minimum = 20
Maximum = 500

Dm 260 Minimum = 100
Maximum = 300

Lin 60 Minimum = 20
Maximum = 200

Lout 120 Minimum = 20
Maximum = 200

Outputs
h (W/m2 K) 29120 Mean = 30120

r = 10703

DP (Pa) 32 Mean = 56
r = 27

Fig. 8. PDF of (a) heat transfer coefficient, and (b) pressure drop for uniformly
distributed input parameters in Table 3.

Table 4
Sensitivity analysis for MMC heat sinks.

Variable
input (lm)

Range of variation
in input

Std. deviation
in h (W/m2 K)

Std. deviation
in DP (Pa)

Wc Uniform random, 419 23.7
min. = 40
max. = 80

Lin Uniform random, 5325 2.7
min. = 50
max. = 80

Dc Uniform random, 234 1.2
min. = 180
max. = 220

Lout Uniform random, 35 2.7
min. = 100
max. = 140
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the effect of uncertainties. In order to validate the optimization
process, a simple case is considered. For this case, a single-objec-
tive optimization is performed, so as to find the optimum width
for maximizing heat transfer coefficient at an overall inlet mass
flow rate of 0.5 g/s. The mass flow rate at the inlet of the unit cell
is calculated from the overall mass flow rate by considering the
number of manifolds and microchannels appropriately. The micro-
channel width Wc is allowed to take values between 10 lm and
100 lm for the optimization. Starting with an initial guess value
of Wc = 80 lm, the optimum width of Wc = 10 lm is predicted
within about 7 iterations. As expected, the minimum microchannel
width results in the maximum heat transfer coefficient and hence,
the optimization process is validated.

As the mass flow rate at the inlet is increased, although the
thermal performance improves, the pressure drop also increases
significantly. Hence, a multi-objective optimization is performed.
The following objective function that takes into account the effect
of both h and DP with appropriate scaling is considered:

OF ¼ w1ðh=hmaxÞ �w2ðDP=DPmaxÞ ð17Þ

Here hmax and DPmax are the maximum values of heat transfer coef-
ficient and pressure drop, respectively, for the range of variation of
inputs considered. This scaling of the outputs ensures that both
thermal and flow characteristics are of the same order of magni-
tude, for comparison. Weight functions w1 and w2 sum up to a value
of 1, with their individual values depending on the relative impor-
tance ascribed to the two performance metrics. Thus, for an as-
sumed set of weight functions, maximizing this objective function
ensures an optimized geometry with maximum heat transfer coef-
ficient and minimum pressure drop.

The geometric parameters of the manifold are taken into ac-
count by a non-dimensional manifold ratio r given by:

r ¼ Lin=Lout

Lm ¼ L� Lin � Lout
ð18Þ

In this study, it may be noted that the length of the outlet manifold is
fixed at Lout = 72 lm, while the length of the inlet manifold Lin is com-
puted from Eq. (18) for various values of r. Also, the total flow length is
fixed at L = 400 lm, and the length of the manifold is computed from
Eq. (18), as indicated. The input geometric parameters considered for
the optimization are the microchannel width Wc and the manifold ra-
tio r. Beginning with initial guess values, the optimizer iteratively var-
ies the values of these variables until convergence is achieved. The
optimization is performed for two different input conditions,
_m = 0.5 g/s and _m = 1.5 g/s, and for different weighting functions,

w1 = 0.5, w2 = 0.5 and w1 = 0.7 and w2 = 0.3, respectively.
Besides this deterministic optimization, we also perform a

probabilistic optimization using the nested OUU approach de-
scribed previously. The OUU is performed to predict the design
variables that maximize the objective function, taking into account
uncertainties in the geometric parameters, while also restricting
the standard deviation of the objective function to a prescribed va-
lue, thus resulting in a robust design. In this case, the microchannel
width Wc and manifold ratio r are considered as design variables
with specified uncertainties. Thus, for each set of values of Wc

and r obtained from the optimizer, the uncertainties are imposed
in the inner UQ loop. This is achieved by appropriate mapping of
the outer loop variables into the inner loop [28]. The depth of
the microchannel Dc is also considered as an uncertain variable
with specified uncertainty. From Eq. (18), the uncertainty in man-
ifold ratio translates to uncertainties in the manifold lengths Lin

and Lm. Table 5 lists the values of the normal uncertain variables
with the standard deviation considered for this analysis. It may
be noted that the uncertainties considered in the present study
are based on approximate tolerances specified by the manufactur-

ers. The output – the scaled heat transfer coefficient ratio – is sub-
jected to a constraint, bounding its standard deviation. The OUU
problem statement is formally defined as:

Table 5
Input parameters for deterministic and probabilistic optimization of an MMC heat
sink: Wc,det and rdet are the mean values of the variables obtained from each iteration
of the outer optimization loop.

Parameter Deterministic optimization Probabilistic optimization

Lout (lm) 72 72

Dc (lm) 200 Mean = 200
r = 10

Wc (lm) Minimum = 10 Minimum = 10
Maximum = 100

Maximum = 100 Mean = Wc,det

r = 10

r Minimum = 0.5 Minimum = 0.5
Maximum = 4

Maximum = 4 Mean = rdet

r = 0.1

Lin (lm) Minimum = 36 Minimum = 36
Maximum = 288 Maximum = 288

r = 7.2

Lm (lm) Minimum = 40 Minimum = 40
Maximum = 292 Maximum = 292

r = 7.2

Fig. 9. Convergence history of (a) deterministic optimization for w1 = w2 = 0.5, and
(b) probabilistic optimization for w1 = 0.7 and w2 = 0.3.
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Maximize OF ¼ w1ðh=hmaxÞ �w2ðDP=DPmaxÞ
such that rðh=hmaxÞ 6 0:02; _m ¼ 0:5 g=s

rðh=hmaxÞ 6 0:035; _m ¼ 1:5 g=s
ð19Þ

Fig. 9 shows the convergence history of the optimization pro-
cedure for two representative cases with Fig. 9(a) corresponding
to deterministic optimization with _m = 1.5 g/s and w1 = w2 = 0.5,
and Fig. 9(b) to probabilistic optimization with _m = 1.5 g/s,
w1 = 0.7 and w2 = 0.3. For the case of probabilistic optimization,
the variation in standard deviation of the output (h/hmax) is also
shown. For the different input conditions and weighting func-
tions considered in this work, the corresponding converged val-
ues of the design parameters are shown in Table 6 for
deterministic as well as probabilistic optimization cases, with
the first column describing the condition for which the optimiza-
tion is performed, i.e., the input mass flow rate, the objective
function weights and the values of hmax and DPmax. It may be ob-
served from Table 6 that for both deterministic and probabilistic
optimization, as the value of w1 is increased, the value of opti-
mum width decreases and that of manifold ratio increases. This
is due to the fact that a higher value of w1 means that the
objective function is dominated by the heat transfer coefficient,
the value of which increases as the width decreases and manifold
ratio increases. Also, for the case of probabilistic optimization,
the imposed constraint restricting the standard deviation of the
scaled output results in more conservative values for the geomet-
ric parameters, as also observed by Bodla et al. [15] for the case of
pin–fin heat sinks. Hence, the use of this approach allows us to

quantify precisely how conservative the design needs to be in
order to account for the uncertainties. Furthermore, owing to
the conservative nature of the design, the output objective func-
tion is lower for the probabilistic case than that obtained with
the deterministic counterpart. At the same time, by accounting
for uncertainties as part of the optimization procedure, the
probabilistic design ensures a more predictable and robust
design. The convergence history shown in Fig. 9(a) and (b) may
also be used to gain a first estimate of the expected value of
the output when values for the design variables other than the
final converged value are chosen. Such history data may also be
used to assess whether a tighter or looser convergence criterion
may be employed for obtaining better converged results
quickly [15].

System-level optimization under uncertainty is demonstrated
with an OUU study employing the porous-medium model. The
analysis considers the same set of input parameter variations and
constraints and an inlet mass flow rate of 0.5 g/s as used above
with the unit-cell model. The results obtained from the porous-
medium model are shown in Table 7 along with those from the
unit-cell model. It may be observed that the optimum microchan-
nel width and manifold inlet length obtained with both models are
in close agreement with each other. This further validates the por-
ous-medium model and demonstrates its utility for performing a
system-level optimization analysis. Such a model may be used
for analysis of complex, realistic cases such as those involving
non-uniform heat fluxes. As described in Section 4.1, the optimum
mesh size required for the porous-medium model for the entire

Table 6
Comparison of deterministic and probabilistic optimization results for different mass flow rates and weighing functions.

Condition Parameter Deterministic optimization Probabilistic optimization (mean values)

(a) _m ¼ 0:5 g=s
_m = 0.5 g/s

hmax = 120,000 W/m2 K
DPmax = 3000 Pa
w1 = 0.5
w2 = 0.5
OF = 0.5(h/hmax) � 0.5(DP/DPmax)

Inputs
Wc (lm) 33.3 26.5
r 3.25 2.5
Lin (lm) 234 180
Lm (lm) 94 148
Outputs
h (W/m2K) 92,185 85,766
DP (Pa) 382 532
OF 0.3204 0.2686

_m = 0.5 g/s
hmax = 120,000 W/m2 K
DPmax = 3000 Pa
w1 = 0.7
w2 = 0.3
OF = 0.7(h/hmax) � 0.3(DP/DPmax)

Inputs
Wc (lm) 27.6 24.2
r 3.4 2.9
Lin (lm) 245 209
Lm (lm) 83 119
Outputs
h (W/m2K) 95,940 93,257
DP (Pa) 520 689
OF 0.5076 0.475

(b) _m ¼ 1:5 g=s
_m = 1.5 g/s

hmax = 180,000 W/m2 K
DPmax = 10,000 Pa
w1 = 0.5
w2 = 0.5
OF = 0.5(h/hmax) � 0.5(DP/DPmax)

Inputs
Wc (lm) 27 25.6
r 2.47 1.8
Lin (lm) 178 115.2
Lm (lm) 150 212.8
Outputs
h (W/m2K) 148,314 123,964
DP (Pa) 1565 836
OF 0.3337 0.3025

_m = 1.5 g/s
hmax = 180,000 W/m2 K
DPmax = 10,000 Pa
w1 = 0.7
w2 = 0.3
OF = 0.7(h/hmax) � 0.3(DP/DPmax)

Inputs
Wc (lm) 22 21.3
r 2.76 2.4
Lin (lm) 199 173
Lm (lm) 129 155
Outputs
h (W/m2K) 156,832 154,511
DP (Pa) 2283 2567
OF 0.5414 0.5238
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manifold length (25 unit cells) is about half that of the unit-cell
model for a single microchannel, which results in a corresponding
reduction in computational time for the porous-medium model.

The OUU analysis in thisstudy is performed using a Smolyak sparse
grid of level 1, which results in 7 inner loop evaluations for each outer
loop evaluation, for the case of 3 uncertain variables. A complete OUU
evaluation converges in approximately 20 outer loop evaluations. A
complete optimization study in this case therefore requires 140 over-
all evaluations. Using the parallelized CFD capabilities of FLUENT, and
available computational resources, i.e., Quad-Core Intel E5410 proces-
sors, all the inner loop evaluations were run in parallel, so that each
outer loop evaluation of the unit-cell model required roughly
90 min of real time. Similarly, each outer loop evaluation employing
the porous-medium model required around 45 min. Thus, the total
time required for one complete probabilistic optimization study was
approximately 30 and 15 h for the unit-cell (single channel) and por-
ous-medium (multiple channels) models, respectively. The porous-
medium model offers a cost-effective, alternative approach that is
useful for system-level optimizations.

5. Conclusions

A 3-D numerical model for manifold microchannel (MMC) heat
sinks is developed and validated. Further, an Uncertainty Quantifica-
tion (UQ) analysis is performed to demonstrate the effect of input
uncertainties on the output parameters of interest. A cumulative
objective function is defined for considering the two outputs of inter-
est in the design of heat sinks, i.e., heat transfer coefficient and pres-
sure drop. A unit-cell geometry of the MMC heat sink is optimized
by taking into account the effect of inherent uncertainties present in
the various input parameters. A framework for performing such prob-
abilistic optimization is developed in DAKOTA, an open-source opti-
mization and uncertainty quantification toolkit. The corresponding
results obtained via the Optimization Under Uncertainty (OUU) ap-
proach are compared with those obtained with a conventional deter-
ministic counterpart, and the conservative nature of the probabilistic
design approach is quantified. Based on sensitivity information, the
critical input parameters to which the output quantities are most sen-
sitive are also identified. In addition, a cost-effective porous-medium
model for the MMC heat sinks is presented and validated, and subse-
quently used for optimization under uncertainty. This model provides
a system-level optimization of the geometry taking all the microchan-
nels in the heat sink into account, as against a single microchannel
considered in the unit-cell approach, thereby allowing the designer
to consider complex, realistic cases of non-uniformly applied heat
fluxes. A representative case is considered and the utility of the model
is demonstrated by comparing against the detailed unit-cell model.
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Comparison of OUU results obtained via the unit-cell and porous-medium models.
The predicted geometry is found to match reasonably well.

Condition Unit-cell model Porous-medium model

u = 0.03 m/s Wc (lm) Lin (lm) Wc (lm) Lin (lm)

0.7(h/hmax) + 0.3(�DP/DPmax) 24 209 30 212
0.5(h/hmax) + 0.5(�DP/DPmax) 27 180 32 184
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