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a b s t r a c t

Electromagnetic micro-transducers have been utilized in a number of distinct applications in recent
years due, in large part, to their scalability, low power consumption, self-sensing capabilities and ease of
integration with external hardware. In the present work, the highly non-linear dynamic behavior of a
new class of parametrically excited, electromagnetically actuated microcantilevers is explored.
The system is modeled using classical energy methods and its frequency response behavior is
subsequently characterized using perturbation methods and bifurcation analysis. The recovered results
provide a clear understanding of the effects of fifth-order non-linearities in a parametrically excited
microresonator, and are currently guiding experimental work on electromagnetically actuated oscillators
and microresonator arrays.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Electromagnetic micro-transducers have garnered increasing
interest in recent years due to their high scalability, low power
consumption, self-sensing capabilities and ease of integration
with on-chip hardware elements [1–5]. While such devices were
initially proposed for use in radio frequency (rf) signal filters [6],
the successful realization of Lorentz force actuation and
magnetomotive-based sensing in simple micro- and nanostruc-
tures has led to a rapid technological expansion. Today electro-
magnetically actuated (EMA) microsystems are being exploited in
a variety of applications ranging from charge detectors to micro-
and nano-positioners (see, for example [7–15]).

The present work examines the highly non-linear behavior of a
new class of parametrically excited EMA microcantilevers, which is
believed to have significant potential in a variety of applications,
including resonant mass sensing and electromechanical signal
processing. These devices, previously introduced in Refs. [16–19]
and shown in Fig. 1, consist of a single silicon microcantilever with
two current loops deposited on the resonator's surface. The reso-
nator is actuated electromagnetically using a Lorentz force, which is
generated by the interaction between an external permanent
magnet and the integrated current loop, and sensed using an

induced electromotive force (emf), which results from the move-
ment of the integrated current loop through the magnetic field.

Given that the utility of the EMA microcantilevers detailed
herein is largely limited by the predictability of their non-linear
behaviors, the work begins with the systematic modeling of the
large amplitude motions of a representative device using classical
beam theory. The resulting distributed-parameter system model is
then systematically reduced to a comparatively simpler lumped-
mass model, which is analyzed using perturbation techniques.
Plausible system behaviors believed to be useful for the stated
applications are subsequently examined, and the work concludes
with a brief review of the work's findings and a summary of
on-going and planned research. It should be noted that the results
presented herein, though developed with EMA microdevices in
mind, are amenable to a variety of parametrically excited canti-
lever systems, the analyses of which rarely, if ever, consider the
effects of non-linear parametric excitations (notable exceptions
are Refs. [20,21]).

2. Formulation of a distributed-parameter model

Given that the electromagnetically actuated microcantilevers of
interest here have been shown (in experiments) to exhibit mod-
erately large response amplitudes near parametric resonance,
the distributed-system model used to capture their dynamic
behavior must allow for large elastic deformations [16]. As such,
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the non-linear, energy-based approach introduced in Refs. [23,24]
and subsequently revisited in Ref. [25] is adopted here.

Assuming that the microbeam resonators of interest are uni-
form and have negligible rotational inertias, the specific Lagran-
gian of a given resonator can be approximated by

L ¼ 1
2 mð _u2 þ _v2Þ−1

2Dðψ ′Þ2; ð1Þ

where m and D represent the device's specific mass and flexural
stiffness, respectively (see Fig. 2). Noting this, and further assum-
ing that the neutral axis of the beam is inextensible, and thus that

ð1þ u′Þ2 þ ðv′Þ2 ¼ 1; ð2Þ

results in a governing variational equation for the system, derived
from extended Hamilton's principle, given by

δH¼ 0¼ δ

Z t2

t1

Z l

0
L þ 1

2
λ½1−ð1þ u′Þ2−ðv′Þ2�

� �
ds dt

þ
Z t2

t1

Z l

0
ðQuδuþ QvδvÞ ds dt; ð3Þ

where l and s represent the beam's total length and arc length
variable, Qu and Qv represent the planar, non-conservative forces
in the u and v directions, and λ represents a Lagrange multiplier
introduced to maintain the inextensibility constraint. Integrating
this equation by parts successively, while enforcing the kinematic
constraint relating the Euler angle ψ to the planar displacements,

tan ψ ¼ v′
1þ u′

; ð4Þ

yields the equations governing longitudinal and transverse dynamics,
as well the system's boundary conditions

Gu′¼ Aψ
∂ψ
∂u′

þ λð1þ u′Þ
� �

′¼m €u−Qu; ð5Þ

Gv′¼ Aψ
∂ψ
∂v′

þ λv′
� �

′¼m €v−Qv; ð6Þ

f−Guδu−Gvδvþ Huδu′þ Hvδv′gjl0 ¼ 0: ð7Þ
Note that here and throughout the remainder of the work, Aψ ,

Hu, and Hv are given by

Aψ ¼ ∂2L
∂t∂ _ψ

þ ∂2L
∂s∂ψ ′

−
∂L
∂ψ

; ð8Þ

Hφ ¼
∂L
∂ψ ′

∂ψ
∂φ′

; φ¼ u; v: ð9Þ

In order to decouple Eqs. (5) and (6) and ultimately obtain a
single equation of motion for the system, the Lagrange multiplier
must be extracted from Eq. (5). To facilitate this, fifth-order Taylor
series approximations1 for both u and ψ , resulting from the
kinematic and inextensibility constraints, are introduced, namely,

uðs; tÞ≈−1
2

Z s

0
ðv′Þ2 ds−1

8

Z s

0
ðv′Þ4 ds; ð10Þ

ψ ¼ v′ 1þ ðv′Þ2
6

þ 3ðv′Þ4
40

þ H:O:T :

 !
≈v′þ ðv′Þ3

6
þ 3ðv′Þ5

40
: ð11Þ

Assuming ideal cantilever boundary conditions, specifically,

uð0; tÞ ¼ 0; vð0; tÞ ¼ 0; v′ð0; tÞ ¼ 0; ð12Þ

Guðl; tÞ ¼ 0 Gvðl; tÞ ¼ 0; Hv−
Huv′
1þ u′

���
s ¼ l

¼ 0; ð13Þ

and that the longitudinal non-conservative force Qu (see Fig. 3) can
be accurately represented by a single point load applied at the
endpoint of the beam (or more accurately an infinitesimal distance
away—an idealization used here to avoid incorporating the force in
the system's boundary conditions), defined by

Qu ¼ F1ðtÞδðs−lÞ; ð14Þ
where δ represent the Dirac delta function, results in an approx-
imate Lagrange multiplier given by

λ≈−Dv′v‴−Dðv′Þ2ðv″Þ2−Dðv′Þ3v‴−1
2
m
Z s

l

∂2

∂t2

Z s

0
ðv′Þ2 ds ds

−
1
8
m
Z s

l

∂2

∂t2

Z s

0
ðv′Þ4 ds ds−1

4
mðv′Þ2

Z s

l

∂2

∂t2

Z s

0
ðv′Þ2 ds ds

Fig. 1. Representative electromagnetically-actuated microcantilever. The micro-
cantilever is comprised of two independent current loops, one for actuation and
another for sensing [22].

Fig. 2. Beam element with variable descriptions.

Fig. 3. Schematic of the beam with non-conservative force contributions.

1 The experimental results presented in Ref. [16] indicate that fifth-order non-
linearities are likely required to capture all of the experimental phenomena
witnessed to date.
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−
Z s

l
F1ðtÞδðs−lÞ ds−

1
2
ðv′Þ2

Z s

l
F1ðtÞδðs−lÞ ds

−
3
8
ðv′Þ4

Z s

l
F1ðtÞδðs−lÞ ds: ð15Þ

Substituting this value back into Eq. (6), defining the specific
mass m and the flexural stiffness D according to

m¼ ρA; D¼ EI; ð16Þ
where ρ, A, E, and I represent the device's mass density, cross-
sectional area, Modulus of Elasticity, and cross-sectional moment
of inertia, respectively, and further assuming that the transverse
non-conservative force is given by

Qv ¼ F2ðtÞδðs−lÞ−c _v; ð17Þ
where c represents the specific viscous damping coefficient,
results in a fifth-order approximation of the system's equation of
motion

ρA
∂2v
∂t2

þ c
∂v
∂t

þ EI
∂4v
∂s4

þ EI
∂2v
∂s2

� �3

þ 4EI
∂v
∂s

� �
∂2v
∂s2

� �
∂3v
∂s3

� �

þ 6EI
∂v
∂s

� �2 ∂2v
∂s2

� �3

þ 8EI
∂v
∂s

� �3 ∂2v
∂s2

� �
∂3v
∂s3

� �

þ EI
∂v
∂s

� �2 ∂4v
∂s4

� �
þ EI

∂v
∂s

� �4 ∂4v
∂s4

� �

þ 1
2
ρA

∂2v
∂s2

Z s

l

∂2

∂t2

Z s

0

∂v
∂s

� �2

ds ds

þ 1
2
ρA

∂v
∂s

Z s

0

∂2

∂t2
∂v
∂s

� �2

dsþ ∂2v
∂s2

Z s

l
F1ðtÞδðs−lÞ ds

þ ∂v
∂s

F1ðtÞδðs−lÞ þ
1
8
ρA

∂2v
∂s2

Z s

l

∂2

∂t2

Z s

0

∂v
∂s

� �4

ds ds

þ 1
8
ρA

∂v
∂s

Z s

0

∂2

∂t2
∂v
∂s

� �4

ds

þ 3
4
ρA

∂v
∂s

� �2 ∂2v
∂s2

� �Z s

l

∂2

∂t2

Z s

0

∂v
∂s

� �2

ds ds

þ 1
4
ρA

∂v
∂s

� �3 Z s

0

∂2

∂t2
∂v
∂s

� �2

ds

þ 3
2

∂v
∂s

� �2 ∂2v
∂s2

� �Z s

l
F1ðtÞδðs−lÞ ds

þ 1
2

∂v
∂s

� �3

F1ðtÞδðs−lÞ

þ 15
8

∂v
∂s

� �4 ∂2v
∂s2

� �Z s

l
F1ðtÞδðs−lÞ ds

þ 3
8

∂v
∂s

� �5

F1ðtÞδðs−lÞ

¼ F2ðtÞδðs−lÞ: ð18Þ
To reduce the number of free parameters in this equation, a

consistent scaling of the displacement and time variables is
introduced. Specifically, the vertical displacement v and the arc
length variable s are scaled by a characteristic displacement of the
system v0 (e.g. the beam's thickness or width) and undeformed
length l, respectively, according to

v̂ ¼ v
v0

; ŝ ¼ s
l
; ð19Þ

and time is scaled by a characteristic period of the system T
according to

t̂ ¼ t
T
; ð20Þ

where

T ¼
ffiffiffiffiffiffiffiffiffi
ρAl4

EI

s
: ð21Þ

Introducing a new non-dimensional damping coefficient ĉ , defined
by

ĉ ¼ cT
ρA

; ð22Þ

and invoking the Dirac delta identity

δðaxÞ ¼ 1
a
δðxÞ; a40 ð23Þ

reveals a scaled, distributed-parameter model for the system
given by

∂2v̂

∂t̂
2 þ ĉ

∂v̂
∂t̂

þ ∂4v̂

∂ŝ4
þ v20

l2
∂2v̂

∂ŝ2

� �3

þ 4
v20
l2

∂v̂
∂ŝ

� �
∂2v̂

∂ŝ2

� �
∂3v̂

∂ŝ3

� �

þ v20
l2

∂v̂
∂ŝ

� �2 ∂4v̂

∂ŝ4

� �
þ v20
2l2

∂v̂
∂ŝ

Z ŝ

0

∂2

∂t̂
2

∂v̂
∂ŝ

� �2

dŝ

þ v20
2l2

∂2v̂

∂ŝ2

Z ŝ

1

∂2

∂t̂
2

Z ŝ

0

∂v̂
∂ŝ

� �2

dŝ dŝ þ l2

EI
∂2v̂

∂ŝ2

Z ŝ

1
F1ðtÞδ ŝ−1


 �
dŝ

þ l2

EI
∂v̂
∂ŝ

� �
F1ðtÞδ ŝ−1


 �þ 6
v40
l4

∂v̂
∂ŝ

� �2 ∂2v̂

∂ŝ2

� �3

þ 8
v40
l4

∂v̂
∂ŝ

� �3 ∂2v̂

∂ŝ2

� �
∂3v̂

∂ŝ3

� �
þ v40

l4
∂v̂
∂ŝ

� �4 ∂4v̂

∂ŝ4

� �

þ v40
8l4

∂2v̂

∂ŝ2

Z ŝ

1

∂2

∂t̂
2

Z ŝ

0

∂v̂
∂ŝ

� �4

dŝ dŝ þ v40
8l4

∂v̂
∂ŝ

Z ŝ

0

∂2

∂t̂
2

∂v̂
∂ŝ

� �4

dŝ

þ v40
4l4

∂v̂
∂ŝ

� �3 Z ŝ

0

∂2

∂t̂
2

∂v̂
∂ŝ

� �2

dŝ

þ 3v40
4l4

∂v̂
∂ŝ

� �2 ∂2v̂

∂ŝ2

� �Z ŝ

1

∂2

∂t̂
2

Z ŝ

0

∂v̂
∂ŝ

� �2

dŝ dŝ

þ 3v20
2EI

∂v̂
∂ŝ

� �2 ∂2v̂

∂ŝ2

� �Z ŝ

1
F1ðtÞδðŝ−1Þdŝ

þ v20
2EI

∂v̂
∂ŝ

� �3

F1ðtÞδðŝ−1Þ

þ 15v40
8EIl2

∂v̂
∂ŝ

� �4 ∂2v̂

∂ŝ2

� �Z ŝ

1
F1ðtÞδðŝ−1Þ dŝ

þ 3v40
8EIl2

∂v̂
∂ŝ

� �5

F1ðtÞδðŝ−1Þ

¼ F2ðtÞl3
v0EI

δðŝ−1Þ: ð24Þ

Though, theoretically, the behavior of the system can be
directly recovered from this equation of motion, the practicality
of this approach is questionable. As such, the model presented in
Eq. (24) is used to develop a consistent lumped-mass model,
which is amenable to analysis, as described in the following
section.

3. Formulation of a lumped-mass model

To facilitate non-linear analysis and ultimately predictive
design, the governing partial differential equation presented in
Eq. (24) can be reduced to a system of non-linear ordinary
differential equations through modal projection. Specifically, the
dynamic variable v̂ðŝ; t̂ Þ can be expanded using the system's mode
shapes ϕiðŝÞ according to

v̂ðŝ; t̂ Þ ¼ ∑
∞

i ¼ 1
wiðt̂ ÞϕiðŝÞ: ð25Þ
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Due to the dominance of first mode behavior in the experimental
studies completed to date, a truncated, single-mode expansion
proves sufficient for analysis, namely,

v̂ðŝ; t̂ Þ ¼wðt̂ ÞϕðŝÞ: ð26Þ
Given that the system's non-conservative forces and non-

linearities are subsequently assumed to be ‘small’, the first
assumed mode can be recovered using the linear differential
equation

ϕiv−l4ϕ¼ 0; ð27Þ

with boundary conditions

ϕð0Þ ¼ 0; ϕ′ð0Þ ¼ 0; ϕ″ð1Þ ¼ 0; ϕ‴ð1Þ ¼ 0: ð28Þ

Though additional mode shapes could be included in the above
expansion to increase the accuracy of the lumped-mass model, the
slight improvement that results is largely negated by the added
complexity of the analysis.

Prior to the final derivation of the EMA microbeam's lumped-
mass model, it also proves convenient to expand the system's
applied non-conservative forces in terms of physical parameters.
As these forces (apart from a small contribution arising from
viscous damping) result from the interaction between an external
permanent magnet and a current loop integrated into the
microbeam, they can be approximated using the Lorentz force
model

F
!ðtÞ ¼ iðtÞ

Z
d l
!� B

!
; ð29Þ

where i(t), d l
!

, and B
!

represent the current passing through the
integrated loop, the length of a differential vector element of the
loop, and the magnetic field, respectively. Assuming a two
harmonic AC drive current with an additional DC component
(which could be used for frequency tuning), the non-
conservative force model can be represented as

F
!ðtÞ ¼ F1ðtÞiþ F2ðtÞj

¼ ðiDC þ i1 cos ωt þ i2 cos 2ωtÞgBðcos αiþ sin αjÞ; ð30Þ
where g represents the width of current loop and α specifies the
orientation of the magnetic field (assumed to be uniform and
unidirectional) with respect to a vertical reference (measured in
the counterclockwise direction). Introducing this model, as well as
the state variable expansion detailed above, into Eq. (24) and
projecting the resulting equation back onto the first mode through
the use of an inner product operator results in the final, lumped-
mass equation of motion for the system

z″þ 2εζz′þ ð1þ ελ1 cos Ωτ þ εγ1 cos 2ΩτÞz
þ ðεχ3 þ ελ3 cos Ωτ þ εγ3 cos 2ΩτÞz3 þ εβðz′2z þ z2z″Þ
þ ðεχ5 þ ελ5 cos Ωτ þ εγ5 cos 2ΩτÞz5 þ εν1z3z′2 þ εν2z4z″
¼ εη0 þ εη1 cos Ωτ þ εη2 cos 2Ωτ: ð31Þ

System parameters are defined in Appendix A.

4. Derivation of the system's averaged equations

Though the equation of motion detailed in Eq. (31) is similar in
form to those previously considered in Refs. [21,26–28], the
addition of fifth-order non-linearities (which, as previously noted,
are required to fully explain all of the system behaviors recorded
to date) requires that the analysis of the non-linear, parametrically
excited system be revisited. As this represents a non-trivial
extension of prior work, the analysis contained herein begins
anew, despite a partial overlap with results previously detailed in
Refs. [27,28].

As devices with purely parametric excitations are likely to have
the most desirable non-linear frequency response characteristics
in practical application, the present study limits itself to the special
case where the magnetic field is oriented in the vertical direction2

(α¼ 0). Accordingly, all of the direct forcing terms which appear in
the system's equation of motion (i.e., ηi ¼ 0, i¼ 0;1;2) are elimi-
nated due to their dependence on sin α. Additionally, it should be
noted that all non-linear, forcing, and damping parameters which
appear in the parametrically excited system's equation of motion
have been assumed to be ‘small’ (as denoted by the presence of the
book-keeping parameter ε)—an assumption that is typically valid
for MEMS resonators in lightly damped environments (see, for
example, Ref. [28]).

To simplify analysis, a standard perturbation technique, the
method of averaging, is employed. To facilitate this approach, a
constrained coordinate transformation is first introduced into
Eq. (31)

zðτÞ ¼ aðτÞ cosðΩτ þ ψðτÞÞ; ð32Þ

z′ðτÞ ¼ −aðτÞΩ sinðΩτ þ ψ ðτÞÞ: ð33Þ
Additionally, to capture the system's near-resonant behavior, a

frequency detuning parameter s is introduced, defined by

s¼ Ω−1
ε

: ð34Þ

Separating the equations that result from substitution, in terms
of amplitude and phase, and averaging over one period of the
resonator's response (2π=Ω) yields the pair of ‘slow-flow’ equa-
tions governing the system's behavior

a′¼ 1
64aε½−64ζ þ ð16γ1 þ 8γ3a

2 þ 5γ5a
4Þ sin 2ψ � þOðε2Þ; ð35Þ

ψ ′¼ 1
64ε½8a2ð3χ3−2βÞ þ 4a4ð5χ5 þ ν1−5ν2Þ−64s
þð16ðγ1 þ a2γ3Þ þ 15a4γ5Þ cos 2ψ � þOðε2Þ: ð36Þ

5. Steady-state system behaviors

With the averaged equations detailed above in hand, the
system's steady-state behavior can be easily recovered by setting
ða′;ψ ′Þ ¼ ð0;0Þ and solving for the steady-state amplitudes and
phases. Given that the system's non-linear behavior is of principal
interest here and that this behavior is largely unaffected by
damping, damping is assumed to be negligible (ζ ¼ 0). Those
readers interested in the effects of small damping are referred to
Ref. [28].

Adopting the above procedure reveals that the EMA microbeam
has a trivial solution (with indeterminant phase) and four pairs of
physically realizable, non-trivial solutions given, in terms of
amplitude and phase, by

a1 ¼ 72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ν3;1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν23;1−ν5;1ðγ1−4sÞ

q
ν5;1

vuut
; ψ 1 ¼ 0; ð37Þ

a2 ¼ 72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ν3;1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν23;1−ν5;1ðγ1−4sÞ

q
ν5;1

vuut
; ψ 2 ¼ 0; ð38Þ

a3 ¼ 72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ν3;2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν23;2 þ ν5;2ðγ1 þ 4sÞ

q
ν5;2

vuut
; ψ 3 ¼

π

2
; ð39Þ

2 On-going work is aimed at predicting system responses for arbitrary α.
Though this general case is expected to yield non-ideal system characteristics, a
proper understanding of this case is requisite given that the orientation of the
magnetic field may be hard to accurately specify in final device implementations.
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a4 ¼ 72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ν3;2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν23;2 þ ν5;2ðγ1 þ 4sÞ

q
ν5;2

vuut
; ψ 4 ¼

π

2
: ð40Þ

Note that each 7 pair of solutions, as well as solutions with
magnitude π phase shifts, represent the same physical response.
Furthermore, note that here and throughout the remaining por-
tions of this work ρ3 and ρ5 are used to represent the system's
third- and fifth-order mechanical non-linearities (incorporating
inertial terms), given by

ρ3 ¼ 3χ3−2β; ρ5 ¼ 5χ5 þ ν1−5ν2; ð41Þ
and ν3;1, ν3;2, ν5;1, and ν5;2 are used to represent the system's third-
and fifth-order effective non-linearities, which are given by

ν3;1 ¼ ρ3 þ 2γ3; ν3;2 ¼ ρ3−2γ3; ð42Þ

ν5;1 ¼ 4ρ5 þ 15γ5; ν5;2 ¼ 4ρ5−15γ5: ð43Þ
Each of these parameters prove critical in characterizing the
system's steady state behavior.

It is also worth noting that the system examined herein can
have, providing certain parameter conditions are met, two addi-
tional constant-amplitude solution pairs with amplitudes given by

a5 ¼ 7
2ffiffiffi
5

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ23−5γ1γ5

q
γ5

vuut
; ð44Þ

a6 ¼ 7
2ffiffiffi
5

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ23−5γ1γ5

q
γ5

vuut
: ð45Þ

As these solutions are not realizable with the current device
configurations, further discussion of these solutions is omitted.
It is worth noting, however, that the addition of alternative
transduction mechanisms or the use of non-uniform beam geo-
metries may facilitate their appearance, which in turn can lead to
significant changes in the system's qualitative behavior. Accord-
ingly, care must be taken in the course of device design.

Before proceeding with a thorough examination of the system's
qualitative behavior and its dependence on the third- and fifth-order
effective non-linearities detailed above, it is prudent to briefly
consider the local stability of the system's steady-state solutions.
For present purposes, the local stability of the system can be
determined by considering the linear behavior of the system's
averaged equations near each of the system's steady-state solutions.
Accordingly, by defining a composite state vector XðτÞ according to

XðτÞ ¼
aðτÞ
ψðτÞ

" #
ð46Þ

and a composite steady-state solution vector Xn according to

Xn ¼
an

ψn

" #
; ð47Þ

the local linearized equation of motion for the system can be
rewritten as

Y ′ðτÞ ¼ JðXnÞYðτÞ; ð48Þ
where YðτÞ represents the state's deviation from the steady state, that
is

YðτÞ ¼ XðτÞ−Xn; ð49Þ
and J represents the Jacobian matrix of the averaged equations
evaluated at the steady state. The stability of the various responses
can now be directly deduced from the eigenvalues of the linearized
system's Jacobian.

To simplify stability analysis, the system's eigenvalues can be
characterized using the trace and determinant of the 2�2

Jacobian detailed above [29]. Specifically, the eigenvalues can be
expressed in terms of the trace, T, and the determinant, Δ, as

Λ1;2 ¼ 1
2ðT7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2−4Δ

p
Þ: ð50Þ

For the undamped case under consideration here, the trace of
the Jacobian for each of the steady-state responses is zero (T¼0),
and thus for non-trivial eigenvalues only two generic equilibrium
types are possible, saddles (unstable) and centers (marginally
stable), and the type of equilibrium that exists depends solely on
the sign of the determinant Δ. Specifically, when Δ40 the
equilibrium is a center, and when Δo0 the equilibrium is a saddle.
The remaining case, Δ¼ 0, corresponds to the degenerate case of
two identically zero eigenvalues, and as such is used only to
identify where stability changes occur.

Utilizing the criteria outlined above, the stability of the five
solutions of interest (the trivial solution and the four physically
consistent solution pairs) can be determined. In particular, it can
be shown (with a conversion to Cartesian coordinates) that the
trivial solution exists as a saddle point for all frequencies (detun-
ing values) between s1 and s2, where

s1;2 ¼ 7
γ1
4
; ð51Þ

and as a center elsewhere. Similarly, a1 and a2 can be shown to
have critical detuning values of s1 and s3, where

s3 ¼
−ν23;1
4ν5;1

þ γ1
4
; ð52Þ

and a3 and a4 can be shown to have critical detuning values of s2
and s4, where

s4 ¼
−ν23;2
4ν5;2

−
γ1
4
: ð53Þ

As each of these critical detuning values, as well as the sign of the
Jacobian's determinant in between, is dependent on numerous
system parameters, a number of distinct stability configurations
exist. Rather than delineating each of these configurations here,
the cases are detailed below as part of an examination of the
system's frequency response.

6. Frequency responses

As evident from Eqs. (37)–(40), the qualitative behavior of the
system detailed herein is not dependent on a single effective non-
linearity, but rather a set of effective non-linearities, which collec-
tively dictate the nature of the system response. In Ref. [28], the
authors examined similar behavior in the context of a third-order,
parametrically excited system using a simple parameter space
investigation. Though a similar approach is adopted here, the
addition of fifth-order non-linearities requires a hierarchical analysis.

Generally speaking, the third-order effective non-linearities
detailed in Eq. (42) dictate the system's non-trivial behavior in
the vicinity of the pitchfork bifurcations that occur at s1 and s2.
In particular, selecting system parameters such that ν3;140 and
ν3;240 results in a frequency response with third-order hardening
characteristics and selecting ν3;1o0 and ν3;2o0 results in a
frequency response with third-order softening characteristics.
Clearly, under certain conditions, ν3;1 and ν3;2 can be selected to
have opposite signs. Under these conditions the system exhibits
‘mixed’ non-linear characteristics, wherein the response curves
initially bend away from one another.3

3 Note that these curves would bend toward each other in the lower half-plane
of the parameter space shown in Fig. 4. The response is significantly more
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To summarize the results outlined above, it proves convenient
to utilize the upper half-plane of the third-order non-linear
parameter space shown in Fig. 4(a), as identifying the resonator's
location with this parameter space allows for the rapid prediction
of system's qualitative behavior (at least to third-order).4 Noting,
for example, that the EMA microcantilevers detailed herein
initially lie on the positive half of the ρ3 axis reveals that they, in
the absence of excitation, exhibit third-order hardening character-
istics. This position is not fixed, however, as adding an AC
excitation allows the resonator's location in the third-order para-
meter space to translate in the vertical direction and thus allows
the system's third-order behavior to transition to a mixed
response. Likewise, adding a DC excitation allows the oscillator's
location to translate in the horizontal direction and thus facilitates
transitions to softening or mixed third-order responses.

Though the third-order non-linearities dictate the immediate
post-pitchfork-bifurcation behavior of the system, the fifth-order
effective non-linearities dictate the system's ‘global’ frequency

response behavior (as limited, of course, by the perturbation
technique employed). In particular, selecting the system para-
meters such that ν5;140 and ν5;240 results in a frequency
response with fifth-order hardening characteristics and selecting
ν5;1o0 and ν5;2o0 renders a frequency response with fifth-order
softening characteristics. Likewise, under certain conditions, ν5;1
and ν5;2 can be selected to have opposite signs which leads
to frequency responses with ‘mixed’ non-linear characteristics,
wherein the response curves eventually bend away from one
another, potentially leading to theoretically globally unbounded
responses.

As with the third-order non-linearities, it proves convenient to
utilize the upper half-plane of fifth-order non-linear parameter
space, shown in Fig. 4(b), in order to characterize the qualitative
behavior of the system's global frequency response. As the system
behavior within this parameter space, as well as its dependence on
AC and DC excitations, is largely akin to that described above in the
context of the system's third-order non-linearities, further discus-
sion is omitted.

In order to display each of the qualitatively distinct frequency
responses that can be recovered for the equation of motion
detailed in Eq. (31), a number of representative cases, detailed in
Table 1 and by the data points in Fig. 4, are subsequently
considered. Note that while most of these cases are readily
obtainable using a given EMA microcantilever design, additional
responses have been included for the sake of completeness
(largely to assist those working on related problems). Furthermore,
note that only those cases in the first quadrant of the third-order
parameter space are included. The behavior of resonators operat-
ing in the second quadrant, namely those operating with large,
negative, DC tuning biases, can be easily determined through
symmetry arguments.

The frequency response plots corresponding to data points A–H
in Table 1 and Fig. 4 are included in Figs. 5–12. As the majority of
the responses highlighted in these figures are qualitatively distinct
from one another, each is considered in turn.

The frequency response plot shown in Fig. 5, representative of
all systems with ν3;140, ν3;240, ν5;140, and ν5;240 and corre-
sponding to Case A, clearly depicts a classical hardening response.
That is, the system's non-trivial response branches both result
from pitchfork bifurcations (one supercritical and one subcritical)
occurring at s1 and s2, respectively, and bend to the right,
ultimately yielding a globally bounded system response.5 The
response shown in Fig. 6, representative of all systems with
ν3;140, ν3;240, ν5;140, and ν5;2o0 and corresponding to Case
B, is slightly more complicated. Here, the response incorporates all
of the features detailed above for Case A, but also an additional
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Fig. 4. (a) Third- and (b) fifth-order non-linear parameter spaces. Note that the
labeled data points correspond to the various cases delineated in Table 1, as well as
the frequency response plots shown in Figs. 5–12.

Table 1
Parameter values used to produce the frequency response plots shown in
Figs. 5–12.

Case γ1 ρ3 γ3 ρ5 γ5

A 0.1 0.1 0.025 1 0.1
B 0.1 0.1 0.025 1 0.5
C 0.1 0.1 0.025 −1 0.5
D 0.1 0.1 0.025 −1 0.1
E 0.1 0.1 0.075 1 0.1
F 0.1 0.1 0.075 1 0.5
G 0.1 0.1 0.075 −1 0.5
H 0.1 0.1 0.075 −1 0.1

(footnote continued)
complicated here, however, as one or more constant amplitude solutions is also
likely to exist.

4 Note that the resonators detailed herein are not expected to operate in the
lower half-plane of the third-order parameter space, wherein the previously
detailed constant-amplitude solution exist.

5 Note that the term ‘globally bounded’ is used here, and throughout the
remainder of this work, to designate the fact that all initial conditions result in a
bounded response.
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saddle-node bifurcation at s4. This additional bifurcation point not
only leads to a destabilization of the left branch, but also causes
the branch to bend to the left yielding a globally unstable system
response. Fig. 7, corresponding to Case C, depicts a response
qualitatively equivalent to that seen in Case B, despite the fact
that the sign of ρ5 has changed. Though counterintuitive, this is
consistent with the system's stated dependence on the fifth-order
effective non-linearities, and is thus included only for the sake of
completeness. The final frequency response plot realizable for
positive values of ν3;1 and ν3;2, designated Case D, is depicted in
Fig. 8. Here, due to the fact that both ν5;1 and ν5;2 are negative, each
of the system's non-trivial branches undergo saddle-node

bifurcations, at s3 and s4 respectively, yielding a globally bounded
response wherein both response branches ultimately bend to the
left in a softening-like manner.

Figs. 9–12, corresponding to Cases E–H, are representative of
systems with mixed third-order non-linearities, that is systems
with ν3;140 and ν3;2o0. The first response in this series, desig-
nated Case E and representative of systems with ν5;140 and
ν5;240 is shown in Fig. 9. Here, as expected, the system has two
non-trivial branches – the result of pitchfork bifurcations at s1 and
s2, respectively – that initially bend away from one another.
However, in this case, the left branch undergoes a saddle-node
bifurcation at s4, which not only stabilizes the branch, but also
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Fig. 7. (a) Frequency response plot corresponding to Case C. (b) A close-up view of
the system's frequency response in the proximity of s¼−0:025.
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Fig. 8. Frequency response plot corresponding to Case D.
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Fig. 5. Frequency response plot corresponding to Case A. Note that here, and
throughout the remainder of the work, solid lines on frequency response plots are
used to designate stable steady-state solutions, and dashed lines are used to
designate unstable steady-state solutions.
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Fig. 6. (a) Frequency response plot corresponding to Case B. (b) A close-up view of
the system's frequency response in the proximity of s¼−0:025.
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causes it to bend to the right, ultimately yielding a globally stable,
hardening-like system response. Figs. 10 and 11, corresponding to
Cases F and G, respectively, are representative of systems with
ν5;140 and ν5;2o0. Here, neither of the non-trivial branches
undergo additional bifurcations, and thus these branches which
initially bend away from each other continue to do so for all values
of detuning. The last response in the series, designated Case H and
corresponding to systems with ν5;1o0 and ν5;2o0 is shown in
Fig. 12. Here, as with all responses in this series, the responses
branches initially bend away from one another. However, at s3 the
right branch undergoes a saddle-node bifurcation, which not only
stabilizes it, but also causes it to bend to the left, yielding a
softening-like response.

From Figs. 5–12, it is apparent that a wide variety of distinct
frequency response structures are obtainable with the system of
interest. By properly selecting design parameters and excitation
conditions, virtually any point in the third- and the fifth-order
parameter spaces (Fig. 4) could be chosen as a device operating
point which allows for tunable frequency response structures.
Section 7 describes the behavior of a representative microcanti-
lever system and highlights the tunable nature of its response.

7. The response of a representative EMA microbeam system

While the preceding section provides a comprehensive over-
view of the qualitatively distinct frequency response structures
that can be realized with a given electromagnetically actuated
microbeam system, it does not clearly delineate how these
responses depend on various system parameters and excitation
signals. In light of this, the present section examines the frequency
response behavior of a representative parametrically excited EMA
microbeam (see Table 2 for details). Note that for present pur-
poses, the impedance of the microbeam system is assumed to be
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Fig. 9. (a) Frequency response plot corresponding to Case E. (b) A close-up view
of the system's frequency response in the proximity of s¼−0:025.
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Fig. 10. Frequency response plot corresponding to Case F.
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Fig. 11. Frequency response plot corresponding to Case G.
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Fig. 12. Frequency response plot corresponding to Case H.

Table 2
Parameter values, obtained from a representative microcantilever,
used to produce Figs. 13–17.

Physical parameter Value

Width 23:5 μm
Length 162 μm
Thickness 250 nm
Young's modulus (E) 159 GPa
Mass density (ρ) 2330 kg/m3

Magnetic field strength (B) 1 T
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of sufficient magnitude that the induced emf does not appreciably
impact the system's excitation signal.

Using the results of Section 5, the behavior of the representa-
tive microbeam system delineated in Table 2 can be systematically
recovered. As this behavior is qualitatively dependent on the
magnitudes of iDC and i2, the present discussion is framed in the
context of varying drive currents. Note that the effect of drive
current i2 on the linear, undamped response of the system can be
clearly identified from Fig. 13. This figure shows the stability
boundaries for the trivial solution as a function of drive current.
As the drive current (i2) increases (which, in turn affects the linear
parametric excitation term, γ1), the width of instability zone
increases. The behavior is consistent with a typical Mathieu
system. Note that, in practical implementations, viscous damping
affects the shape of the instability wedge, by rounding off the
bottom of the wedge and setting a threshold value for drive
current at which the transition to the unstable region occurs.

Fig. 14 shows the effect of drive current on the non-linear
behavior of the system. For a fixed value of the DC offset current,
varying the value of i2 yields purely vertical translations across
both the third-order and fifth-order parameter spaces. Starting at
i2 ¼ 0 A, as the current is increased, the first bifurcation occurs in
the third-order parameter space (ν3;2 ¼ 0) at i2 ¼ 2:1 mA. Increas-
ing i2 further, the next bifurcation occurs in the fifth-order
parameter space (ν5;2 ¼ 0) at i2 ¼ 3:5 mA. A change in iDC would
yield qualitatively similar behavior, with the horizontal location of
the path varying with the value of iDC. Thus, by choosing appro-
priate values for the drive currents, very distinct behaviors can be
obtained with the system.

Fig. 15 depicts the frequency response structure of an electro-
magnetically actuated microbeam excited with comparatively small
drive amplitudes, namely, iDC¼0.0 mA and i2¼1.0 mA. As expected,
this operating condition, much like its unforced counterpart, renders
a hardening response, similar to Case A, wherein both of the system's
non-trivial response branches bend to the right. Increasing the
amplitude of the system's AC drive current (i2) past the first
bifurcation at the ν3;2 ¼ 0 threshold yields the frequency response
depicted in Fig. 16, which was produced using drive currents of
iDC¼0.0 mA and i2¼3.0 mA. This response, similar to Case E, features
hardening-like global behavior, wherein both response branches
eventually bend to the right (following an additional saddle node
bifurcation on the left non-trivial branch). Further increasing the
system's AC drive current (i2) from this operating point past the
bifurcation at the ν5;2 ¼ 0 threshold, yields the frequency response
structure shown in Fig. 17. This response structure was produced
using drive currents of iDC¼0.0 mA and i2¼4.0 mA. This response,
similar to Case F, features a globally unbounded frequency response,
wherein the non-trivial response branches bend away from one

Fig. 15. Frequency response plot corresponding to the representative microbeam
system operated with iDC¼0.0 mA and i2¼1.0 mA.

Fig. 14. Sample third-order (a) and fifth-order (b) non-linear parameter spaces
corresponding to the representative EMA microbeam system. The figure shows the
transition between different parameter regions for iDC¼0 and an increasing value
of i2. As the drive current i2 is increased, the system initially undergoes a
bifurcation in the third-order space at ν3;2¼0 and then a bifurcation in the fifth-
order space at ν5;2¼0.

Fig. 13. Linear stability chart showing the transition between the stable and
unstable regimes of the trivial solution. Note that in this figure and Figs. 14–17,
the parameter values stated in Table 2 are utilized.
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another. Generally speaking, this response, which will undoubtedly
be bounded in practice by higher-order non-linearities, is believed to
be of limited practical utility.

While the preceding discussion details each of the qualitatively
distinct frequency response structures that can be obtained by
fixing iDC and varying i2, it is important to note that the DC bias
current can be changed independently or concurrently, as well.
This not only allows for linear frequency tuning, but also facilitates
the emergence of additional, distinct non-linear frequency
response structures. Rather than delineating each of these new
structures, of which there are many, here, suffice it to note that a
number of qualitatively distinct response can be realized by
varying each of the two drive currents provided that the buckling
instability and device burnout thresholds are not exceeded.

8. Conclusion

In this work, the non-linear behavior of an electromagnetically
actuated microcantilever under purely parametric excitations has
been studied. The microcantilever was modeled using energy
methods and its frequency response behavior was recovered using
the method of averaging. The analysis clearly showed that with
careful parameter selection and microcantilever design, a variety
of qualitatively distinct responses could be obtained. Building
upon these results, ongoing efforts are focused on exploiting the
dynamics of electromagnetically actuated arrays of microcantile-
vers in the design and development of mass sensors and func-
tional oscillator arrays [30].
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Appendix A. Dimensionless parameter definitions

z¼wðt̂ Þ ð54Þ

ω2
0 ¼

Z 1

0
ϕϕivdŝ þ iDCgBl

2 cos α
EI

Z 1

0
ϕ02 dŝ

Z 1

0
ϕ2 dŝ ¼ 1 ð55Þ

τ¼ ω0 t̂ ð56Þ

ω̂ ¼ωT ð57Þ
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2EIω2
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8EIl2ω2
0

ϕ06 dŝ ð63Þ
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ϕ06 dŝ ð66Þ

εγ5 ¼
3i2v40gB cos α

8EIl2ω2
0

Z 1

0
ϕ06 dŝ ð67Þ
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2l4

Z 1

0
ϕϕ′

Z ŝ
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þ3v40
2l4

Z 1

0
ϕϕ′2ϕ″

Z ŝ
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Fig. 16. Frequency response plot corresponding to the representative microbeam
system operated with iDC¼0.0 mA and i2¼3.0 mA.

Fig. 17. Frequency response plot corresponding to the representative microbeam
system operated with iDC¼0.0 mA and i2¼4.0 mA.
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2l4

Z 1

0
ϕϕ′

Z ŝ
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1

Z ŝ
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