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Homogenization of bi-anisotropic metasurfaces 

Amr Shaltout, Vladimir Shalaev, and Alexander Kildishev
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Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, 
Indiana 47907, USA 

*kildishev@purdue.edu 

Abstract: Ultrathin metamaterial layers are modeled by a homogeneous bi-

anisotropic film to represent various kinds of broken symmetries in 

photonic nanostructures, and specifically in optical metamaterials and 

metasurfaces. Two algorithms were developed to obtain the electromagnetic 

(EM) wave response from a metasurface (direct solver) or the metasurface 

parameters from the EM wave response (inverse solver) for a bi-anisotropic, 

subwavelength-thick nanostructured film. The algorithm is applied to two 

different metasurfaces to retrieve their effective homogeneous bi-

anisotropic parameters. The effective layer of the same physical thickness is 

shown to produce the same response to plane wave excitation as the original 

metasurface. 

©2013 Optical Society of America 

OCIS codes: (160.3918) Metamaterials; (310.0310) Thin Films; (100.3190) Inverse Problems. 
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1. Introduction 

Metamaterials have been used for manipulating light in a controllable manner, and they were 

able to achieve optical properties not existing in nature including negative index of refraction 

[1, 2], optical magnetism [3], invisibility cloaking [4] and superlensing [5, 6]. Optically thin 

metamaterial layers called optical metasurfaces have been introduced later, and they have the 

ability to control light through engineering of the wavefront of the incident light. 

Metasurfaces have garnered interest due to the fact that they avoid the significant losses 

associated with most bulk metamaterials, and are suitable for on-chip application, and also 

their elements are more readily assembled [7]. Metasurfaces have been used to implement 

important applications such as light bending [8, 9], flat lenses [10], circular polarizers [11], 

half-wave plates [12, 13], and quarter wave plates [14, 15]. Those metasurfaces provide their 

intended functionality by changing the phase and/or polarization of light transmitted through 

the layer. In order to develop metasurfaces and fully analyze their functionalities, it is 

important to have an accurate and efficient model to describe the unit cell of the surface 

nanostructure. In this work, we have developed a model for metasurface layers with a thin, 

homogeneous, equivalent film. Using this framework, metasurface designers can then obtain 

insight on how best to use the unit-cell structures. 

Most of metasurface designs depend on symmetry breaking in the nanostructure, such as 

rotational symmetry, mirror symmetry or directional symmetry. A bi-anisotropic model would 

be quite general and useful option for the homogenization of metasurface designs. Throughout 

the paper, the part of the developed model responsible for each kind of asymmetry will be 

explained. The goal is to obtain a homogenous bi-anisotropic film that will generate the same 

values of the complex coefficients for reflection and transmission as those obtained by the 

real metamaterial structure. Homogenization using reflection and transmission coefficients 

has been used for permittivity and permeability retrieval [16], but non-physical dispersion 

relations may occur due to limitation of the model, and lack of representation of bi-

anisotropy, chirality and spatial dispersion [17]. Bi-anisotropy has been used in [18] to 

account for directional asymmetry, and in this work a general bi-anisotropic tensor is used to 

account for bi-anisotropy, chirality and linear spatial dispersion. The model is only limited by 

higher order spatial dispersion terms, however, their effect will significantly decrease in thin 

fillms and the linear spatial dispersion term will dominate. Detailed discussions on the 

physical meaning of metamaterial constitutive parameters can be found in [17, 19]. The work 

is done by first solving for the transmission and reflection coefficients of a bi-anisotropic 

layer developing a direct solver. Then, it is solved for a bi-anisotropic film that accurately 

represents our structure, thus developing an inverse solver. After explaining the details of the 

process, the algorithm is implemented to homogenize two specific structures that are 

commonly used in metasurface applications. 

2. Direct solver 

The first step in the homogenization process is to compute the complex reflection and 

transmission coefficients for a thin, bi-anisotropic film of known parameters. Table 1 clarifies 

the complex reflection and transmission coefficients (4-port S-parameters). 
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Table 1. Complex reflection and transmission coefficients 
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As shown in Table 1 and further illustrated in Fig. 1, the subscripts of S-parameters 

represent the output and input sides respectively (1 – superstrate, 2 – substrate), while their 

superscripts represent the polarization of the output and input waves respectively. There also 

exist the other set of eight coefficients for the waves incident at the substrate side (side 2). 

The co-polarized reflection relation is described by 
qq q q

jj j jS E E   using the complex co-

polarized transmission coefficient 
qq

jjS , where  x,yq  . In contrast, the cross-polarized 

reflection relation is described by pq q p

jj j jS E E   using the complex co-polarized reflection 

coefficient 
pq

jjS , where  x,yp   for  y,xq  . In the both cases (of co- or cross-polarized) 

reflections 1j  , for ‘ + ’, or 2j  , for ‘-’. The co-polarized transmission relation is 

described by qq q q

ij j iS E E  , where  x,yq  . The cross-polarized transmission is defined by 

pq q p

jj j jS E E  , where  x,yp   for  y,xq  . In both cases (either co- or cross-polarized) 

reflections 1j  , for ‘ + ’, or 2j  , for ‘-’. 

 

Fig. 1. Demonstration of co-polarized and cross-polarized reflection and transmission 
coefficients for an x-polarized input plane wave from the front size. The incident wave is 

indicated in blue, and the reflected and transmitted waves are in red. The direction of (E) and 

(H) fields are shown by arrows. 

The electromagnetic (EM) waves propagating inside the bi-anisotropic structure satisfy 

the following material equation for the field components of a normally incident plane wave: 
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. The parameters ε,   are the relative 

permittivity and relative permeability tensors, and ξ,  are the bi-anisotropic tensors. The free 

space constants of permittivity 
0 , permeability 

0 and speed of light c  are used to 

normalize the model. We use tensors to represent the rotational asymmetry (anisotropy). The 

diagonal terms of ξ,ζ  model the mirror asymmetry effect (chirality) and their off-diagonal 

terms are responsible for breaking the directional symmetry of the propagating wave. The 

eigenmodes excited inside the bi-anisotropic medium are in general elliptically polarized [20], 

and we cannot decouple the transverse-electric (TE) and the transverse-magnetic (TM) waves 

inside the film. 

To solve for the eigenmodes of the system, we start from Maxwell’s equations: 
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using a time dependence of te  . Equation (2) can be formally rewritten as 
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straightforward solution of: 
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0

z

z
z e


 A

V V  (4) 

which is used to directly obtain the field components  zV  at any location inside the 

biansiotropic media using the components at the origin 
0z

V . 

The eigendecomposition of the transfer matrix   zz e A
T  yields 

 
1,T UPU  (5) 

where  exp zP K ,  a b c ddiag , , ,k k k kK , and  a b c dU V V V V  is the matrix of 

four eigenvectors iV , corresponding to a matching eigenvalue ik , {a,b,c,d}i   of matrix A . 

The eigenvectors aV , bV , cV , dV  represent four possible wavefronts propagating through 

the bi-anisotropic medium, and the eigenvalues are the wavenumbers corresponding to each 

eigenmode. Typically, two of the eigenvalues are positive and two are negative corresponding 

to forward and backward propagation, respectively. Thus, in   1

0z
z 


V UPU V  which 

combines (4) and (5), the term 1
U  decomposes 

0z
V  as a superposition of the four 

eigenvectors. Then the matrix P  applies a propagation term to each eigenvector. Finally, the 

matrix U  sums all four propagated eigenvector components of  zV . 
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The reflection and transmission coefficients are obtained as we apply an x-polarized and a 

y-polarized wave. First, we apply an x-polarized input wave at the front-side (superstrate- 

side) with the normalized values 
x,inc 1E   and 

y,inc 11H z , where 
1z and 

2z are respectively 

the intrinsic impedances of the superstrate and substrate. Then, we have the input-side vector 

due to the addition of incident and reflected wave in the following form x

1 x 11E I S , 

 x

1 x 11 1

1z nH I S , and the output vectors being 
12
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In a similar way, for y-polarized input  
T

y 0 1I , we can obtain the complex reflection 
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T

y xy yy

11 11 11S SS  and transmission  
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21 21 21S SS  coefficients for y-polarized 

superstrate-side illumination: 
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For back illumination (substrate illumination), using same route, we get x
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 2 22 x2

x1z  nH S I , with the output vectors being 
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Similarly for y-polarized input, we get: 
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And hence, all the complex reflection and transmission coefficients described in Table 1 

are obtained. One major advantage of this direct solver is that it depends on simple matrix 

operations, which are reversible. This makes the development of the inverse solver 

straightforward as described in the following section. 

3. Inverse problem 

The inverse problem uses the complex reflection and transmission coefficients to obtain the 

corresponding material dyadics described in Eq. (1). This is accomplished in two steps. First 

the linear operator T is retrieved; then it is used to obtain all the material constants. For x- 

and y-polarized inputs used at the front ‘ + ’ and back ‘‒‘ side illumination, there are four sets 

of fields  j j j

 V V V ,  1,2j   that can be used to form the equation: 

 2 1V TV  (17) 

where all four illumination states are grouped together as: 
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From (17) and the connection between T  and A  given by exp lT A , an immediate result 

is that 
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A V V  (19) 

Moreover, as we recall from (3) that 

1
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ζ μ

c
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





 
  

 
A N  

  
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110
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2 1
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ln .

l

c
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











 
 
 

 V VN  (20) 

This concludes the retrieval of the BA parameters from a given set of complex reflection 

and transmission coefficients obtained upon four distinct illumination states. 

It is important to note that the eigendecomposition of  1 ln
l

A T , which is 

  1 1ln
l

 UA P U  where P is the diagonal matrix carrying the eigenvalues of T , could 

suffer from phase ambiguity if one of the phase terms which are real parts of 
ak l , 

bk l , 
clk  or 

dlk  is above   or below  , This should not be the case for a metasurface of sub-

wavelength thickness. Some techniques have been developed to overcome phase ambiguity 

for the retrieval of bulk media such as the one in [21] which performs the retrieval over a 

spectral range where there is no ambiguity at the largest wavelength. The technique then 

utilizes phase unwrapping along the remaining spectral range to remove the ambuguity. This 

can be implemented to our technique by applying phase unwrapping to the elements of the 

diagonal matrix P , but we don’t need it in our work with metasurfaces. 
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It can be confirmed that the formula in Eq. (20) converges to the analytical formulas 

obtained for special cases of material properties. The simplest of them is the isotropic medium 

with properties
0

ε =
0





 
 
 

,
0

=
0





 
 
 

, ξ = 0 , = 0 surrounded by free space of impedance 

0 0 0z   . For this case, due to symmetry, we have the same co-polarized complex 

reflection r  and co-polarized transmission t  for all illumination cases and zero cross-

polarization coefficients. Therefore, we have: 
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 (21) 

where 
1 0

0 1

 
  
 

I , and T  is given by: 
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The eigendecomposition of the matrix in (22) is required to apply the formula in (20). 

Solving for the eigenvalues will yield the following equation using the symbol p  for 

eigenvalues: 

 
 

2
2 2

2
1

1 0
r t

p p
t

   
    

  
  

 (23) 

which indicates that there exist a degenerate pair of eigenvalues. The product of each pair is 1 

and their sum is 
 2 21 r t

t

 
. Therefore, the four eigenvalues would take the values ikle , 

ikle , ikle and ikle where: 

 
 2 21
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e e
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   (24) 

or, 

  
 2 21

cos
2

r t
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  (25) 

and solving for the corresponding eigenvectors, we get: 
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where 

 
 
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It’s clear that these eigenmodes correspond to forward and backward x- and y-polarized 

plane waves. Applying the formula in (20): 
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which leads to: 

 ,
k k

z z


 


    (29) 

where k  and z  are given by (25) and (27). The previous results are identical to retrieval 

formulas in [16]. The next step is to apply the inverse problem described by (20) to some 

metasurface structure and explore how different kind of broken symmetries are represented in 

the effective material model. 

4. Application of algorithm to metasurfaces 

In this section, the algorithm is implemented to homogenize two different metasurfaces. One 

metasurface is an array of V-shaped, gold antennas with a thickness of 30 nm fabricated on 

top of a silicon substrate. Figure 2(a) a unit-cell of structure with dimensions of 200 nm x 200 

nm, and a V-shape angle of 60° between the two arms. Each arm has a length of 160 nm, and 

a width of 40 nm. The second structure, shown schematically in Fig. 2(b), has a unit-cell size 

of 300 nm x 300 nm and is composed of 2 gold rods, each of a 250-nm length, a 40-nm width, 

a 30-nm thickness, a vertical separation of 80 nm, and an orientation angle of 45°. These rods 

are embedded in a 200-nm-thick polymer layer. Both structures will have a broken rotational 

symmetry (anisotropy). 

 

Fig. 2. The unit cell of the two nanostructures used as examples for the homogenization 
algorithm. A top view is presented for each to describe the x and y directions. 

The diagonal terms of ξ  and  cause coupling between x- and y-polarized waves as 

demonstrated in the studies done to the bi-isotropic case [22], while their off-diagonal terms 

affect the relation between the electric and magnetic fields while keeping x- or y-polarization, 

but causing the waves to experience different wave impedances for propagation in + z or –z 

direction. The structure of Fig. 2(a) also has a broken directional symmetry due to the 

difference between superstrate and substrate plasmonic resonances, but the structure keeps its 

mirror symmetry with respect to x-axis causing negligible coupling between x- and y-

polarized waves. Therefore, the model of this structure should contain only the off-diagonal 

terms of ξ  and  and the diagonal terms should be negligible. However, the structure in Fig. 

2(b) lacks mirror symmetry with respect to x- or y-axis but has directional symmetry with 
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respect to z-direction. Therefore its model should contain only the diagonal terms of ξ  and 

. The inverse solvers were applied to transmission and reflection coefficients of both 

structures (obtained using FEM) and the results were as expected. Figure 3 shows the results 

of implementing the homogenization algorithm with the V-antenna structure. 
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Fig. 3. (a) Effective slab parameters of the V-antenna structure. (b) Spectral phasor of 

reflection and transmission coefficients using FEM and effective Bi-anisotropic layer model. 

For all of them, the lower end point corresponds to 1 µm and the upper end point corresponds 
to 3 µm. 

The V-antenna structure is modeled as a 30-nm-thick, homogeneous slab. First, the FEM 

solver is used to obtain the complex reflection and transmission coefficients for a spectral 

domain of 1µm – 3µm. Then the inverse solver is applied to obtain the effective parameters of 

the slab. The retrieved results of the effective slab parameters are shown in Fig. 3(a). This 

design has been used to achieve large phase shifts [8, 9] from operation near the plasmonic 

resonance wavelength, and indeed the effect of the resonance is clear in the retrieved effective 

parameters. Both the FEM simulation and the effective bi-anisotropic model reproduce the 

same reflection and transmission coefficients as shown in Fig. 3(b). 

In this structure, we obtain only co-polarized reflection and transmission coefficients, with 

negligible values for cross-polarization coefficients. The directional asymmetry is noticed in 

the difference between reflection coefficients for the two sides of illumination. Still the 

transmission coefficients are symmetric (i.e. xx xx

12 2 21S n S  and yy yy

12 2 21S n S , where 
2n  is the 

refractive index of the backward substrate [18]), and this would result in having xy yx    

and yx xy    as mathematically proved in [18], so we needed only to show xy  and yx  

in Fig. 3(a). 

Now the algorithm is applied to the two rod structure which is modeled as a homogeneous 

bi-anisotropic slab with a thickness of 200 nm. The FEM solver is used to obtain the complex 

reflection and transmission coefficients for the spectral domain of 2µm – 3µm. The retrieval 

algorithm is then applied to these data, and as in the previous case, the complex reflection and 

transmission coefficients obtained from the effective model match with these obtained from 

FEM simulation. The retrieval results are shown below in Fig. 4. This structure has a mirror 

asymmetry or parity asymmetry and this results in the existence of the diagonal elements of 
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the tensors ξ and .This structure is exactly the same from both sides, and this directional 

symmetry causes the off-diagonal terms of ξ and to be zero. 
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Fig. 4. Retrieval results of the two rod structure. 

5. Summary 

In this paper, a new approach has been presented for the homogenization of optical 

metamaterials. An algorithm was developed which included a direct and an inverse solver 

based on an eigenwave analysis and a transfer matrix approach. This method of modeling and 

characterizing a metamaterial is useful for the design and use of metasurfaces. In addition, it 

provides insight into how these metamaterial layers affect an incident light beam. The used 

model is the most general bi-anisotropic model for normal incident illumination. This model 

can be extended to include effects on oblique incident waves. . 
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