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Abstract

One of the most fundamental challenges in predictive modeling and simulation
involving materials is quantifying and minimizing the errors that originate from
the use of approximate constitutive laws (with uncertain parameters and/or
model form). We propose to use functional derivatives of the quantity of
interest (Qol) with respect to the input constitutive laws to quantify how the
Qol depends on the entire input functions as opposed to its parameters as is
common practice. This functional sensitivity can be used to (i) quantify the
prediction uncertainty originating from uncertainties in the input functions;
(i1) compute a first-order correction to the Qol when a more accurate constitutive
law becomes available, and (iii) rank possible high-fidelity simulations in terms
of the expected reduction in the error of the predicted Qol. We demonstrate the
proposed approach with two examples involving solid mechanics where linear
elasticity is used as the low-fidelity constitutive law and a materials model
including non-linearities is used as the high-fidelity law. These examples show
that functional uncertainty quantification not only provides an exact correction
to the coarse prediction if the high-fidelity model is completely known but also
a high-accuracy estimate of the correction with only a few evaluations of the
high-fidelity model. The proposed approach is generally applicable and we
foresee it will be useful to determine where and when high-fidelity information
is required in predictive simulations.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Current petascale computing resources and the planned exascale systems [1] provide an
extremely powerful tool for predictive materials simulations [2—4]. The combination of such
computing resources with advances in materials modeling at the electronic, atomic, meso- and
macroscopic scales has the potential to significantly increase our understanding of materials
behavior and revolutionize their design [5, 6], optimization and certification [7]. One of the
main objectives of predictive materials modeling is to provide information that can be used for
decision making; for example, assessing whether or not to experimentally pursue the fabrication
and testing of a new material or device, or determining whether a material will perform to the
desired level with a pre-determined level of confidence. For simulations to play a central role
in such a decision-making process, the confidence in the predicted results should be quantified.
This process is known as validation and can only be carried out against appropriate experiments
and after the various errors and uncertainties involved in the simulations and experiments are
quantified. Thus, significant efforts have been devoted to the quantification of the various types
of errors and uncertainties that arise in modeling, see, for example, [§—14] and in experiments,
see, for example, [15].

Experimental validation can be complemented by quantifying the uncertainty of a
prediction with respect to a higher-fidelity model. Thisis becoming increasingly important with
the wide hierarchy of atomistic methods (from quantum Monte Carlo to large-scale molecular
dynamics) capable of providing fundamental information to predict materials behavior with
high accuracy. Furthermore, multiscale modeling approaches involving various combinations
of atomistic, mesoscale and macroscale simulations are currently being pursued for essentially
every class of materials type and for a variety of devices. The quantification of errors introduced
in the process of upscaling is critical before these methods can be incorporated into design and
certification cycles. Thus, given the increasing computing power available and the advances
in materials modeling at all scales, uncertainty and error quantification of a predicted quantity
of interest (Qol) in terms of high-fidelity, finer-scale simulations is becoming a key challenge
in predictive modeling and high-performance computing.

Physics-based models of devices, components or products use constitutive laws to describe
the response of the materials involved; these functions are typically obtained empirically
prior to the simulation and are known only approximately. Examples include stress—strain
relationships in solid mechanics, temperature- and pressure-dependent viscosity in fluid
simulations and interatomic potentials for atomistic simulations. Even electronic structure
density functional theory calculations are based on approximate exchange and correlation
functionals. In general, these functions are not known exactly and their use leads to errors
in the predictions. The uncertainty in constitutive laws includes that in its parameters but
also the functional forms itself; this last uncertainty is often referred to as model form.
Fortunately, higher-fidelity simulations are often available to refine these constitutive laws.
However, such high-fidelity simulations are often computationally intensive and cannot
be performed everywhere they are needed to replace the use of a constitutive law. For
example, molecular dynamics simulations involving billions of atoms or large-scale dislocation
dynamics simulations may be desirable to inform structural simulations of polycrystalline
metals. Given the computational intensity of these simulations, one would like to identify
the conditions for which the constitutive laws need to be improved most critically in order
to obtain the highest error reduction given a computational budget and know how to use this
information optimally.

This paper deals with the common case where a simulation code uses a computationally
efficient but approximate constitutive law (input function) to predict a single Qol; we assume
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that this low-fidelity constitutive law can be improved for specific values of its independent
variable via high-fidelity, computationally-intensive simulations. The challenges addressed
here are (i) quantifying the uncertainty in the predicted Qol originating from uncertainties
in the low-fidelity input function; (ii) estimating a correction to the predicted Qol if a more
accurate constitutive law becomes available and (iii) ranking possible high-fidelity simulations
in terms of the expected reduction in the error in the Qol to produce a result with minimized
uncertainties given a computational budget. We show that the functional derivatives of the Qol
with respect to the input constitutive laws provide the key information needed to address these
challenges.

The rest of the paper is organized as follows. Section 2 describes the proposed approach
based on functional derivative to uncertainty quantification and error estimation. Section 3
describes the development of a Gaussian process surrogate model to compute the functional
discrepancy in a sequential manner utilizing a few, but optimally designed, evaluations of
the high-fidelity model. Sections 4 and 5 exemplify the use of our approach via two solid
mechanics problems. Conclusions are drawn in section 6.

2. Functional derivatives for uncertainty quantification and minimization

When a computational model is used to predict a material property or process, the Qol can be
thought of as a functional of the constitutive laws being used. In a general case, the Qol (Q)
depends on a set of input parameters { P;} (e.g. geometry, environmental conditions, etc) and
a set of constitutive functions f; (e.g. stress—strain relationship):

Q= 0P} {fi(zi: QDD ey

where z; are the independent variables of function f; which also depends on a set of
parameters Q;.

Typically, uncertainty quantification efforts include the characterization of the dependence
of the Qol with respect to the various input parameters in the model {P;} and {Q;}. This
approach provides valuable information but has two significant shortcomings: (i) it assumes
the functional forms of the constitutive laws to be correct and (ii) does not provide information
regarding the region in the constitutive law (range of its independent variables) that dominates
the Qol. To address these issues we propose to use the functional derivative of the Qol with
respect to the constitutive law.

To simplify the nomenclature we will formulate functional uncertainty quantification in
terms of a Qol that depends on a single constitutive law: Q[ f]. Cases with multiple constitutive
laws can be described in a similar way and constitutive laws with multiple independent variables
will be demonstrated in section 5. The Qol is a functional that maps the space of functions
(that satisfy certain properties) into the real domain: Q : M — R. We will use a definition of

functional (Fréchet) derivative, ‘;%f;' , in terms of the functional differential [16]:

§0[f]

§0[f] 5 () 8f(z)dz, @)
where §f is any variation of f. This functional derivative is a distribution that quantifies
how the model prediction depends on the entire constitutive law under use as opposed to its
parameters. It can be thought of as an extension of the differential of a multivariate function
(dQ = ), 0Q/df; df;) to infinite dimensions. The functional derivative depends on z and
quantifies the sensitivity of the Qol with respect to the input function f at each value of z. This
dependence on z and the meaning of functional derivative are perhaps more apparent when
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Dirac’s delta is used as the functional variation; this provides a definition of the functional
derivative in terms of a quotient [16]:

$0[f] . Olf()+€dz—z0)] — O[f(@)]

———(z09) = lim .

3f (2) =0 €

The functional derivative of the Qol with respect to the input constitutive laws will be

denoted functional sensitivity and the following sub-section will focus on its use to (i) estimate
the uncertainty in the prediction given uncertainties in the constitutive law, (ii) correct the
predicted Qol if a more accurate constitutive law becomes available and (iii) rank possible
high-fidelity simulations to locally refine the constitutive law according to their expected error
reduction in the Qol.

3

2.1. Uncertainty quantification

Animportant component of uncertainty quantification efforts is the propagation of uncertainties

in the input parameters through the model to quantify how they affect the prediction. In our

case we are interested in propagating uncertainties in the input function itself as opposed to its

parameters. Equation (2) can be used to obtain, to first order in f, a bound in the uncertainty

in the Qol if the absolute deviation of the low-fidelity constitutive law as a function of z can
§Q[f]

be quantified:
A =
ove= [ 575

where A ¢ denotes the absolute uncertainty in f(z). In cases where the error in the constitutive
law can be bound or the Qol is not a linear functional of the constitutive law, equation (4)
provides a very useful estimate of the uncertainty in the calculation. Note that the expression
in equation (4) leads to a non-negative number and is a generalization of the standard expression
of multivariate absolute error propagation to the continuum.

Af(z)dz, )

2.2. Error reduction

The definition of the functional derivative, equation (2), also provides a prescription to correct
the predicted Qol if a more accurate constitutive law becomes available either via additional
experiments or high-fidelity simulations. Let g(z) denote the high-fidelity constitutive law, a
corrected prediction is obtained by replacing the variation of f with (g(z) — f(2)):

s0[f]
AQeor = - dz. 5
0 /af(z) (@) — f2) dz (5)

This expression represents an integral of the functional sensitivity multiplied by the
functional discrepancy and is an extension of the widely used expression for discrete input
variables to functions. Note that, in contrast to the non-negative uncertainty, this correction
can be negative or positive.

2.3. Ranking of high-fidelity model evaluation for error reduction

As discussed above, in continuum simulations of devices or components involving materials
simulations (as well as in many other fields) it is possible to refine the constitutive laws used
to predict the Qol via finer grain simulations. However, these high-fidelity simulations can
be computationally intensive (e.g. dislocation dynamics of ab initio calculations) and often
cannot be carried out for all possible (or likely) values of the independent variable z. Thus,
one would like to know the values of z where these physics-enhancement simulations would
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have the highest impact in reducing the error of the predicted Qol. The functional derivative
expression in equation (5) provides the answer. The integrand in equation (5), i.e. product
of the functional sensitivity times the functional discrepancy, ?S?(% (g(z2) — f(2)), provides
a measure of the error in the Qol introduced by the constitutive model as a function of the
independent variable z and, consequently, ranks in importance the high-fidelity simulations
that need to be performed.

While formally equation (5) is very valuable, from a practical point of view its use is not
straightforward since the quantity ‘;?(GZ g (g(2) — f(2)) depends on the enhanced constitutive law
g(2), which we are trying to evaluate only when needed and for a relative small number of cases.
In section 3 we discuss how discrepancy modeling together with functional UQ can be used
to orchestrate high-fidelity simulations using Gaussian processes within a Bayesian approach
to build increasingly accurate approximations to the functional discrepancy (g(z) — f(z)) in
a sequential manner using a few evaluations of the high-fidelity model.

In sections 4 and 5 and we provide examples of the use of equation (5) to correct the
prediction using a more accurate constitutive law. We first assume the high-fidelity function
is known to exemplify the approach and then show how the functional discrepancy can be
approximated in a sequential manner requiring a few evaluations of the high-fidelity model.

3. Discrepancy modeling for physics enhancement selection

As discussed above, evaluation of the functional error in the Qol involves the functional
sensitivity S(z) = ‘;?(” i and the discrepancy E(z) = g(z) — f(z) for all values of the
independent variable z that are relevant for the calculation of the Qol. Since the sensitivity
depends only on the low-fidelity model, f(z), it may be evaluated efficiently during the
device simulation. On the other hand, evaluation of the discrepancy E(z) everywhere is
computationally unaffordable since it depends on the high-fidelity model g(z). To alleviate
this problem, we propose the estimation of the error in the Qol using a computational surrogate
to E(z) that is inexpensive to evaluate. Such an approximation is developed using data
collected from evaluations of the high-fidelity model at a small subset of values (z;) of the
independent variable z. Note that the discrepancy E (z) may be estimated either by replacing
the high-fidelity simulation g(z) with a data-based approximation g(z) or by replacing the
discrepancy g(z) — f(z), with a data-based approximation E(z); since the low-fidelity law
f (z) would capture some of the physics of the problem we expect the discrepancy to be easier
to describe with a surrogate model than the physics-enhancement law itself. In either case, the
corresponding approximation is developed based on the evaluation of the high-fidelity model at
carefully selected data points. The appendix provides background information and additional
information about surrogate models.

The accuracy of the approximation depends on the basis functions used to develop the
approximation and on the selection of the data points z;, at which the high-fidelity model is
evaluated. The two factors are interlinked—the utility of the data depends on the ability of the
basis functions to extract information from the data. On the other hand, accurate approximation
for a given set of basis functions depends on the amount and quality of data.

3.1. Models for discrepancy

The bases employed for approximation may be broadly classified as either local or global.
Global bases are active throughout the domain and are therefore efficient in modeling trends.
They require uniformity in the spread of the data throughout the domain. Local bases are
parametrized by basis location and size, and are only active within a neighborhood of their
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Figure 1. Data point designs for functions with uniform variation throughout the domain. Optimal
designs from variance minimizing data point selection for (a) functions with same level of variation
in both the dimensions (isotropic), and (b), with different levels of variation in the two dimensions
(anisotropic).

location. They are therefore efficient in modeling localized variations in the domain and also
allow for the data points to be localized. From the perspective of the problem at hand, the
selection of appropriate bases for the approximation of discrepancy depends on its functional
behavior in the domain. If the discrepancy is smooth with uniform variation throughout the
domain, then it can be modeled efficiently using global bases. On the other hand, if discrepancy
has localized variations, then global basis functions cannot be efficiently employed, and local
or quasi-local bases are required to achieve efficiency.

We propose to model the discrepancy as a particular realization of a Gaussian process
defined over the domain of z. The Gaussian process is completely characterized by its mean
and covariance functions, both of which may be constructed using parametrized global and
local functions [17]. This allows us to systematically develop an approximation to model
discrepancy using both global and local bases depending on the nature of discrepancy.

3.2. Data point selection

Since g(z) is expensive to evaluate, its properties, such as its functional variation, cannot be
determined a priori. The construction of the approximate model is therefore sequential and
employs an iterative procedure involving adaptive selection of training points and estimation
of the approximate model. The parameters of the Gaussian process provide information on the
variation of the model discrepancy, and can be used to guide the adaptive selection of training
points. However, the procedure could be affected by the choice of initial training points or
covariance functions, and needs to be implemented with caution.

When the model discrepancy is even and spread throughout the domain, a design of the
data points that are spread uniformly over the domain is necessary and efficient. Such designs
may be obtained through a variance minimizing data point selection algorithm which selects
the data points so as to minimize the total prediction variance over the entire domain. As seen
in figure 1, the key to the design of data points here is consistency of variation throughout the
domain, even if it is different for each dimension of the domain.

However, if the variation in model discrepancy is localized to only a small part of the
domain, and is smooth otherwise, uniform sample distributions based on local variations
represent an inefficient use of the scarce data resources (see figure 2). In such cases the
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Figure 2. An example of localized discrepancy with localized variation (thick line in panel A). The
corresponding variation sensitive hierarchical model (b), and the variation sensitive data designs
(dots at the bottom of (a)).

localized bases of the Gaussian processes may be leveraged to develop a sequential model that
hierarchically achieves coarse-to-fine decomposition of the discrepancy. Since the size and
the location of the bases depend on the size and location of the local variation, this method
provides a localization for the a priori unknown features of the model discrepancy. Such a
decomposition therefore yields insights into the nature of deficiency of the constitutive model
(see figure 2). In addition since each layer of the model approximates the error in approximation
due to the previous layers, the resulting model provides a bias minimizing reconstruction of
the model discrepancy. Refer to [18] for details of the bias minimizing selection of sampling
locations using the concept of sparse Gaussian processes.

In terms of computational effort in evaluating g(z), since localized bases only require data
within the support of the bases, a hierarchical decomposition provides a variation sensitive data
design in which the data density corresponds to the variation in the model discrepancy—with
high data density only in the regions where the discrepancy has a large variation.

The key to the development of such a model is the identification of the location of the
centers of the bases and their size. While the use of a geometric structure such as a tree
allows for efficient localization of the bases, the size of the bases depends on the underlying
variation. Since Gaussian process regression is a probabilistic regression technique, it allows
for systematic integration of prior information about the variation in the model discrepancy.
In addition, the entire predictive distribution at each layer can be incorporated within a robust
Bayesian inference framework that allows for the quantification of uncertainty due to sparseness
of data and provides a probabilistic data point selection criteria that allows for a balance between
bias and variance in the estimation of the model discrepancy.

In summary, the choice of basis function for the development of approximation depends
on the behavior of the model discrepancy. If the model discrepancy is found to be smooth in
some region, the training data locations are selected based on variance minimization, and if the
model discrepancy contains localized variations, the training data locations are selected based
on bias minimization. Such an adaptive procedure can achieve both computational efficiency
and accuracy.

3.3. Importance of the functional sensitivity of Qol

By considering the quality of the approximation over the entire domain, the constructed
approximation exhibits high fidelity to the actual model discrepancy and thus provides accurate
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Figure 3. (a) Geometry of the truncated cone whose deformation is to be predicted. (b) Stress as
a function of height in the undeformed cone for an applied force of 100 kN.

estimation of it throughout the domain of the independent variable z. However, in the estimation
of the Qol functional error, model discrepancy is weighted by the sensitivity, S(z). For values of
z for which the sensitivity is infinitesimally small, the contribution of the model discrepancy
to the computation of Qol is nullified. Evaluation of the computationally expensive high-
fidelity model g(z) in these regions is therefore wasteful. Instead, the sensitivity S(z) may
be employed to identify regions of interest within the overall domain of z, and the sampling
algorithm may then be employed only within this region. One possible approach is to consider
the convex hull of the regions obtained by the thresholding of the input distribution as the
domain of interest. Another possible approach is to weight the residue at a potential sampling
point with the sensitivity of Qol. For unimodal sensitivity distributions, with large variances,
the two approaches are likely to provide similar samples. However, for input distributions
with concentrated sensitivity distributions but with long tails, the thresholding approach is
preferable, since the weighting approach is likely to concentrate the sampling according to the
sensitivity distribution rather than the variation in the model discrepancy.

4. Example 1: compression of a conical specimen

In this section we exemplify the proposed approach with a simple, computationally trivial,
problem. We are interested in predicting the deformation of a truncated cone, see figure 3(a),
with initial height Hy = 10cm, top radius Ry = 1cm and base radius Ry + AR = 10cm,
when a compressive force F = 100 kN is applied to it. To keep the calculations simple and to
focus on the proposed approach we will neglect the height-dependent lateral expansion due to
Poisson’s effect and treat the system as one dimensional. Under these conditions the problem
becomes one dimensional and subscripts indicating directions will be ignored in stress and
strain; o and € denote for the rest of the section diagonal components of the stress and strain
tensors in the vertical (r3) direction. The stress is a function of position:

o(r3) = ——, (6)
YT AW
where A(r3) is height-dependent area:
Hy —r3 ?
A(r3) =7 | Ry+ ———AR) . @)
Hy
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Figure 4. Constitutive laws used for coarse grain model (linear elasticity) and physics enhancement
(non-linear stress—strain).

Figure 3(b) shows the engineering stress as a function of position in the undeformed cone
for an applied force of 100 kN, remember that in this simple example we are ignoring transverse
relaxation so engineering and true stress are equal.

The deformation of the specimen can then be computed using a material-specific
constitutive equation that relates strain along r3 and o [¢(o)] using the following expression:

H() HO
H = / (1 +€(r3)) d}’3 = H() +/ 6(}’3) dr3 (8)
0 0

We will use a linear elastic model as the low-fidelity constitutive law for our material:
f(x) — orp(e) = Ee; the subscript LF denotes low-fidelity. We assume that the
material exhibits non-linear elasticity and is accurately described by the high-fidelity law:
f(x) — our(e) = E*(1 — exp(—pPe¢)); HF indicates high fidelity. Young’s modulus of the
material is 100 GPa and its non-linear constitutive law is described by E* = 1 GPa and =100,
see figure 4.

Using finite differences, the total height reduction of the cone due to the 100kN
force is calculated to be 3.1863 x 107> m using the low-fidelity model and slightly higher,
3.4033 x 107> m, using the high-fidelity model. These numbers are obtained using 5000 points
to integrate equation (8) with finite differences; the value for the low-fidelity model is very
close to the exact analytical value of 3.1831 x 107>, The difference between the predictions of
the two models originates for the softening of the non-linear constitutive law for large strains.
In what follows we estimate the error in the prediction of H from the low-fidelity constitutive
law using functional derivatives.

In order to compute the functional derivative in equation (2) we re-write equation (8) as
an explicit functional of the strain-stress function:

o (r3=Hy) drs

Hle(o)] = Hy +/ e(o)d— do. ©)]

0 (r;=0) o

The functional derivative of the Qol (H) with respect to the constitutive law (e (o) = E /o)
can be obtained from equation (9) by inspection using the definition in equation (2):

SHle(o)] drs

Se(o)  do’

Equation (10) describes how the height of the deformed cone depends on the strain at
each value of stress experienced by the cone according to the low-fidelity constitutive law
[o(r3 = 0) : o(r; = Hy)]; the r3 dependence of this function is shown in figure 5(a). This
functional derivative shows that the strain for small stresses dominates the Qol prediction.

(10)

9
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Figure 5. (a) Functional derivative of cone height with respect to input constitutive law, €(o),
using coarse grain model. (b) Model error in strain g(z) — f(z) as a function of stress. (¢) Product
of functions (a) and (b) gives Qol functional error to first order.

This, perhaps surprising, result is due to the non-linear distribution of stress along r3: a larger
fraction of the cone’s height experiences low strains and stresses, see figure 3. Figure 5(b)
shows functional discrepancy, i.e. the error in strain of the coarse constitutive law as compared
with the physics-enhancement law (g(z) — f(z)). As described above, the product of these
two functions provides a first-order estimate of the error in the Qol originating from the strain
at each stress value; this Qol functional error provides a correction to the model prediction
using the low-fidelity constitutive law when a higher accuracy, physics-enhanced, law becomes
available.

A first-order correction to the low-fidelity prediction can be obtained by integrating the
Qol functional error, equation (5), for all values of the independent variable. In the case of the
deformed cone the correction takes the form

o (r3=Hy) drs
AH = . (énr(0) — €Lp(0)) do. (11)

os=0) 40
The correction estimate from equation (11) is 2.170932 x 10~°m; this value is also
obtained using finite differences. Adding this correction to the low-fidelity model result
(3.1863 x 107> m) leads, exactly, to the result obtained numerically with the high-fidelity
constitutive. The fact that the first-order correction leads to an exact result is due to the fact
that the Qol is a linear functional of the constitutive law, see equation (9). It is important to
highlight that this is true even if the functionals themselves are non-linear; the correction is
exact if the Qol is a linear functional of the constitutive law. While the example is simple,
obtaining an exact result without having to perform a new simulation with the high-fidelity

model even when the form of the constitutive law changes is non-trivial.
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Figure 6. Error in modeling the discrepancy.

4.1. Design of optimal physics-enhancement simulations for uncertainty quantification and
prediction correction

We showed that if the physics-enhancement law g(z) is completely known our functional
derivatives approach provides an exact correction to the CG prediction. However, in many
cases of practical interest the physics-enhancement law is unknown but a simulation can be
performed to evaluate it for specific values of its independent variable z. In this sub-section
we discuss how the discrepancy function (g(z) — f(z) can be sequentially built via optimally
designed evaluations of the high-fidelity model. In the example at hand, see figure 5, since
the functional sensitivity is of the order O(107%) and the functional discrepancy is of the
order O(1073) their product is approximately constant throughout the domain. Hence the
entire domain is relevant to the computation of the enhancement law and is selected by both
the threshold or weighted threshold methods. Each high-fidelity simulation shows that the
discrepancy in the model varies smoothly throughout the domain, and is therefore appropriately
modeled by a Gaussian process model with a squared exponential covariance function (see
section 3); and the variance minimizing approach is effective in identifying the best values of
z at which to evaluate the high-fidelity model.

As seen in figure 6, only five evaluations of the high-fidelity model are needed to reduce
the discrepancy between the actual high-fidelity model and its Gaussian process approximation
to the order O (10~!'"). Using the surrogate model for the discrepancy the first-order correction
to the Qol is estimated to be 2.1896 x 10~°, which is very close to the exact correction
(2.197092 x 107°).

Figure 6 shows the discrepancy between the actual high-fidelity model and its Gaussian
process approximation. The values of z at which the high-fidelity model is evaluated are shown
as solid dots in the figure. As seen in figure 6, only five evaluations of the high-fidelity model
are needed to reduce the discrepancy between the actual high-fidelity model and its Gaussian
process approximation to the order O(10~'"). Using the surrogate model for discrepancy, the
first-order correction to the Qol is estimated to be 2.1896 x 107°, which is very close to the
exact correction (2.170932 x 107°).

11
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5. Example 2: elastic force in a RF-MEMS switch cantilever

5.1. Problem description and simulation details

In this section we apply the functional sensitivity approach to a second, computationally
more challenging, problem. We are interested in predicting the total elastic restoring force
experienced by the cantilever of a radio frequency (RF) micro-switch [19]. The switch consists
of a metallic cantilever fixed on one end and free on the other that lies over a dielectric landing
pad below which is a signal line. In its relaxed configuration a 3 um air gap separates the
cantilever and the dielectric; under such conditions the switch exhibits a very low capacitance
and an RF signal can go through it. The device is operated electrostatically by applying a
voltage between the signal line (or a nearby actuation electrode) and the metallic beam; the
electrostatic force causes the beam to deflect and eventually close, making contact to the
dielectric pad. The capacitance of this state is very large and the RF signal is diverted into the
beam.

The Qol we will focus on is the total restoring elastic force in the vertical (r3) direction
acting on the beam when it is in contact with the dielectric actuated by 100 V. The dimensions
of the cantilever are 250 um in length (along r{), 120 um in width (along r,) and 1.5 um in
thickness. We use the MEMOSA simulation code [20] to predict the profile of the cantilever
under the desired applied voltage using finite volumes. Due to the high aspect ratio of the
micro-cantilever the Mindlin—Reissner plate theory is used to compute the beam deflection
under electrostatic load [20]. A regular 2D quad mesh with 100 x 48 cells is used in simulation.
The simulation provides the strain and stress tensor of the beam when it is at equilibrium contact
position.

The low-fidelity model used in the beam simulation is, as in the example above, a linear
elastic, isotropic constitutive law for the beam where the stress components are given in terms
of the strain as

o1 = E (€11 +vey) (12)
02 = E (e +veyy), (13)

where £ = 200 GPa is Young’s modules and v =0.3 is Poisson’s ratio.
The high-fidelity model is taken as a non-linear elastic law equivalent to that in section 4:

o1l — E*[1 —exp(—Blen +venl)]  if (€11 +vexn) >0 (14)
"= 1—E* [1 —exp(—Bleir +vex|)] otherwise

o — E*[1 —exp(—Blen+venl)]  if (ex+ve) >0 (15)
27 —Ex [1 —exp(—Blen +ve])] otherwise,

where E* = 2 GPa and 8 =100 are chosen to lead to the same initial slope as the low-fidelity
model and to non-linear elasticity.

5.2. Qol and functional sensitivity

The total elastic force in the vertical (r3) direction of the switch is obtained within the plate
approximation used in the simulations as an integral over the cantilever area (Ag):

9011(r1, r2) Ow(ry, r2)  dox(ry, r2) dw(ry, r2)
F=1[ ho +
Ao

drydr,. (16
3}’1 8r1 3}’2 8}’2 i| e ( )

where w(ry, r) is the beam height as a function of position. In this equation, the stress
derivatives give forces along the plane of the beam and the derivatives of the beam height with
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respect to r; and r, project these forces along the r3 direction. We note that, when integrated,
the term involving o5, yields zero due to symmetry. The remaining term can be modified to
provide an expression for the functional derivative of the Qol with respect to the constitutive
law (stress as a function of strain). We first use integration by parts to obtain

ow(ry, r
F=h0/ |:011(V1J’2)%]
1

xl *w(ry, ra)

drz —/’lo/ 0’11(7‘1,7‘2)—2 dl"1 drz, (17)
Ao Brl

X0
where the first term is evaluated at the cantilever boundaries along the r| direction leading to

zero. The second term can be re-arranged in terms of an integral over strain values to provide
an expression for the functional derivative:

*w(ry, r2)

axz dr1 dl"g (18)

F =h0/ o1 (en1(ri, 12), €x(ri, 7))
Ao

SF
= | oni(en, ) —(€11, €22) deqy depa.
doi

From equation (18) we can write the functional derivative of the vertical force with respect
to the input stress—strain function as

SF 2w (ry, r2)
—— (e, e) =ho | 8(en —611(71,1”2),6’22—622(V1,V2))Tdrl dr,. (19)
Ao

(S o011

We compute the functional derivative % (e11, ex2) from equation (19) numerically based
on the low-fidelity solution discretizing strain €;; between —0.002 and +0.003 and €,, between
—0.0008 and +0.0028 with a 50 x 50 grid.

5.3. Results

Figure 7 shows the membrane height (a), the diagonal component of the strain in the r| direction
(¢11) (b), and the contribution to the force along r3 of each cell from equation (18) (c) as a
function of position along the beam’s length. In figure 7(c) squares represent the low-fidelity
model and diamonds denote the non-linear high-fidelity model (using the strains from the low-
fidelity solution). The total elastic force acting on the beam is 6.652 mN using the low-fidelity
model and 6.162 mN with the high-fidelity one, i.e. the non-linear behavior of the high-fidelity
model leads to a 0.490 mN decrease in force.

Figure 8 shows the functional derivative of the total elastic force along r3 with respect
to the input constitutive law obtained numerically from equation (19). The derivative is
positive for tensile axial strains, this indicates that stiffening the material in tension leads
to an increase in restoring elastic force. On the other hand, the derivative is negative for
compressive axial strains; an increase in the stress for negative strains, i.e. making the material
softer in compression, leads to a decrease in the restoring force. We also see that the absolute
value of the functional derivative increases with increasing strain (also in absolute terms) but
is only non-zero for the strains present in the solution.

With the functional derivative at hand we can compute a correction to the Qol given
the high-fidelity model using the functional UQ relationship in equation (5). We do this by
numerical integration using the 50 x 50 grid on which the functional derivative was calculated;
the correction is —0.000 490 mN; this is identical to the actual value computed explicitly. As
before this shows that when the Qol is a linear functional of the constitutive law the correction
provided by functional UQ is exact.

We now explore the use of the functional derivative to rank in importance the evaluations
of the high-fidelity model. Figure 9 shows the accumulated correction of restoring force as
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Figure 7. Results corresponding to the deformed beam. (a) Beam deflection along its length.
(b) Longitudinal component of the strain as a function of position along length. (c¢) Contribution of
force for each finite volume cell according to equation (17) using the low- and high-fidelity models.

a function of the number of high-fidelity model evaluations using the functional derivative
expression (equation (5)). The high-fidelity model evaluations are ordered according to the
absolute value of the functional sensitivity corresponding to the specific strains (i.e. we assume
a uniform discrepancy). We see that an essentially exact correction is obtained with less than
250 high-fidelity model evaluations. The correction can also be evaluated explicitly from
equation (16) and the individual contributions ranked in terms of the absolute value of the
strain along r;. Figure 9 compares the accumulated correction as a function of the number
of high-fidelity model evaluations ordered in decreasing order of importance according to the
functional derivative approach (equation (5)) and using an explicit evaluation using strain as
ranking. The number of evaluations of the high-fidelity model is significantly reduced using
the functional sensitivity approach while yielding an essentially exact correction.
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Figure 8. Functional derivative of the elastic force acting on the beam with respect to the
stress—strain function calculated from equation (19).
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Figure 9. Correction to the low-fidelity model prediction of elastic force as a function of number
of evaluations of the high-fidelity model. Green line shows results using the functional derivative
approach equation (5) and ranking the high-fidelity evaluations based on their functional derivative
and the red curve shows results obtained by a direct evaluation of the correction via equation (16)
and ranking the evaluations based on the absolute value of the local strain along the beam axis.

We note that the number of high-fidelity model evaluations required for the correction
based on functional UQ depends on the physics of the problem and the range of the constitutive
law explored and is independent of the resolution and size of the physical simulation. We also
note that computing the high-fidelity model correction explicitly requires knowing the complete
state of the physical simulation (strain for all cells in our example); on the other hand, the exact
correction can be obtained using the functional UQ approach with knowledge of the functional
derivative alone. This makes the functional UQ approach attractive for large-scale simulations.

6. Discussion and conclusions

In summary, we extended the concept of sensitivity of a Qol with respect to input parameters
to sensitivity with respect to input functions and showed that this functional sensitivity (the
derivative of the Qol with respect to the entire constitutive law) can be used to estimate
uncertainties with respect to the models used in the simulation, correct the predicted Qol
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once a refined constitutive law becomes available and to rank potential on-demand physics-
enhancement simulations designed to minimize the error in the prediction.

The sensitivity of the prediction of a deterministic code with respect to input parameters
can be calculated via a variety of approaches with varying degrees of code intrusiveness,
from generalized polynomial chaos modeling that requires solving a set of equations different
from those in the deterministic model, to automatic code differentiation [21] that requires
relatively minor changes to the original code and collocation that simply involves executing
the deterministic code for various sets of input parameters. The proposed functional derivatives
can be obtained in similar ways. For some problems, functional derivative expressions can
be obtained analytically and implemented into simulation codes as was carried out in this
paper. Alternatively, collocation approaches can be used by providing the constitutive laws
in tabular form and varying the individual values. Automatic code differentiation should be
explored as a possible efficient and non-intrusive approach to compute functional derivatives,
during code execution. We foresee that computationally efficient ways of computing functional
derivatives in complex physics and engineering codes together with the method presented here
will provide invaluable information about the constitutive laws used in predictive simulations
and will provide an important tool for the effective use of extreme-scale computing platforms.

The ability to predict materials properties or device performance with quantified
uncertainties is expected to revolutionize design, optimization and certification cycles,
significantly decreasing the cost and time involved in the deployment of new materials and
devices. While experimental validation will always remain a critical step in this process,
the continuing increase in computing power and advances in high-fidelity, first-principles,
simulations with increased accuracy make quantification of predictions with respect to finer-
scale models an important task. Examples of applications where high-fidelity models are
becoming accurate enough to quantitative predictions include interatomic potentials for various
fcc metals [22] to predict the mechanical response of high-purity poly-crystals [23] and
ab initio calculations for an increasing range of electronic, structural and energetics predictions
[24-28]. We foresee that macro- or device-scale predictions with rigorously quantified errors
with respect to high-fidelity models that can be considered exact for the Qol will be an
invaluable tool in predictive modeling and simulation and its use for design, optimization
and certification. Furthermore, the ability to identify physics-enhancement simulations and
their use to quantify and minimize uncertainties are likely to play a central role in the effective
use of planned exascale computing systems that may enable pervasive physics enhancement
in various applications.
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Appendix: Surrogate models for functional discrepancy

In previous work, researchers have employed various types of surrogate models such as
Gaussian process regression [ 17, 29]], radial basis functions [30], polynomial response surfaces
[31,32], Splines [33] and Polynomial Chaos Expansions [34,35]. These models are based
either on statistical or functional approximation theory and are known to be capable of
approximating a wide class of function types [36].
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Once a surrogate modeling technique is selected, the design of an approximate model
then involves (1) selection of training points and (2) estimation of the internal parameters of
the model. Since the mapping implied by the simulation is not known and is expensive to
evaluate, the selection of the optimal training point distribution can neither be determined
a priori nor be based on selection criteria based directly on the simulation which requires
extensive evaluation. Consequently, sample selection is necessarily sequential and based on
selection criteria defined on the intermediate estimates of the underlying function provided by
the surrogate models and the functional sensitivity.

Typical approaches to training data selection belong to the variance reduction class of
techniques that borrow from optimal experiment design methods [37]. Using the Bayesian
approach, Mackay [38] and Tong [39] described entropy-based sample selection criteria for
reduction of parameter uncertainty and model discrimination. These criteria are analogous
to their counterparts in optimal experiment design. More recently, Guestrin et al [40]
proposed a mutual information based criterion for reducing a posteriori prediction uncertainty
in Gaussian process models and presented an approximate polynomial-time algorithm for the
problem. Gramacy and Lee [41] employ Gaussian trees to represent non-stationary processes
and employ prediction variance for the design of sample using the space-filling Latin hypercube
designs [42].

6.1. Basics of Gaussian process regression

In Gaussian process regression (GPR), it is assumed that the underlying function values
represent a particular realization of a Gaussian process, and the objective then is to identify
the particular realization based on the training data [17]. The Gaussian process (GP) is
a generalization of the multivariate Gaussian distribution and thus may be thought of as a
collection (indexed by points in the domain) of multivariate Gaussian random variables. A
GP is fully defined with the specification of the mean function, m(z), and the covariance
function k(z, 7). In general, these functions must be selected so as to reflect our assumptions
about the underlying function, such as about its stationarity, periodicity, etc, [17,38,43]. As
is common in the literature [17,29], it is assumed below that the mean function, m(-) = 0 and
the covariance function is the squared exponential function:

2
D (44
i (z,2;,0) = O exp —%Zu : (20)

d=1 la

Together, ® = {/, 6,,, 0,,} form the parameters of the covariance function and thus of the GP
model. In order to be able to make predictions using the model, these parameters must be
inferred from the given data. A common method employed is the maximization of the log
marginal likelihood [17]. Of special interest are the parameters, [ = {l1,[5,...,Ip} known
as length-scale parameters, which correspond to the length of the variation in function values
implied by k(-) in each dimension of 2. A small value of /; indicates significant variation in
the function values in the dth dimension, a large value of /; indicates that the variability in the
function value is not impacted by changes in the dth dimension.
The GP predictive distribution is given by [17] p(fplyr, 27, 2P, ®) ~ N(m, §) with

-1
m = Kpr (Krr +0,1) " yr @D
-1
S=Kpp— Kpr (Krr +0,1)" Krp, (22)

where, K71 = [k(z;, z;)]; j is the t x t matrix of the covariances between the training points
zr, Kpp is the p x p matrix of the covariances between the prediction points zp, and K pr
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is the p x ¢ matrix of covariances between zp and zy with K7 p as its transpose. The mean
of the posterior distribution, m, is taken to be the predicted values of the underlying function
at the zp. This estimate is a function of (1) the measurement uncertainty, (2) the separation
between the training points, (3) the measured value of the underlying function at the training
points and (4) separation between the training points and the prediction points. By collecting
all the terms that do not depend on the prediction points, zp, equation (3) may be rewritten as
follows

m = KpTwT. (23)

If a computer code is used to evaluate fr or yr, then typically, there is no measurement
noise and o, may be set to zero. Under such circumstances, the GPR model is interpolative,
ie. m(xy) = fr and S(zy) = 0. The covariance of the predicted values, S, represents the
uncertainty in prediction, equation (23).

6.2. Application to discrepancy modeling

Among a set of locations at which the expensive high-fidelity model is evaluated, a subset of
points (referred to as inducing inputs) is used to construct a GP model, and the discrepancy is
evaluated at the remaining points. This procedure is formally represented as sparse Gaussian
process (SGP) regression [44,45]. The locations with high discrepancy are explored further
with additional training points in that region. A simple option is a ternary tree in which each
layer is a dyadic partition of the previous layer, as shown in figure 10 [30]. This adaptive
exploration of the domain results in a hierarchical decomposition of the error, written as

et = &g
k=1 ‘ ep = € +eo,
k=2 ‘ e = ég +e3, (24)
k=M ‘ ey = éM +eps1-

where, k = {1,2, ..., M} is the index to the M-level hierarchy. The first layer of the model
approximates the discrepancy g with ¢; and e, = e; — €, is the corresponding approximation
error. Similarly, in subsequent layers, é; is the kth layer approximation to the error, ey, in the
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previous layer, and e;,; = e; — ¢ is the corresponding approximation error of the current
layer. See [18] for details of implementation.
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