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1 Introduction

We adopt definitions and notations from (3, 7], with which some {amiliarity is assumed. We deal
with a (possibly singleton) collection S of strings over a finite alphabet X, and use X to denote
the empty string. The length of 5 is the sum of the lengths of all strings in it and is denoted
by n. With reference to S and a generic string s = s;3;...s;, the empiricel probability P of s is
defined provisionally as the number of times s occurs in S divided by the maximum “possible”
number of such occurrences. The conditional empirical probability of observing the symbol o
soon after the string s is given by the ratio

P(ols) = X2 |

Sx

where x,, is the number of occurrences of string w and s* is every single-symbol extensions of s
having occurrence in §. Finally, suf(s) denotes s253...5;.

In [3, 7], tree-shaped probabilistic automata are built to be used as an aid in the classification
of strings. In any such tree, each edge is labeled by a symbol, each node corresponds to a unique
string ~the one obtained by traveling from that node to the root— and nodes are weighted by
a probability vector giving the distribution over the next symbol. In the following, 7 is the
tree-shaped automaton, 5 is the set of strings that we want to check and 7, is the probability
distribution over the next symbol associated with node s. The construction starts with a tree
consisting of just the root node (i.e., the tree associated with the empty word) and adds paths
as follows. For each substring s considered, it is checked whether there is some symbol & in the
alphabet for which the empirical probability of observing it after s is significant and significantly

"Work supported in part by NSF Grant CCR-9700276 and by the Italian Ministry of Research.

'Department of Computer Sciences, Purdue University, Computer Sciences Building, West Lafayette, 1N
47907, USA end Dipartimento di Elettronica e Informatica, Universitd di Padova, Via Gradenigo 6/A, I-35131
Padova, Italy. axa@cs.purdue.edu.




different from the probability of observing it after suf(s). Whenever these conditions hold, the
path relative to the substring (and possibly its necessary but currently missing ancestors) are
added to the tree.

Given a string, its weighting by a tree is done by scanning the string one letter after the
other while assigning a probability to every letter, in succession. The probability of a letter is
calculated by walking down the tree in search for the longest suffix that appears in the tree and
ends immediately before that letter, and multiplying the corresponding conditional probability.
Since, following each input symbol, the search for the deepest node must be resumed from the
roof, this process cannot be carried out on-line nor in linear-time in the length of the tested
sequence.

The following figures reproduce for our convenience the constructions of the trees respec-
tively in [3] and [7]. Here L is the maximum length for a string to be considered, Py, is the
minimum value of the empirical probability in order for the string to be considered, r measures
the prediction difference between the candidate and its father, @ the €’s and 4, are suitable
constants and part of the input parameters.

We are interested primarily in the asymptotic complexity of the main part (tree construction)
of these procedures, and in possible ways to improve it. In this regard, the algorithms may be
considered equivalent except for small changes in the treatment of internal nodes and the choice of
constants. These details have no substantial bearing on the performance and no consequence on
our considerations. Also, for the same reason, we are not interested in the last steps of smoothing
probabilities. We see that the body of the algorithms consists of checking all substrings having
empirical probability at least F,,;, and length at most to L. Although the number of substrings
passing these tests may be quite small in practice, still there are in principle n — I 4 1 possible
different strings for each I, which would lead to ©(ZLn?) time just to compute and test empirical
probabilities (nL strings in total each requiring at least O(n)work to test). The discussion that
follows shows that in fact overall O(n) time suffices. Along the way, a possibly more accurate
notion of empirical probability is proposed and computed. Finally, we will see that also the
structure and use of the antomaton can be made more efficient. We assume henceforth that S
contains only one string, which will be denoted by z.

Our approach must depart considerably from the algorithms of the figures. There, word
selection and tree construction go hand in hand in Step B. In our case, even though in the end
the two can be re-combined, we decouple these tasks. We concentrate on word selection, hence
on the tests of Step B. Essentially, we want to show that all those words can be tested in overall
linear time, even if those word lengths may add up to more than linear space. Throughout, we
reason to fix the ideas in terms only of the algorithm of Figure 2, since the other one may be
handled analgously. .

2 Computing Empirical Probabilities

Consider for a moment the problem of defining and computing empirical probabilities. This
is needed at the beginning and intermediate steps of the algorithms, and also to dynamically
update the set 5 while keeping its size from “growing exponentially”. One problem here is that
the notion of empirical probability is not straightforward. Fortunately in the algorithms -in




PSA Learning Algorithm from [7]
First Phase

1. Initialize T and S: let T consist of a single node corresponding to A, and let
S — {oloc € ¥ and P(o) > (1 — &1)ep}-

2. While 5 # 0 do

Pick any s € § and do
¢ (A) Remove s from 5;
o (B) if there is a symbol & € X such that

p(o-ls) = (1 + 62)')(?11!'1::

and
}5(ar|s)/}3(0'|.suffz'z(s)) > (1 4 3e2),

then add to T’ the node corresponding to s and all the nodes on the path from
the deepest node in T that is a suffix of s;

o (C) If |s| < L then for every ' € &, if
JB(O'Ilr . 5) Z (1 - EI)EU,
then add ¢/ - s to 5.

Second Phase

1. Initialize T to be T.
9. Ixtend 7" by adding all missing sons of internal nodes

3. For each s labeling a node in f:, let 4,(c) = }3(0|s’)(1 — | Z[Ymin} + Ymin , where
s' is the longest suffix of s in 7.

Figure 1:




PSA Learning Algorithm from [3]

1. IIlitiaIize T and S: Jet T consist of a single node corresponding to e, and let
S «— {o|o € X and P(o) 2 Pnuin}-

2. Building the Skeleton: While S # 0, pick any s € S and do

e (A) Remove s from S;
¢ (B) if there is a symbol ¢ € ¥ such that

P(Jls) 2 (1 + a)'f‘min:

and

p P
(1) 5L —> o (@) oA <
P(o|suf fiz(s)) P(o[suf fiz(s))
then add to 7' the node corresponding to s and all the nodes on the path to s
from the deepest node in T that is a suffix of s;
o (C) If |s} < L then for every o' € T, if

P(OJ' 5) > Pmin:

then add ¢' - s to S.

3. Smoothing the prediction probabilities: For each s labeling a node in T, let 7,(¢) =
P(Jls)(l - Izl']’min) + Ymin

Figure 2:




so far as the construction of the automaton goes— we are interested primarily in conditional
probabilities which turn out to be less controversial.

One ingredient in the computation of empirical probabilities is the count of occurrences of a
string in another string or set of strings. We concentrate on this problem first. Since there can
be O(n?) distinct substrings in a string of » symbols, a table storing the number of occurrences
of all substrings of the string might take up in principle @(n?) space. However, it is well known
that linear time and space suffice to build an index suitable to return, for any string w, its x.,
count in z. Here we need to analyze this fact a little closer. We begin by recalling an important
“left-context” property, which is conveniently adapted from [4].

Given two words z and y, the stari-set of y in z is the set of occurrences of y in z, i.e.,
posc(y) = {¢ 1y = ;...z;} for some 7 and j, 1 < ¢ < j < n. Two strings y and z are equivalent
on z if posz(y) = posz(z). The equivalence relation instituted in this way is denoted by =,
and partitions the set of all strings over ¥ into equivalence classes. Recall that the indez of an
equivalence relation is the number of equivalence classes in it.

Fact 2.1 The index k of the equivalence relation =; obeys k < 2n.

In the example of the string abaababaabaababaababa, for instance, {ab, aba} forms one such
Ci-class and so does {abaa, abaab, abaaba}. Fact 2.1 suggests that we might only need to com-
pute empirical probabilities for O(n) substrings in a string with n symbols. The following
considerations make this statement more precise and in fact give one possible proofs of it.

With § a symbol not in X, the suffiz iree T, associated with z is the digital search tree that
collects the first n suffixes of 8. In the compact representation of T, (see Figure 3), chains of
unary nodes are collapsed into single arcs, and every arc of T, is labeled with a substring of
z8. A pair of pointers (e.g., starting position, length) to 2 common copy of = can be used for
each arc label, whence the overall space taken by T is O(n). In T, the ith suffix suf; of 8
(t = 1,2,...,n) is described by the concatenation of the labels on the unique path of 7 that
leads [rom the root to leaf 7. Similarly, any vertex a of T distinct from the root describes a
subword w(c) of z in a natural way: vertex « is called the proper locus of w(a). In the compact
T%, the locus of w is the unique vertex of T, such that w is a prefix of w(c) and w(Father(a)) is
a proper prefix of w.

An algorithm for the construction of the expanded 7% is readily organized: We start with an
empty tree and add to it the suffixes of z§ one at a time. Conceptually, the insertion of suffix
suf; (1 =1,2,...,n + 1) consists of two phases. In the first phase, we search for suf; in Ti_;.
Note that the presence of § guarantees that every suffix will end in a distinct leaf. Therefore,
this search will end with failure sooner or later. At that point, though, we will have identified
the longest prefix of suf; that has a locus in T;_;. Let head; be this prefix and o the locus of
head;. We can write suf; = head; - tail; with feil; nonempty. In the second phase, we need to
add to 7;_; a path leaving node & and labeled iail;. This achieves the transformation of 7%_,
into 75,

Clever constructions such as in [6, 8, 9] are available that build the tree in time O(nlog |Z|)
and linear space. One key element in such constructions is offered by the following easy fact.

Fact 2.2 If w = ¢v, a € X, has a proper locus in T, then so does v.
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Figure 3: A suffix tree in compact form, shown with only the outermost arcs labeled by pointers

To exploit this fact, suffiz links are maintained in the tree that lead from the locus of each
string av to the locus of its suffix v. Here we are interested in Fact 2.2 only for future reference.
Having built the tree, some simple additional manipulations make it possible to count and locate
the distinct (possibly overlapping) instances of any pattern w in z in O(Jw])} steps. For instance,
listing all occurrences of w in z is done in time proportional to |w| plus the total number of
such occurrences, by reaching the locus of w and then visiting the subtree of 7}, rooted at that
locus. Alternatively, a trivial bottom-up computation on 7, can weight each node of 7} with
the number of leaves in the subtree rooted at that node. This weighted version serves then as a
statistical index for z, in the sense that, for any w, we can find the count y,, of w in x in O{|w|)
time. Note that the counter associated with the locus of a string reports its correct count even
when the string terminates in the middle of an arc. This is, indeed, nothing but a re-statement
and a proof of Fact 2.1. From now on, we assume that a tree with weighted nodes has been
produced and is available for our constructions.

We are now ready to consider more carefully the notion of empirical probability. One way
to define the empirical probability of w in 7 is to take the ratio of the count of the number y,,
to |z| — |w| + 1, where the latter is interpreted as the maximum number of possible starting
positions for w in z. For w and v much shorter than =z we have that the difference between
|z| — [w|+1 and |z| — [wov|+1 is negligible, which means that the probabilities computed in this
way and relative to words that end in the middle of an arc do not change, i.e., we only need to
compute those associated with strings that end at a node of the compact 7.

This notion of empirical probability, however, assumes that every position of z compatible
with w length-wise is an equally likely candidate. This is not the case in general, since the
maximum number of possible occurrences of one string within another string depends crucially
on the compatibility of self-overlaps. For example, the pattern aba could occur at most once
every two positions in any text, abaab once every four, etc. Compatible self-overlaps for a string
z depend on the structure of the periods of z. We review these notions briefly.




procedure maxborder ( v )
begin
bord[0] — —1; r «— —1;
for m=1to hdo
while r > 0 and y,41 # yn, do

T+ bord[r];
endwhile
r=r+1; bordlm]=r
endfor
end

Figure 4: Computing the longest borders for all prefixes of ¥

A string z has a period w if z is a prefix of w* for some integer k. Alternatively, a string w is
a period of a string z if z = w'v and v is a possibly empty prefix of w. Often when this causes
no confusion, we will use the word “period” also to refer to the length or size |w| of a period
w of z. A string may have several periods. The shortest period (or period length) of a string =z
is called the period of 2. Clearly, a string is always a period of itself. This period is called the
trivial period.

A germane notion is that of a border. We say that a non-empty string w is a border of a
string z Il z starts and ends with an occurrence of w. That is, 2 = uw and z = wv for some
possibly empty strings « and v. Clearly, a string is always a border of itself. This border is
called the trivial border. It is not difficult to see that two consecutive occurrences of a word may
overlap only if their distance equals one of the periods of w. Hence we have

Fact 2.3 The maximum possible number of occurrences of a2 string w into another string z is
equal to ([z| — |w| + 1)/|u[, where u is the smallest period of w.

“act 2.3 tells us that in order to compute the empirical probabilities of, say, all prefixes of a
string we need to know the borders or periods of all those prefixes. In fact, we can manage to
carry out all the updates relative to the set of prefixes of a same string in overall linear time,
thus in amortized constant time per update. This possibility rests on a simple adaptation of
a classical implement of fast string searching, that computes the longest borders (and corre-
sponding periods) of all prefixes of a string in overall linear time and space. We report one such
construction in Figure 4 below, for the convenience of the reader, but refer for details and proofs
of linearity to discussions of “failure functions” and related constructs such as found in, e.g., [5].

The construction of Fig. 4 may be applied, in particular, to each suffix suf; of a string z
while that suffix is being inserted as part of the direct tree construction. This would result in
an annotated version of T in overall quadratic time and space in the worst case. Note that,
unlike in the case of empirical probabilities previously considered, the period ~and thus also
the empirical probabilities of Fact 2.3— may change along an arc of 7%, so that we may neced
to compute explicitly all ©(n?) of them. However, if we were interested in such probabilities




only at the nodes of the tree, then these could still be computed in overall linear time. The
key to this latter fact is to run a suitably adapted version of maxborder walking on suffix links
“backward”, i.e., traversing them in their reverse direction, beginning at the root of 7% and then
going decper and deeper into the tree. One way to visualize this process is as follows. Imagine
first the “co-tree” of T formed by the reversed suffix links: we can visit such a structure depth
first and simultaneously run a procedure much similar to maxborder to assign periods to all
nodes of T,. Correctness rests on the fact that for any word w the periods of w and w" coincide.

We shall see shortly that in situations of interest to us we can limit computation to the nodes
of T.

Fact 2.4 The set of empirical probabilities of all (short) words of = that have a proper locus in
T can be computed in linear time and space.

3 Conditional Probabilities and Ratios Thereof

Consider now conditional empirical probabilities, which were defined as the ratio between the
observed occurrences of so to the occurrences of s#. The first thing to observe is that the value
of this ratio persists along each arc of the tree, i.e.,

P(o’ls) - xS/X.Sd =1

for any word s ending in the middle of an arc of T; and followed there by a symbol o. Therefore,
we know that every such word passes the first test under (B), while continuation of s by any
other symbol would have zero probability and thus fail. These words s have then some sort of
an obvious implicit vector and need not be tested or considered explicitly. On the other hand,
whenever both s and suf fiz(s) end in the middle of an arc, the ratio

_ Bl _1_
P(olsuf fia(s)) ~ 1

Since r > 1, then neither  nor 1/r may be equal to 1, so that no such word passes either part
of the second test under B. The fate of any such word with respect to inclusion in the tree
depends thus on that of its shortest extension with a proper locus in it. The cases where both
s and suf fiz(s) have a proper locus in T are easy to handle, since there is only O(n) of them
and the corresponding tests take linear time overall. By Fact 2.2, it is not possible that s has a
proper locus while suf fiz(s) does not. Therefore, we are left with those cases where a proper
locus exists for suf fiz(s) but not for s. There are still only O(n) such cases of course, but the
problem here is that in these cases we do not find a suffix link to traverse backward from the
locus of suf fiz(s) to that of s. Fortunately, this is easy to fix, but towards this end we need
first to define reverse suffix links more formally.

Let v/ be the locus of string s’. We define rsuf(v/, o) as the node v which is the locus of the
shortest extension of as’ having a proper locus in 7. Le., node v is such that w(») = sz with
s = 0§’ and z as short as possible if z # A. If s’ has no occurrence in z then rsuf(»’, o) is not

defined.




Clearly, rsuf coincides with the reverse of the suffix link whenever the latter is defined.
When no such original suffix link is defined while os’ occurs in z, then rsuf takes us to the
locus of the shortest word in the form os’z with the property that all occurrences of s in z occur
precisely within the context of o5’z beginning at the second position of this string. In other
words, we have pos:(cs’) = posz(cs'z). In these cases, the locus of os'z may be treated as a
surrogate locus of that of os’, since the x-values and ratios thereof would be the same for both.

Setting rsuf’s is an easy linear post-processing of T, (details will follow). In conclusion,
attaching empirical conditional probabilities only to the branching nodes of 75 suffices. As there
are Ofn) such nodes, and the alphabet is finite, the collection of all conditional probability
vectors for all subwords of z takes only linear space.

Fact 3.1 The set of empirical conditional probabilities of all (short) words of a string z over a
finite alphabet can be computed in linear time and space. The conditions under Step B can be
tested implicitly for all such words in overall linear time and space.

4 PSAs and MPPMs

At this point we can informally summarize as follows the procedure by which words are selected
for inclusion in our automaton.

1. Build a compact T, for z, weight its (O(n), branching) nodes with the y-counts and
empirical probabilities;

2. Determine the words to be included in 5 and thus in the final automaton. For this, consider
the nodes of T; bottom up and run the tests of Step B on these nodes. Prune the tree in
correspondence with nodes failing the tests (to be detailed). By the above Facts, we know
that pruning will have to occur in correspondence with nodes, and not along an arc.

The pruned version of the tree resulting from this treatment represents a Trie-shaped au-
tomaton capable of performing much the same function as a PSA and yet having the structure
of a Multiple Pattern Matching Machine (MPPM) [1, 5]. The import of this is that, on such a
machine, the paths corresponding to the substring undergoing test are traversed from the root
to the leaves. The structure of MPMMs, with failure-function links etc., ensures that while the
input string is scanned symbol after symbol, we are always at the node of the MPPM that cor-
responds to the longest suffix of the input having a node in the MPPM. Also by the structure of
MPPMs, running a string through it takes always overall linear time in the length of the string.

Acknowledgements | am indebted to Gill Bejerano and Golan Yona for many helpful
comments.
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